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Abstract

This paper proposes a general latent variable approach to discrete-time survival anal-

ysis of non-repeatable events such as onset of drug use. It is shown how the survival

analysis can be formulated as a generalized latent class analysis of event history indica-

tors. The latent class analysis can use covariates and can be combined with the joint

modeling of other outcomes such as repeated measures for a related process. It is shown

that conventional discrete-time survival analysis corresponds to a single-class latent class

analysis. Multiple-class extensions are proposed including a class of long-term survivors

and classes defined by outcomes related to survival. The estimation uses a general la-

tent variable framework including both categorical and continuous latent variables and

incorporated in the Mplus program. Estimation is carried out using maximum likeli-

hood via the EM algorithm. Two examples serve as illustrations. The first example

concerns recidivism after incarceration in a randomized field experiment. The second

example concerns school removal related to the development of aggressive behavior in

the classroom.

Key words: event history, latent classes, long-term survivors, growth mixture mod-

eling, maximum likelihood.
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1 Introduction

This paper considers discrete-time survival analysis to study the probability, or hazard, of

experiencing a non-repeatable event such as onset of drug use. Unlike logistic regression,

which examines the overall probability of an event without regard to the timing of

that event, discrete-time survival analysis allows for examination of the longitudinal

progression of the probability that an event occurs. Alternative names for this type of

analysis are event history analysis and time-to-event analysis. For overviews, see, for

example, Allison (1984), Singer and Willett (1993), and Vermunt (1997).

Although continuous-time survival analysis (see, e.g. Hougaard, 2000) is frequently

used in many settings, discrete-time analysis is often more natural in social and behav-

ioral science applications where time is likely to be measured discretely, for instance

in school years. Discrete-time models have the strength that they can easily accomo-

date time-varying covariates. They also do not require a hazard-related proportionality

assumption that is commonly used in continuous-time survival analysis, e.g., the Cox

proportional hazards model. In addition, these models easily allow for nonparametric

as well as structured estimation of the hazard function at each discrete time point.

The aim of this paper is to show that it is useful to view the discrete-time survival

analysis as a latent class model that can be incorporated into a general latent variable

modeling framework. This general framework enables interesting new types of analyses.

First, unobserved heterogeneity among the subjects in the study can be captured using

multiple latent classes of individuals with different survival functions. Second, the sur-
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vival analysis can be combined with analysis of other related outcomes, such as a growth

mixture model for repeated measures.

The paper is organized as follows. In Section 2, two data sets are introduced and

used to illustrate the general analysis goals of discrete-time survival analysis. Section

3 presents key statistical concepts. Section 4 places the modeling in a general latent

variable framework. Using the general framework, Section 5 develops modeling exten-

sions for situations with mixtures of unobserved subgroups of individuals differing in

their survival functions. Section 6 shows illustrations of the methods returning to the

two data sets introduced in Section 2. Section 7 concludes.

2 Discrete-Time Survival Analysis Goals

Two data sets will be used to illustrate the analysis goals: data on recidivism after

incarceration and data on school removal among grade school children. Here, survival

concerns time to re-arrest and time to first school removal, respectively. Survival analyses

of these data will be presented in Section 6.

2.1 Recidivism Data

This data set is from a randomized field experiment originally reported by Rossi, Berk,

and Lenihan (1980) and has been used extensively by Allison (1984, 1995) as a pedagogi-

cal example in a continuous-time survival analysis framework. In this study, 432 inmates
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released from Maryland state prisons were randomly assigned to either an intervention

or control condition. The intervention consisted of financial assistance provided to the

released inmates for the duration of the study period. Those in the control condition

received no aid. The inmates were followed for one year after their release. The event of

interest was re-arrest with an emphasis on the influence of a set of explanatory variables

(including intervention status) on the likelihood of recidivism. The data available on

each inmate is detailed to the week level, i.e., 52 observation intervals. However, for

the illustrative purposes of this paper, the data is recoded into 13 four-week intervals,

referred to as ”months”. Further justification for a discrete-time treatment of this data

is given in Section 6.1.

The first section of Table 1 displays the sample means and standard deviations for

the three continuous covariates to be considered in the analysis. The second section of

Table 1 displays the sample proportions for the binary covariates. All covariates, with

the exception of employment status, are time-invariant. Employment status is a time-

varying binary covariate that indicates one or more weeks of employment during a given

month. The last section of Table 1 displays the sample information about the outcome

of interest, defined as the month of re-arrest. For the thirteen months, there are thirteen

corresponding binary indicators, labeled u1 − u13. A subject has a value of 1 if he was

arrested in a given month and a value of 0 if he was not. An inmate is only at risk for

re-arrest if he has not already been arrested after his release. If a subject is no longer

at risk, i.e., no longer part of the risk set, then he has a missing value for all subsequent

indicators. Thus, the sample average for each of the event indicators is the estimated
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probability of being arrested in given month among those inmates who have not been

re-arrested prior to that month. For example, in the first month, all 432 released inmates

were at risk for re-arrest and 4 experienced re-arrest. The estimated indicator mean for

the first month is 4/432 = 0.01. For the second month, only 432 − 4 = 428 inmates

were at risk for re-arrest and 8 were arrested. The estimated indicator mean for the

second month is then 8/428 = 0.02. The sample event indicator mean is also known

as the marginal hazard probability. The sample hazard probabilities can be plotted by

month as shown in Figure 1. This representation of the sample hazard function suggests

that the actual hazard function may be constant with random sampling accounting for

the fluctuation in the range 0.01 to 0.03. The proportions of the initial population of

inmates surviving through each month, termed survival probabilities, can be estimated

directly from the estimated hazard probabilities. The relationship between the survival

and hazard functions is described in greater detail in Section 3. Figure 2 displays the plot

of the estimated survival probabilities by month. There is an increase in the proportion

of the total inmates re-arrested over time with almost 30% re-arrested by the end of the

thirteenth month.

INSERT TABLE 1 HERE

INSERT FIGURES 1-2 HERE

Figures 3 and 4 display the same sample-based estimates of the hazard and survival

probabilities, stratified by intervention status. There is no clear difference in the hazard

functions for the two groups but the group of inmates not receiving the financial aid
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intervention does have a slightly lower survival curve, with almost 10% more of the initial

control group re-arrested by the end of the thirteenth month. The survival analysis of

this data set will investigate whether the intervention has a significant effect on the

hazard probabilities during the study period after controlling for the effects of the other

measured covariates: age at time of release, race, prior work experience, marital status at

time of release, parole status, number of prior arrests, years of schooling, and employment

status. Extending to discrete-time mixture analysis, the effect of intervention on the

long-term probability of re-arrest as well as its effect on the pattern of recidivism during

the duration of the study period will be statistically evaluated.

INSERT FIGURES 3-4 HERE

2.2 School Removal Data

The second data set is from a school-based preventive intervention study carried out by

the Baltimore Prevention Research Center under a partnership among the Johns Hopkins

University, the Baltimore City Public Schools, and Morgan State University. In this

intervention trial, children were followed from first to seventh grade with respect to the

course of aggressive behavior (Kellam, Rebok, Ialongo & Mayers, 1994). Teacher ratings

of a child’s aggressive behavior were made during fall and spring for the first two grades

and every spring in grades 3 - 7. The ratings were made using the Teacher’s Observation

of Classroom Adaptation-Revised (TOCA-R) instrument (Werthamer-Larsson, Kellam

& Wheeler, 1991), using an average of 10 items, each rated on a six-point scale from
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almost never to almost always. A Good Behavior Game intervention was delivered at the

classroom level using control group classrooms in the same school (internal controls) as

well as in other schools matched on school characteristics (external controls). A total of

11 elementary schools participated in the study. For this paper only the control groups’

data will be used. At the first grade fall measurement there were 6 internal and 10

external control classrooms, with a total of 404 children.

Table 2 shows the variables to be used in the survival analyses. Here, survival

concerns not being removed from school. The analyses will focus on the relationship

between the development of aggressive behavior in grade 1 and grade 2 and relate that

to first school removal in grades 3 - 7. Figure 5 shows sample means for aggression

in grades 1 and 2 and the sample survival curve. The survival curve indicates that

by end of grade 7, about 3/4 of the children have not experienced school removal.

Figure 6 shows the corresponding picture when dividing the sample into a high and a

normal/low aggression group based on the upper quartile of the aggression distribution

in the fall of first grade. The figure clearly indicates a relationship between aggressive

behavior and school removal. The children with a higher aggression score are seen to

have a considerably lower survival curve with almost half the children having experienced

school removal by the end of grade 7. The survival analysis of these data will investigate

the effects of the measured covariates on trends in both aggression and school removal

survival. In the discrete-time mixture framework, the influence of latent trajectory

classes of aggression in first and second grade on classes of survival trends in grades 3-7

will also be explored.
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INSERT TABLE 2

INSERT FIGURES 5-6 HERE

3 Discrete-Time Survival Analysis Methodology

This section introduces the basic statistical components of discrete-time survival analy-

sis. The probability of observing the sample (the likelihood), the hazard function, and

the survival function are presented.

3.1 Event History Indicators

Discrete-time survival analysis considers a set of binary 0/1 event history indicators

uj, j = 1, 2, . . . , ji, where uij = 1 if individual i experiences an event in time period j

and ji is the last time period of data collection for individual i. A single non-repeatable

event is considered so that data collection ends for individual i when u = 1 has been

observed. This means that there are only two types of patterns of u observations. One

pattern has u = 0 for every time period that was observed during data collection. Here,

the data collection ends before an event has been observed. These individuals are referred

to as censored (right-censoring) because it is unknown if and when they experienced the

event after data collection ended. The other pattern has u = 0 for every time period

except the last for which u = 1. These individuals are referred to as uncensored because

their survival status is known. Note that for both types of patterns, the last time period
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of data collection may differ across individuals.

3.2 The Likelihood

One approach to constructing the likelihood for a given data set is to begin with the

actual survival time. Define T as a discrete random variable that indicates the time

period j when the event occurs.

The survival probability at time period j is defined as the probability of not experi-

encing the event, i.e., the probability of ”surviving”, through time period j,

Sj = P (T > j). (1)

The hazard probability is defined as the probability of experiencing the event in time

period j given that it was not experienced prior to j,

hj = P (T = j|T ≥ j). (2)

The survival probability can be expressed in terms of the hazard by

Sj = P (T > j) = P (T 6= j|T ≥ j) P (T 6= j − 1|T ≥ j − 1) . . .

P (Ti 6= 2|Ti ≥ 2) P (Ti 6= 1|Ti ≥ 1)

=
j∏

k=1

(1− hk). (3)

Suppose the duration of the study is made up of J time periods. Then each individual

i in the sample is observed until some period ji, where ji ≤ J . Observation of the

individual may discontinue for three reasons: 1) The individual experiences the event;
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2) The individual drops out of the study; or 3) The study concludes. In the first case,

Ti = ji. In the second and the third case, it is only known that Ti > ji. Individuals

with Ti > ji are right-censored: it is unknown whether they experience the event after

their observation period. For individuals with Ti = ji, the likelihood may be expressed

in terms of the hazard as

P (Ti = ji) = P (T = ji|T ≥ ji) P (Ti 6= ji − 1|Ti ≥ ji − 1) . . .

P (Ti 6= 2|Ti ≥ 2) P (Ti 6= 1|Ti ≥ 1)

= hiji

ji−1∏

k=1

(1− hik). (4)

For individuals with Ti > ji, the likelihood may be expressed as

P (Ti > ji) =
ji∏

k=1

(1− hik). (5)

As shown in detail in Singer and Willet (1993), it follows that the likelihood for the

full sample is L =
∏n

i=1 li, where

li =
ji∏

j=1

h
uij

ij (1− hij)
1−uij (6)

and

hij = P (uij = 1) (7)

using the uij event history indicators defined in the preceding section.
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3.3 The Hazard Function

In line with Singer and Willet (1993) a logistic hazard function is considered. Adding q

covariates x the hazard can be written as the logistic function

hij =
1

1 + e−(logitij)
. (8)

where the logitij is expressed as,

logitij = −τj + κ′j xi, (9)

where xi refers to both time-invariant and time-varying covariates. The conventional

proportionality assumption may be applied, which is conveniently represented via a

factor ηui,

logitij = −τj + ηui, (10)

ηui = γ ′u xi, (11)

so that a given x variable has the same influence on the hazard during all time periods

j. The specification in (11) is typically used with time-invariant covariates. Equality

of effects of the time-varying covariates may be introduced by dropping the j subscript

from κ in (9). It may also be of interest to specify functional forms for the logits in (9),

for example linear trends.
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4 Discrete-Time Survival in a General Latent Vari-

able Framework

Muthén and Shedden (1999), Muthén, Shedden, and Spisic (1999), and Muthén and

Muthén (2001, Appendix 8) consider a general latent variable modeling framework in-

volving both categorical and continuous latent variables. Estimation is carried out using

the EM algorithm to obtain maximum-likelihood estimates. The procedure is incorpo-

rated in the Mplus program (Muthén & Muthén, 1998-2001). The model is given in the

appendix and relevant parts of it are summarized here, followed by an explanation of

how the discrete-time survival model fits into the framework.

The general model can be characterized as a finite mixture model. Mixture modeling

allows for unobserved heterogeneity in the sample, where different individuals can belong

to different subpopulations without the subpopulation membership being observed but

instead inferred from the data. Mixture modeling captures this heterogeneity by a latent

categorical variable. Mixture modeling has a wide variety of applications. Overviews

with latent class and growth mixture applications are given in Muthén (2001a, b) and

Muthén and Muthén (2000). Applications to randomized trials are given in Muthén,

Brown, Masyn, Jo, Khoo, Yang, Wang, Kellam, Carlin, and Liao (2000), Jo (1999), and

Jo and Muthén (2000, 2001).

Let c denote a latent categorical variable with K classes, ci = (ci1, ci2, . . . , ciK)′,

where cik = 1 if individual i belongs to class k and zero otherwise. The model relates
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c to a q × 1 covariate vector x by multinomial logistic regression using the (K − 1)-

dimensional parameter vector of logit intercepts αc and the (K − 1) × q parameter

matrix of logit slopes Γc, where for k = 1, 2, . . . , K

P (cik = 1|xi) =
e

αck
+γ ′

ck
xi

∑K
k=1 e

αck
+γ ′

ck
xi

, (12)

where the last class is a reference class with coefficients standardized to zero, αcK
= 0,

γck
= 0.

Define an r × 1 vector u of binary (0/1) variables with conditional independence

given ci and xi,

P (ui1, ui2, . . . , uir|ci,xi) = P (ui1|ci,xi) P (ui2|ci,xi) . . . P (uir|ci,xi). (13)

Define u∗i = (u∗i1, u
∗
i2, . . . , u

∗
ir)

′ as continuous latent response propensities underlying u.

Here, u∗j is related to uj through a threshold parameter τj,

P (uij = 1|ci,xi) =
1

1 + e−(−τ+u∗) , (14)

For example, the higher the τ , the higher u∗ needs to be to exceed it, and the lower the

probability of u = 1 (the use of a threshold parameter instead of an intercept parameter

is needed when ordered polytomous us are considered).

It is convenient to introduce a continuous latent variable vector ηui = (ηu1i
, ηu2i

, . . . , ηufi
)′.

Conditional on class k,

u∗i = Λuk
ηui + Kuk

xi, (15)

ηui = αuk
+ Γ′uk

xi, (16)
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where Λuk
is an r × f logit parameter matrix varying across the K classes, Kuk

is

an r × q logit parameter matrix varying across the K classes, αuk
is an f × 1 logit

parameter vector varying across the K classes, and Γuk
is an f × q logit parameter

matrix varying across the K classes. The model structure in (15) and (16) is useful

when the u vector represents repeated measures and the latent classes correspond to

different trajectory classes. In this case, the elements of ηu correspond to growth factors

in random effects growth modeling, except that ηu has zero variance conditional on x. In

the present survival context, ηu is used both to conveniently specify a proportional-odds

assumption and to impose trends.

4.1 Fitting Discrete-Time Survival into the General Frame-

work

The likelihood in (6) indicates how discrete-time survival analysis can be carried out

in the general latent variable model. Consider first how to specify the event history

indicators u.

As an example consider five time periods. An individual who is censored after time

period five (ji = 5) has the event history

(
0 0 0 0 0

)
,

an individual who experiences the event in period four (ji = 4) has the event history

(
0 0 0 1

)
,
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while an individual who drops out after period four before the study ends (ji = 4) has

the event history

(
0 0 0 0

)
.

The event history information may be entered into an r × 1 data vector u′i where r

denotes the maximum value of ji over all individuals and unobserved u information is

represented as u = 999 to denote missing data. Using the examples above, the first data

vector u′i is

(
0 0 0 0 0

)
,

the second data vector u′i is

(
0 0 0 1 999

)
,

and the third data vector u′i is

(
0 0 0 0 999

)
.

It is assumed that the missing data in the last example is ignorable in the sense that the

reason for the individual dropping out after period four is unrelated to the event being

studied. The conventional assumption of noninformative censoring, i.e., that censoring

times are independent of event times, corresponds to the assumption of ignorable miss-

ingness in the general latent variable model. The likelihood expression in (6) is obtained

when applying maximum-likelihood estimation under MAR (Little & Rubin, 1987) to

the general modeling framework with missing data on u as indicated above.

The likelihood in (6) suggests how to specify discrete-time models in the general

framework. The likelihood is the same as for u related to c and x in a single-class
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model (K = 1), due to the fact that the u’s are independent conditional on x. The κ′j

parameter vector of (9) is the jth row of Ku in (15), while (11) is a special case of (16).

Using Λuk
in (15), functional forms for the logits in (9) can be specified, for example

linear trends such as

Λuk
=




1 0
1 1
...

...
1 T − 1




,

where T is the number of time periods.

5 Mixture Analysis

It is often important to take into account unobserved heterogeneity in survival among

the subjects studied. In continuous-time survival modeling it is common to take unob-

served heterogeneity into account using ”frailties”, that is representing heterogeneity by

random effects (continuous latent variables); see e.g. Hougaard (2000). This paper takes

heterogeneity into account using latent classes of individuals. A general discrete-time

survival mixture model is introduced, where different latent classes have different hazard

and survival functions. Three different types of survival mixture models will be consid-

ered, a generic multiple-class model, a ”long-term survival” model with two classes, and

a multiple-class model combining the survival model with a growth mixture model.

Consider the multiple-class modification of (8) and (9) for class k (k = 1, 2, . . . , K),

hijk =
1

1 + e−(logitijk)
, (17)

logitijk = −τjk + κ′jk xi. (18)
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With multiple classes, the model adds the prediction of class membership by covariates

x as in (12),

P (cik = 1|xi) =
e

αck
+γ ′

ck
xi

∑K
k=1 e

αck
+γ ′

ck
xi

. (19)

The inclusion of multiple classes modifies the likelihood expression in (6), L =
∏n

i=1 li,

as

li =
K∑

k=1

πik

ji∏

j=1

h
uij

ijk (1− hijk)
1−uij , (20)

where πik = P (cik = 1|xi) in (12). For multiple-class models, identification of model

parameters needs to be carefully considered. The multiple-class model is a special case

of latent class analysis with covariates. A recent treatment of identification issues for

latent class modeling with covariates is given in Huang and Bandeen-Roche (2001).

As mentioned earlier, from a latent class point of view, the discrete-time survival

model presented in Section 3 can be viewed as a single-class model. When covariates are

not present, the discrete-time survival model has the special feature of perfectly fitting

the data on the u’s. A Pearson or likelihood-ratio chi-square test of fit of the model

against the unrestricted multinomial distribution (2r − 1 − r degrees of freedom) has

zero value irrespective of the data. This is because the u variables are by construction

independent, i.e. P (uj, uk) = P (uj) P (uk) for all pairs of j, k. This follows from the

definition of uj as representing events conditional on previous events. Consider for

example the (u1 u2) outcomes (0 0) and (0 1),

P (u1 = 0, u2 = 0) = P (T > 2)

= P (Ti 6= 1|Ti ≥ 1) P (Ti 6= 2|Ti ≥ 2) = P (u1 = 0) P (u2 = 0), (21)
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P (u1 = 0, u2 = 1) = P (T = 2)

= P (Ti 6= 1|Ti ≥ 1) P (Ti = 2|Ti ≥ 2) = P (u1 = 0) P (u2 = 1). (22)

The independence feature implies that there is no information in the joint distribution of

the u variables from which multiple classes can be defined. Adding covariate information,

however, makes it possible to fit a multiple-class model. This is discussed further in the

next section in the context of the special two-class model including a class referred to

as long-term survivors. The need to use covariate information to identify unobserved

heterogeneity is analogous to the need for covariates to identify frailties in continuous-

time survival analysis (see, e.g. Nielsen, Gill, Andersen & Soerensen, 1992).

5.1 Long-Term Survivors

As reported by McLachlan and Peel (2000), the notion of long-term survivors has been

used in continuous-time survival modeling at least since Boag (1949); for an overview,

see Maller and Zhou (1996). A typical application concerns women treated for breast

cancer, ultimately dying of causes other than cancer. For a recent application in the

context of discrete-time survival modeling of contraceptive sterilisation, see Steele (2000).

Long-term survival means that there is a latent class of individuals who are not in the

risk set, but who have zero hazard during all time periods. Using the u notation of

Section 3.1, an individual who experiences the event (u = 1 observation at any time

period) is known to not be a member of the long-term survivor class, while individuals

who are censored may or may not be members of the long-term survivor class. In this
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way, the latent class variable c of Section 3 is observed in part of the sample. In the

general modeling framework this is handled using the training data feature presented in

the Appendix. Individuals who experience the event are only allowed to be in the class

of non-long-term survivors, while censored individuals have unknown class membership

and are classified in the analysis. The model also incorporates a prediction of class

membership by covariates.

Because the survival probability is one for the long-term survival class, the survival

function for the mixture model may be written as

Sij = π SNLTS
ij + (1− π); (23)

where SNLTS is the survival function for the non-long-term survivors and 1 − π is the

probability of being a member of the long-term survivor class. The long-term survivor

model fits into the general framework by noting that the zero hazards for the long-term

survival class are obtained by setting τj = ∞ and κj = 0 for all j’s in (9); see also (15).

The model is completed by the logistic regression for class membership,

log[π/(1− π)] = γ ′c xi, (24)

which is a special case of (12).

It may be noted that the long-term discrete-time survival model is not identified

unless covariates are present. This is in line with the earlier observation that the single-

class discrete-time survival model fits the data on u perfectly, so that more than one class

cannot be extracted. Intuitively, there is no information from which to distinguish long-

term survivors from other individuals who are censored. With covariate information,
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however, a distinction between long-term survivors versus those who are at risk for

ultimately experiencing the event can be made based on the difference versus similarity

in covariate values relative to those who experienced the event. The covariates may

influence the latent class membership probability πik = P (cik = 1|xi). The covariates

may also influence the event history indicator probabilities (the hazards) hijk, either

directly or via the factor ηui (using the proportional-odds specification),

hij =
1

1 + e−(logitij)
, (25)

logitij = −τj + ηui, (26)

ηui = γ ′u xi. (27)

It is important to recognize a potential weakness of the long-term discrete-time sur-

vival model. Because this model needs covariates to be identified, different sets of

covariates may produce nontrivial differences in the latent class formation. In contrast

to this situation, the next section presents a model where the latent classes are defined

by information that is separate from the event history.

5.2 Combined Discrete-Time Survival and Growth Mixture

Modeling

Discrete-time survival analysis can be combined with a growth mixture model. For

continuous-time survival analysis, related developments for single-class models include

Henderson, Diggle, and Dobson (2000). In the model to be studied here, the latent classes
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are defined by the growth mixture model in terms of different developmental trajectory

classes and serve as latent categorical predictors in the survival part. Drawing on the

general modeling framework of the Appendix, this means that the survival model for u is

analyzed jointly with the growth mixture model for y. Maximum-likelihood estimation

is used also in this case.

Consider as an example repeated measures on continuous outcomes yit (i = 1, 2, . . . , n;

t = t1, t2, . . . , tT ) that can be described by only two random effects (growth factors) η0i

and η1i and a time-specific residual ε,

yit = η0i + η1i ait + εit, (28)

where it will be assumed that the time scores are common to all individuals, ait = at

(deviations from this can be handled via missing data techniques). Different trajectory

classes are allowed for by letting the means, variances and covariance of η0 and η1 vary

across the classes. The variances of εt may also vary across classes. The covariates of x

may influence class membership as in (12). They may also have class-varying influence

on the growth factors (k = 1, 2, . . . , K),

η0i = α0k + γ ′0k xi + ζ0i, (29)

η1i = α1k + γ ′1k xi + ζ1i, (30)

The latent class variable is related to covariates x as in the general framework of Section

4,

P (cik = 1|xi) =
e

αck
+γ ′

ck
xi

∑K
k=1 e

αck
+γ ′

ck
xi

, (31)
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The model given in (28) - (31) is referred to as growth mixture modeling and was

introduced in Muthén and Shedden (1999); for overviews, see e.g. Muthén (2001a, b).

The new feature of the modeling is that the latent class variable for the growth

mixture part of the model can be specified to influence the survival part of the model.

For example, using a proportional-odds formulation,

hijk =
1

1 + e−(logitijk)
, (32)

logitijk = −τj + ηuik, (33)

ηuik = αuk + γ ′uk xi. (34)

It is seen in (33) that the threshold parameters are held invariant across the latent

classes,

τj1 = τj2 = . . . = τjK = τj; j = 1, 2, . . . , r, (35)

so that the latent class membership for the growth model influences the hazard function

through the class-varying α and the class-varying γ influence from x, as seen in (34).

Here, α is standardized to zero for a reference class, while estimated in the remaining

classes.

More complex models may also be fitted in the general modeling framework. Without

covariates, it may be noted that the added y information makes it possible to identify

more than one class for the u variables. That is, even when the distribution of the

y’s does not require more than one class, more than one class can be specified for the

u’s. For example, a long-term survivor class can be specified for the u’s because the y

information makes it possible to identify the long-term survivors among the censored
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individuals. When covariates are present, the growth mixture model may be combined

with a multiple-class discrete-time survival model, e.g. in the form of a long-term sur-

vivor model. This means that two different latent class variables are needed. Modeling

with several latent class variables using the general framework was described in Muthén

(2001b).

6 Examples

This section illustrates the methodology using the recidivism and school removal exam-

ples presented in Section 2. The recidivism example is used to examine a single-class

survival model with covariates, testing the proportional-odds assumption. It is also used

to illustrate modeling with a long-term survivor class. The school removal example is

used to illustrate the combined analysis of a growth mixture model and a survival model.

All analyses are carried out using the Mplus program. Input for the analyses are found

at www.statmodel.com.

6.1 Recidivism Analyses

The recidivism data were described in Section 2.1. The primary interest for this analysis

is to accurately assess the effects of the financial assistance intervention while accounting

for the other covariates related to re-arrest. In his series of continuous time analyses of

this data, Allison (1984, 1995) found consistently significant effects for age at release and
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number of prior arrests, with non-significant or borderline significant intervention effects.

For example, when applying the exponential regression model, the estimated hazard for

re-arrest of those in the financial assistance group was approximately 72% of that for

individuals in the control group who received no aid, with a two-tailed t-test p-value of

approximately 0.09 (Allison, 1984). In the discrete time analyses to be presented, the

effects of the aid intervention on the hazard for re-arrest are also examined. Instead

of the 52 week-long intervals treated as continuous time observations, the outcomes in

this paper have been grouped into 13 four-week intervals to be modeled as discrete

time observations. In the original study, inmates were assessed on a monthly basis,

so this treatment of the data may have greater reliability with regards to time-varying

covariate effects. In addition, the discrete time framework allows testing of the modeling

assumptions such as constancy of the hazard function and proportionality of covariate

effects that could only be informally evaluated in the continuous time setting using

sensitivity analysis. It is also possible to expand the evaluation of the intervention to

allow for its influence on latent survival class membership.

A first analysis step separately evaluates the proportionality assumption for each of

the covariates. The fit of the model using the hazard logit defined in (9), which allows

for time-specific covariate effects, is compared to the model with the hazard logit defined

in (10) - (11), which constrains the covariate effects to be equal across time using the

factor ηu. The second model is the proportional hazard odds model. The models with

and without the proportionality assumption are shown in diagrammatic form in Figures

7 and 8, respectively. Considering intervention status as a time-invariant covariate, the

24



chi-square difference for these two models is 12.2 with 12 degrees of freedom, suggesting

that there is little evidence in the data to reject the proportional hazard odds assumption.

Looking at each covariate in turn, no evidence was found to reject the proportionality

assumption for any of the covariates, including the time-varying employment status.

INSERT FIGURES 7-8 HERE

As the next step, a model with all the covariates is constructed, allowing for relaxation

of the proportionality assumption when called for by the first step in the analysis. This

model may then be used to evaluate the functional form of the hazard. In the preceding

analysis step, the hazard is completely unstructured. A specific structure may now be

imposed on the logit hazard, such as constancy or linear trend, and model fit compared

to the unstructured case. A model with constancy of the hazard may be defined as in

(9) or (10), removing the subscript j from the threshold τ . Considering the constant

hazard model, the chi-square difference, compared to the unstructured hazard model,

is 8.8 with 12 degrees of freedom, suggesting that there is little evidence in the data

to reject the constant hazard assumption. Table 3 shows the results from the model

with the proportionality and constant hazard assumptions applied. These results are

consistent with the previous continuous-time analyses (Allison, 1984).

INSERT TABLE 3 HERE

Next the possibility of a latent class of long-term survivors is considered. In the

current application, this is a class of inmates who have been fully ”reformed” and, once

released, are no longer at risk for arrest. The set of time-invariant explanatory variables
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is allowed to influence the hazard both directly, through influence on the factor ηu in

(34), and indirectly, through influence on the probability of latent class membership in

(31). The diagram for the model with covariates and a long-term survivor class is shown

in Figure 9. In this two-class situation, the hazard for the non-long-term survivor class

was kept unstructured. The results for the model with long-term survivors are given in

Table 4. A caution should be issued here for the fitting of a long-term survivor model.

This special case of latent class analysis, like the more general forms of LCA, can be

susceptible to convergence at locally rather than globally optimal solutions. Because of

this, multiple sets of starting values should be used and the convergence pattern for the

likelihood through the iterations of the EM algorithm should be carefully monitored.

INSERT FIGURE 9 HERE

INSERT TABLE 4 HERE

The two-class model has a log likelihood value of −496.23 with a BIC (Bayesian

Information Criterion; see Appendix) value of 1180.58 (31 parameters). These values

may be compared to the previous one-class model with unstructured hazard that does

not include long-term survivors; the one-class model has a log likelihood value of −505.36

with a BIC value of 1144.23 (22 parameters). Based on the BIC values, there is no real

evidence for the need to include a long-term survivor class. However, the two-class model

provides interesting insight into the intervention effect that is worth examining more

closely even if the model itself is not statistically superior to the one-class model. For

the two-class model it is estimated that 21% of the inmates are long-term survivors, not
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at risk for re-arrest. This implies that nearly 30% of those inmates not re-arrested during

the study period may have no possibility of future incarceration. The direct effects of

the covariates on the hazard change in both magnitude and significance when compared

to the one-class model. And the set of significant covariates directly associated with

the hazard is different from the set of significant predictors for latent class membership.

The intervention effect on the hazard is estimated as a much larger and significant effect

in the non-long-term survivor class compared to the estimated overall effect in the one-

class model. In the one-class model, the hazard odds ratio for the intervention group

compared to the control group is estimated as 0.72 and this effect is not significant. In

the two-class model, the hazard odds ratio for the intervention group compared to the

control group in the non-long-term survivor class is 0.43 and this effect is statistically

significant. This could indicate that the financial assistance intervention is effective at

extending the time to re-arrest for those in the recidivism risk set. In addition, age

remains a significant influence on the hazard odds for re-arrest but the number of prior

convictions, found to be significant in the one-class model, does not have a significant

effect among non-long-term survivors in the two-class model. The latent class regression

part of the model finds that the log odds of being in the long-term survivor class relative

to the non-long-term survivor class is significantly associated with prior work experience,

age, and years of education. It should also be noted that there is not a significant effect of

the intervention on the probability of long-term survivor class membership. One might

infer from this that the benefits of the intervention extend only as long as the financial

aid is provided and that the long-term likelihood of recidivism is not altered. Figures 10
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and 11 show the model-estimated mean survival plots for both the one- and two-class

model, respectively, for the two intervention groups at the overall sample mean values

for the other covariates. Figure 11, when compared to Figure 10, shows a worse course

of recidivism for non-long-term survivors but a larger effect of financial aid.

INSERT FIGURES 10-11 HERE

A problem with the presented solution should, however, be noted and illustrates the

potential fragility of the long-term survivor model alluded to earlier. In this example, a

local optimum was found that was only a few log likelihood points lower than the solution

presented in Table 4. This competing solution had markedly different estimates for the

latent class regression parameters and for the percentage of long-term survivors. For

these particular data with the set of covariates used here there is therefore not sufficient

information to make convincing inference about a latent class of long-term survivors.

6.2 School Removal Analyses

The school removal data were described in Section 2. It was seen that aggressive be-

havior in the classroom in Fall of grade 1 was associated with a higher risk for school

removal in later grades. The measure of aggressive behavior may, however, contain con-

siderable time-to-time variation as well as measurement error. It may not represent a

more sustained level of aggressive behavior and does not capture the trend of behav-

ioral development. In the current analyses, information will therefore be incorporated

from repeated measures of the child’s aggressive behavior. The behavioral development
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during the four time points of Fall and Spring in grade 1 and grade 2 will be used to

predict survival in terms of school removal during grades 3 - 7. This is achieved using

the combination of growth mixture modeling and survival analysis discussed in Section

5.2. In this way, a latent trajectory class variable serves to capture the growth shape of

aggressive behavior development and is used as a latent class predictor added to the set

of observed covariates.

In their growth mixture analysis of the aggressive behavior data, Muthén, Brown,

Masyn, Jo, Khoo, Yang, Wang, Kellam, Carlin, and Liao (2000) found evidence of at

least three trajectory classes for the development during grade 1 - grade 7: a class with

initially high but decreasing aggression trajectory; a class with medium but increasing

aggression; and a class with a low stable aggression level. A three-class model will

therefore be used also here. Muthén et al (2000) used a linear model for development in

grades 1 and 2 (Model 3).

For the survival part of the model one can argue on substantive grounds for a sub-

group of children who are never at risk for school removal. Two model versions, with

and without a long-term survival class, will therefore be examined. The covariates to

be used are those given in Table 2. The school removal data are obtained as students

within classrooms, where some covariates are observed on the individual level and some

on the classroom level. For these data there are 16 different classrooms. Such multilevel

data need special procedures to obtain correct standard errors and drawing on Muthén

et al (2000) a ”sandwich estimator” is used here.
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A first analysis step investigates the three-class growth mixture analysis of the four

aggressive behavior measures in grades 1 and 2. The model is given in (28) - (31). In

this model the means of the growth factors are allowed to vary across classes, whereas

the slopes in the regressions of the growth factors on the covariates are taken to be class-

invariant for simplicity. In line with Muthén et al (2000), the low class is allowed to

have its own variances for the intercept growth factor and for the time-specific residual

variances, while the other two classes have the same variances and the same covariance

between the growth factors. The high, medium, and low classes were found to contain

8, 48, and 44% of the children, respectively.

As a second step, the survival part for grades 3 - 7 was added to the model. The

model without a long-term survivor class is shown in diagrammatic form in Figure 12.

In this model, the latent trajectory classes influence the survival part of the model by

letting the αu parameter in (34) vary across classes. For simplicity, the γu parameters

in (34) are held invariant across classes.

INSERT FIGURE 12 HERE

The addition of the survival part did not alter the class percentages to a large degree;

the new percentages were 10, 48, and 43%, respectively, for the three classes. The

estimated mean growth curves in each class also did not change much. The stability

of the results may indicate that the growth mixture model is rather well defined. In

principle, however, the survival information does contribute to the definition of the

latent classes. The fact that the addition of the survival information did not alter the
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classes much could mean that the survival information is either weaker than the growth

information or that it concurs with the growth information. To investigate this further,

a class of long-term survivors for the survival part is explored next.

Figure 13 shows a diagram for the model with three trajectory classes and two

survival classes. In line with Muthén (2001b), having these two latent class variables

in the model is handled by a single latent class variable with six classes. The model

is that of (28) - (35). For the long-term survivor classes (with high, medium, or low

trajectories), τj in (33) is fixed at 10 (to represent ∞) and αu and γu in (34) are fixed

at zero. The parameters of the growth mixture part of the model only vary across the

three trajectory classes, while the intercept parameters αu in (34) of the survival part of

the model vary across all classes, except the last two classes with low trajectory where

it is fixed at zero as a standardization.

INSERT FIGURE 13 HERE

The analysis of the six-class model showed a very low class count for long-term

survivors in the high trajectory class, giving rise to problems in estimating regression

coefficients for class membership related to covariates. This class was therefore removed.

The resulting 5-class solution had a log likelihood value of −1, 419.01, while the BIC

(Bayesian Information Criterion; see Appendix) value was 3, 275.94 (73 parameters).

These values may be compared to those of the previous 3-class model that does not

include long-term survivors, −1, 432.49 and 3, 218.92 (59 parameters), respectively. Be-

cause the BIC value is higher (worse) for the 5-class model than for the 3-class model,

31



there is no evidence based on BIC for the need to include a long-term survivor class.

Considering the estimated class counts for those with medium and low trajectories in

the 5-class model, however, shows a majority being long-term survivor individuals. Of

the estimated 44 individuals with a low trajectory, 26 are in the long-term survivor

class, while among the estimated 49 individuals with a medium trajectory, 28 are in the

long-term survivor class. In total, it is estimated that 54% of the children are long-term

survivors, not at risk for school removal.

The estimated coefficients for the growth mixture growth factors, class membership,

and survival regressed on the covariates are shown below in Table 5 and Table 6 for

the 3-class and 5-class models, respectively. For simplicity, entries have been left empty

when estimates are held equal to a class to the left in the table. The results are quite

different for the two models, reflecting the fact that the 5-class model considers only a

subset of the children to be in the risk set for school removal.

In the 3-class model, the latent class regression part of the model finds that the

log odds of being in the high class relative to the low class is significantly increased by

being in the external control group relative to the internal control group, being male

relative to being female, and having a high class average aggression score. The regression

coefficients for the intercept and slope factors show influence of covariates within each

class. The intercept factor is significantly increased by an individual not being in the

external control group, not being white, and being in a class with a low class average

lunch value (a poverty indicator). The slope factor is significantly increased by a high

class average lunch value and a low class average aggression value in fall of first grade.
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For the survival part of the model, the latent class growth factor coefficients show an

increase in the hazard for school removal by being male, having a high class average

lunch value, and having a low class average aggression value. Here, the class-varying

intercept values indicate the influence of latent class on hazards. Using the low class as

comparison group, membership in the high class gives a significantly increased hazard,

as does membership in the medium class. Figure 14 shows the model-estimated mean

aggression trajectories and survival of school removal for the 3-class model.

INSERT TABLE 5 HERE

INSERT FIGURE 14 HERE

Comparing the 5-class model in Table 6 to the 3-class model in Table 5, the major

differences lie in the covariate and latent class membership influence on the hazards,

shown in the latent class growth factor part of the tables. Unlike the 3-class model, the

5-class model of Table 6 shows that none of the covariates nor latent class membership

(see the intercept entries) has a significant influence on the hazards. It should be kept in

mind here that the non-significant covariate influence concerns the subgroup of non-long-

term survivors, estimated as 46% of the sample, and is perhaps due to this group being

more homogeneous. Loss of power due to considering a smaller subgroup may also play

a role. The non-significant influence of class membership refers to influence of aggression

trajectory class among non-long-term survivors. Again, this group is presumably more

homogeneous. The non-significant influence of trajectory class membership in the 5-

class model suggests that adding the long-term survivor distinction makes aggressive
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behavior development a less powerful predictor of school removal. Future analysis efforts

may focus on attempts to predict long-term survivorship. Figure 15 shows the model-

estimated mean aggression trajectories and survival of school removal for the 5-class

model. Compared to Figure 14, the inclusion of the long-term survivor class in Figure

15 makes the survival curve for children in the high aggressive trajectory class less

different from the survival curves of the other two trajectory classes.

INSERT TABLE 6 HERE

INSERT FIGURE 15 HERE

7 Conclusions

This paper has introduced an approach to discrete-time survival analysis using a general

latent variable framework. Conventional discrete-time survival analysis is a special case

within this framework where a single-class latent class analysis of event history indica-

tors is performed. The more general framework presented here allows for powerful new

modeling extensions, two of which were proposed and exemplified. First, unobserved

heterogeneity among subjects was captured using multiple latent classes, where each

class was allowed to have its own survival function. A particularly interesting example

of this is the situation where a subgroup of individuals are never at risk for experienc-

ing the event. Second, the general modeling framework made it possible to place the

survival analysis in a larger analytic as well as conceptual model in order to study the

relationship of survival to other outcomes. As an example, survival analysis was com-
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bined with growth mixture modeling of repeated measures. The extensions show the

usefulness of integrating the survival analysis in the broader framework. The analyses

are readily available in that the estimation of the general framework may be carried

out in the existing computer program Mplus (Muthén & Muthén, 1998-2001). Many

further extensions are of interest in this framework, including modeling of repeatable

events and competing risks. It is hoped that this paper will stimulate further innovative

applications beyond the new analysis possibilities presented here.
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APPENDIX

Consider the observed variables x, y, and u, where x denotes a q×1 vector of covariates,

y denotes a p×1 vector of continuous outcome variables, and u denotes an r×1 vector of

binary and ordered polytomous categorical outcome variables. Consider latent variables

η denoting an m× 1 vector of continuous variables and c denoting a latent categorical

variable with K classes, ci = (ci1, ci2, . . . , ciK)′, where cik = 1 if individual i belongs to

class k and zero otherwise. The model has three parts: c related to x; u related to c

and x; and y related to c and x. The following summary draws on Muthén and Muthén

(2001, Appendix 8),

The model relates c to x by multinomial logistic regression using the K−1-dimensional

parameter vector of logit intercepts αc and the (K − 1) × q parameter matrix of logit

slopes Γc, where for k = 1, 2, . . . , K

P (cik = 1|xi) =
e

αck
+γ ′

ck
xi

∑K
k=1 e

αck
+γ ′

ck
xi

, (36)

where the last class is a reference class with coefficients standardized to zero, αcK
= 0,

γck
= 0. The latent classes of c influence both u and y. Consider first the u part of the

model.

For u, conditional independence is assumed given ci and xi,

P (ui1, ui2, . . . , uir|ci,xi) = P (ui1|ci,xi) P (ui2|ci,xi) . . . P (uir|ci,xi). (37)

The categorical variable uij(j = 1, 2, . . . , r) with Sj ordered categories follows an or-

dered polytomous logistic regression (proportional odds model), where for categories
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s = 0, 1, 2, . . . , Sj − 1 and τj,k,0 = −∞, τj,k,Sj
= ∞,

uij = s, if τj,k,s < u∗ij ≤ τj,k,s+1, (38)

P (uij = s|ci,xi) = Fs+1(u
∗
ij)− Fs(u

∗
ij), (39)

Fs(u
∗) =

1

1 + e−(τs−u∗) , (40)

where for u∗i = (u∗i1, u
∗
i2, . . . , u

∗
ir)

′, ηui = (ηu1i
, ηu2i

, . . . , ηufi
)′, and conditional on class k,

u∗i = Λuk
ηui + Kuk

xi, (41)

ηui = αuk
+ Γuk

xi, (42)

where Λuk
is an r × f logit parameter matrix varying across the K classes, Kuk

is an

r × q logit parameter matrix varying across the K classes, αuk
is an f × 1 vector logit

parameter vector varying across the K classes, and Γuk
is an f×q logit parameter matrix

varying across the K classes. The thresholds may be stacked in the
∑r

j=1(Sj − 1) × 1

vectors τ k varying across the K classes.

It should be noted that (41) does not include intercept terms given the presence of τ

parameters. Furthermore, τ parameters have opposite signs than u∗ in (41) because of

their interpretation as thresholds or cutpoints that a latent continuous response variable

u∗ exceeds or falls below (see also Agresti, 1990, pp. 322-324). For example, with a

binary uj scored 0/1 (39) leads to

P (uij = 1|ci,xi) = 1− 1

1 + e−(τ−u∗) , (43)

=
1

1 + e− logit
, (44)
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where logit = −τ + u∗. For example, the higher the τ the higher u∗ needs to be to

exceed it, and the lower the probability of u = 1.

The model structure in (41) and (42) is useful when the u vector represents repeated

measures and the latent classes correspond to different trajectory classes. In this case,

the elements of ηu correspond to growth factors in random effects growth modeling,

except that ηu has zero variance conditional on x. The parameterization of this type of

growth model is shown in the section Latent Class Growth Analysis below.

Consider next the y part of the model. Multivariate normality is assumed for y

conditional on x and class k,

yi = νk + Λk ηi + Kk xi + εi, (45)

ηi = αk + Bk ηi + Γk xi + ζi, (46)

where the residual vector εi is N(0,Θk) and the residual vector ζi is N(0,Ψk), both

assumed to be uncorrelated with other variables. This part of the mixture model builds

on a general structural equation model generalized to the K classes of the mixture.

The Mplus mixture model is estimated by maximum-likelihood using the EM algo-

rithm. Missing data on u and y are handled using the MAR assumption (Little & Rubin,

1987). The analysis makes it possible to incorporate knowledge about class member-

ship for certain individuals. Individuals with known class membership are referred to as

training data (see also McLachlan & Basford, 1988; Hosmer, 1973). The training data

typically consists of 0 and 1 class membership values for all individuals, where 1 denotes

which classes an individual may belong to. Known class membership for an individual
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corresponds to having training data value of 1 for the known class and 0 for all other

classes. Unknown class membership for an individual is specified by the value 1 for all

classes. With class membership training data, the class probabilities are renormed for

each individual to add to one over the admissible set of classes.

For comparison of fit of models that have the same number of classes and are nested,

the usual likelihood-ratio chi-square difference test can be used. Comparison of models

with different numbers of classes, however, is accomplished by a Bayesian information

criterion (BIC; Schwartz, 1978; Kass & Raftery, 1993),

BIC = −2 logL + r ln n, (47)

where r is the number of free parameters in the model. The lower the BIC value, the

better the model.

When the model contains only u, Pearson and likelihood ratio chi-square tests against

the unrestricted multinomial alternative can be computed,

χ2
P =

∑

cells

(oi − ei)
2

ei

, (48)

χ2
L = 2

∑

cells

oi log oi/ei, (49)

where oi is the observed frequency in cell i of the multivariate frequency table for u and

ei is the corresponding frequency estimated under the model. With missing data on u,

the EM algorithm described in Little and Rubin (1987; chapter 9.3, pp. 181-185) is used

to compute the estimated frequencies in the unrestricted multinomial model.
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Table 1 
 
Variable Definitions and Sample Means for Recidivism Data (n = 432) 
 

Variable name Description Mean SD 
age Age (in years) at release 24.60 6.11 

priors Number of prior arrests 2.98 2.89 
educ Years of schooling  3.48 0.83 

  Mean  
emp1 First month employment indicator  0.40  
emp2 Second month employment indicator 0.52  
emp3 Third month employment indicator 0.53  
emp4 Fourth month employment indicator 0.54  
emp5 Fifth month employment indicator 0.55  
emp6 Sixth month employment indicator 0.55  
emp7 Seventh month employment indicator 0.57  
emp8 Eighth month employment indicator 0.56  
emp9 Ninth month employment indicator 0.55  
emp10 Tenth month employment indicator 0.55  
emp11 Eleventh month employment indicator 0.57  
emp12 Twelfth month employment indicator 0.56  
emp13 Thirteenth month employment indicator 0.55  
finaid Financial assistance indicator 0.50  
black Black racial indicator 0.88  

workexp Prior work experience indicator 0.57  
married Married at release indicator 0.12  
paroled Parole status indicator 0.62  

  Hazard 
u1 First month re-arrest indicator  
u2 Second month re-arrest indicator 
u3 Third month re-arrest indicator 
u4 Fourth month re-arrest indicator 
u5 Fifth month re-arrest indicator 
u6 Sixth month re-arrest indicator 
u7 Seventh month re-arrest indicator 
u8 Eighth month re-arrest indicator 
u9 Ninth month re-arrest indicator 
u10 Tenth month re-arrest indicator 
u11 Eleventh month re-arrest indicator 
u12 Twelfth month re-arrest indicator 
u13 Thirteenth month re-arrest indicator 

4/432  =  0.01 
8/428  =  0.02 
7/420  =  0.02 
8/413  =  0.02 
13/405 =  0.03 
8/392  =  0.02 
10/384 =  0.03 
5/374  =  0.01 
11/369 =  0.03 
11/358 =  0.03 
8/347  =  0.02 
9/339  =  0.03 
12/330 =  0.03 

 
 
 



      Table 2 
 
      Variable Definitions and Sample Means for School Removal Data (n = 404) 
 

Variable name Description Mean SD 

y1F First grade fall TOCA-R measure 1.92 0.94 

y1S First grade spring TOCA-R measure 2.01 0.91 

y2F Second grade fall TOCA-R measure 1.81 0.88 

y2S Second grade spring TOCA-R measure 2.03 0.99 

cavlunch First grade fall classroom average lunch 0.45 0.36 

cavtoca1f First grave fall classroom average TOCA-R 1.92 0.40 

  Mean  

external External control group indicator 0.63  

male Male gender indicator 0.50  

white White racial indicator 0.32  

lunch Subsidized school lunch indicator 0.46  

  Hazard 

u3 Third grade school removal indicator 

u4 Fourth grade school removal indicator 

u5 Fifth grade school removal indicator 

u6 Sixth grade school removal indicator 

u7 Seventh grade school removal indicator 

8/394  =  0.02 
9/386  =  0.02 
15/377 =  0.04 
23/362 =  0.06 
59/339 =  0.17 

 
 

 
Table 3 

 
1-class Survival Model with Constant Hazard and Proportional Odds Assumptions 

 
Thresholds (τ) Est. SE t 

u1 – u13 1.80 0.82 -2.20 
Latent Class Growth Factor (ηu) Est. SE t 

finaid -0.33 0.19 -1.72 
black 0.37 0.29 1.27 

workexp 0.01 0.21 0.05 
married -0.29 0.39 -0.75 
paroled -0.07 0.20 -0.36 

age -0.05 0.02 -2.07 
priors 0.07 0.03 2.55 
educ -0.21 0.13 -1.67 

Event Indicator Regression Est. SE t 
emp1 - emp13 -1.04 0.21 -4.90 

 
Log likelihood = -514.18, BIC = 1089.04, 10 free parameters.  Bold-face entries indicate significance at the 5% level. 



Table 4 
 

2-class Survival Model with Non-long-term Survivor Class Parameter Estimates 
 

Thresholds (τ) Est. SE t 
u1 3.21 1.11 2.90 
u2 2.33 1.07 2.19 
u3 2.41 1.07 2.26 
u4 2.22 1.10 2.01 
u5 1.66 1.09 1.52 
u6 2.09 1.12 1.87 
u7 1.82 1.12 1.63 
u8 2.47 1.11 2.23 
u9 1.61 1.14 1.42 
u10 1.54 1.13 1.37 
u11 1.76 1.17 1.50 
u12 1.60 1.16 1.39 
u13 1.21 1.16 1.05 

Latent Class Growth Factor (ηu) Est. SE t 
finaid -0.85 0.27 -3.21 
black -0.05 0.35 -0.14 

workexp -0.56 0.33 -1.70 
married -0.73 0.40 -1.83 
paroled 0.35 0.30 1.16 

age -0.07 0.03 -2.67 
priors 0.04 0.04 1.20 
educ 0.34 0.22 1.52 

Event Indicator Regression Est. SE t 
emp1 - emp13 -1.15 0.23 -4.96 

Latent Class Regression* Est. SE t 
finaid -2.15 1.36 -1.58 
black -1.62 1.14 -1.42 

workexp -1.83 0.90 -2.04 
married -2.88 1.50 -1.92 
paroled 1.89 1.29 1.47 

age -0.15 0.07 -2.20 
priors -0.24 0.13 -1.81 
educ 1.79 0.65 2.74 

 *Class 1 is long-term survivors, 21%, Class 2 is non-long-term survivors, 79% 
 

Log likelihood = -496.23, BIC = 1180.58, 31 free parameters.  Bold-face entries indicate significance at the 5% level. 
 
 



Table 5 
 
3-class Growth + Survival Mixture Model (with no LTS class) Parameter Estimates 
 

                High Class                 Medium Class                  Low Class 
Intercept Factor (η0) Est. SE Est. SE Est. SE 

intercept 3.89 0.38 2.13 0.22 1.34 0.13 
external -0.28 0.05 

male 0.06 0.05 
white -0.13 0.06 
lunch -0.01 0.04 

cavlunch -0.22 0.07 
cavtoca1f 0.13 0.07 

 

Slope Factor (η1) Est. SE Est. SE Est. SE 
intercept 0.17 0.27 0.35 0.02 0.28 0.19 
external -0.01 0.07 

male 0.03 0.04 
white 0.03 0.07 
lunch -0.02 0.03 

cavlunch 0.19 0.08 
cavtoca1f -0.19 0.10 

 

Thresholds (τ) Est. SE Est. SE Est. SE 
u3 3.86 0.64 
u4 3.68 0.63 
u5 3.02 0.69 
u6 2.44 0.64 
u7 1.10 0.54 

 

Latent Class Growth Factor (ηu) Est. SE Est. SE Est. SE 
intercept 2.41 0.43 0.79 0.28 0.00 fixed 
external 0.05 0.26 

male 0.68 0.23 
white -0.48 0.33 
lunch -0.28 0.26 

cavlunch 1.37 0.39 
cavtoca1f -0.94 0.26 

 

Latent Class Regression Est. SE Est. SE Est. SE 
intercept -10.97 1.16 -3.99 0.77 
external 1.69 0.42 0.68 0.33 

male 1.71 0.61 0.53 0.41 
white -0.14 0.44 -0.31 0.35 
lunch 0.78 0.79 0.77 0.26 

cavlunch 0.55 0.93 -0.88 0.65 
cavtoca1f 3.41 0.40 1.90 0.45 

 

Class Proportions 0.10  0.48  0.43  
 
Log likelihood = -1432.49, BIC = 3218.92, 59 free parameters.  Bold-face entries indicate significance at the 5% level. 
 
 



Table 6 
 
5-class Growth + Survival Mixture Model (with LTS class) Parameter Estimates 
 

    High 
     Non-LTS 

    Medium 
      Non-LTS 

   Medium 
    LTS 

   Low 
     Non-LTS 

   Low 
   LTS 

Intercept Factor (η0) Est. SE Est. SE Est. SE Est. SE Est. SE 
intercept 3.86 0.53 2.20 0.28  1.31 0.13  
external -0.27 0.05 

male 0.05 0.05 
white -0.11 0.06 
lunch -0.01 0.05 

cavlunch -0.22 0.06 
cavtoca1f 0.15 0.08 

 

Slope Factor (η1) Est. SE Est. SE Est. SE Est. SE Est. SE 
intercept 0.26 0.30 0.32 0.30  0.28 0.23  
external -0.01 0.08 

male 0.02 0.04 
white 0.03 0.08 
lunch -0.03 0.03 

cavlunch 0.19 0.08 
cavtoca1f -0.19 0.13 

 

Thresholds (τ) Est. SE Est. SE Est. SE Est. SE Est. SE 
u3 5.57 0.96   10.0 fixed 5.57 0.96 10.0 fixed 
u4 5.30 0.86   10.0 fixed 5.30 0.86 10.0 fixed 
u5 4.49 0.76   10.0 fixed 4.49 0.76 10.0 fixed 
u6 3.62 0.72   10.0 fixed 3.62 0.72 10.0 fixed 
u7 1.54 0.71   10.0 fixed 1.54 0.71 10.0 fixed 

Latent Class Growth Factor (ηu)           
intercept 1.63 0.87 0.78 0.95 0.0 fixed 0.0 fixed 0.0 fixed 
external 0.20 0.30   0.0 fixed 0.20 0.30 0.0 fixed 

male 1.13 0.98   0.0 fixed 1.13 0.98 0.0 fixed 
white 1.18 0.62   0.0 fixed 1.18 0.62 0.0 fixed 
lunch -0.93 0.62   0.0 fixed -0.93 0.62 0.0 fixed 

cavlunch 0.56 0.87   0.0 fixed 0.56 0.87 0.0 fixed 
cavtoca1f 0.41 0.56   0.0 fixed 0.41 0.56 0.0 fixed 

Latent Class Regression           
intercept -10.2 2.16 -0.61 1.97 -5.76 3.57 1.32 2.50 
external 1.78 0.62 0.70 0.54 1.33 0.62 0.69 0.73 

male 2.35 2.46 0.51 1.09 0.66 0.69 -0.16 1.13 
white -0.60 1.94 -1.24 0.60 -0.20 0.94 -1.27 0.99 
lunch 0.84 1.37 1.14 0.66 0.51 0.73 0.04 0.95 

cavlunch 3.28 3.57 1.19 1.88 0.31 1.89 3.87 2.06 
cavtoca1f 2.24 1.07 -0.39 0.94 2.28 1.66 -1.98 1.18 

 

Class Proportions 0.07  0.21  0.28  0.18  0.26  
 
Log likelihood = -1419.01, BIC = 3275.94, 73 free parameters.  Bold-face entries indicate significance at the 5% level. 



 
 

 
Figure 1.  Sample-estimated hazard probabilities of re-arrest 
 
 
 
 

 
Figure 2.  Sample-estimated survival probabilities of re-arrest 
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Figure 3.  Sample-estimated hazard probabilities of re-arrest by intervention status 

 
 
 
 
 
 

Figure 4.  Sample-estimated survival probabilities of re-arrest by intervention status 
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Figure 5.  Sample-estimated mean aggression trajectory and survival of school removal   

 
 
 
 
 

 
Figure 6.  Sample-estimated mean aggression trajectories and survival of  
school removal by first grade fall baseline aggression measure 
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Figure 7.  Recidivism path diagram:  Survival model with time-varying covariate effects 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  Recidivism path diagram:  Survival model with proportional hazard odds 
assumption applied to time-invariant covariates 
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Figure 9.  Recidivism path diagram:  Survival model with time-varying  
and time-invariant covariates and long-term survivor class 
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Figure 10.  Model-estimated survival probabilities of re-arrest by intervention 
status for one-class model 

 

 
Figure 11.  Model-estimated survival probabilities of re-arrest by intervention 
status for two-class model with long-term survivors 
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Figure 12.  School removal path diagram:  Growth + Survival model with 
time-invariant covariates and single latent class variable 
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Figure 13.  School removal path diagram:  Growth + Survival model with 
time-invariant covariates and both trajectory and survival latent class 
variables 
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Figure 14.  Model-estimated mean aggression trajectory and survival of  
school removal  for 3-class growth + survival mixture model 

 
 

 
Figure 15.  Model-estimated mean aggression trajectory and survival of  
school removal  for 5-class growth + survival mixture model with long-
term survivor class 
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