Test indirect effect using bootstrap PreviousNext
Mplus Discussion > Structural Equation Modeling >
 Qi posted on Wednesday, October 08, 2008 - 10:06 pm
I want to use MacKinnon & Lockwood (2001) proposed asymmetric distribution of products method to test the significance of the mediation effect, do I just specify "bootstrap=1000;" under analysis, and then specify "CINTERVAL (BCBOOTSTRAP);" in output? There are several options for CINTERVAL, I am not sure about which one I should use, BOOTSTRAP or BCbootstrap? I shouldn't use the default symmetric, should I? And when interpreting the output, I just check whether 0 is in the 95% CI in "
AND DIRECT EFFECTS for STDYX Standardization", right? Thanks for your guidance!
 Linda K. Muthen posted on Wednesday, October 08, 2008 - 10:15 pm
BCBOOTSTRAP is what MacKinnon and Lockwood do. This does not require the BOOTSTRAP option unless you want to use bootstrapped standard errors with the bootstrapped confidence interval.
 Qi posted on Thursday, October 09, 2008 - 2:01 am
Hi Linda,

thanks for your prompt reply. Did you mean that I don't need to specify "bootstrap=1000" under analysis? I tried with only "CINTERVAL (BCBOOTSTRAP)" in the output command, however, I got the following warning and didn't get any CI for indirect effect, am I missing sth? Thanks again!

*** WARNING in OUTPUT command
BOOTSTRAP and BCBOOTSTRAP confidence intervals require the specification
of BOOTSTRAP in the ANALYSIS command. Request for CINTERVAL is ignored.
 Qi posted on Thursday, October 09, 2008 - 2:09 am
I am sorry, I guess misunderstood your previous instruction. I think you were talking about the difference between CI(BCBOOTSTRAP) and CI(BOOTSTRAP).

What's the difference between CI(BCBOOTSTRAP) and CI(BOOTSTRAP)? Is CI(BCBOOTSRRAP) not using bootstrapped SE with bootstrapped CI? What's the purpose of each option? Thanks!
 Linda K. Muthen posted on Thursday, October 09, 2008 - 5:03 pm
You are correct. You do need the BOOTSTRAP option of the ANALYSIS command for both CINTERVAL (BOOTSTRAP) and CINTERVAL (BCBOOTSTRAP). Both of these options are described in the MacKinnon and Lockwood paper. CINTERVAL (BOOTSTRAP) uses 2.5% and 97.5% percentiles of the sample distribution while CINTERVAL (BCBOOTSTRAP) these percentiles values are estimated from the sample distribution. The bias-corrected confidence intervals are more accurate.
 Brianna H posted on Sunday, August 18, 2013 - 10:39 pm

The Mplus v.6 manual on p.647 indicates that "with frequentist estimation, only SYMMETRIC confidence intervals are available for standardized parameter estimates." I am using BCBOOTSTRAP to obtain bias-correct bootstrap confidence intervals. Does this mean I have to use the unstandardized output? I.e. I cannot use the confidence intervals of standardized indirect effects, if those are available only for SYMMTERIC?

Also, in the CINTERVAL output, the fourth column labeled Estimate contains the parameter estimates. If the standardized estimate of an indirect effect is 0.255, is it correct to say that 25.5% of the variance in DV is explained by the indirect effect of the IV on the DV? Thank you.
 Linda K. Muthen posted on Monday, August 19, 2013 - 6:17 pm
If you want non-symmetric confidence intervals, you must use unstandardized estimates.

Your indirect effect is interpreted as an increase of one standard deviation is x results in an increase of 25.5% of a standard deviation increase in y.
 Taejin Hwang posted on Sunday, September 22, 2013 - 11:02 pm
I'm trying to calculate indirect effects in my model.
There are two mediators (m1-m2), linking independent variables(IV, x1-x4) and dependent variables (DV, y1-y2).
My model is specified as below. Since the dependent variables are nested within a group, I used multi-level modeling to allow for the group-level random effect.

Q1. It says that bootstrapping is not allowed for multi-level modeling. How should I test indirect effects? can i just skip bootstrapping? (Mplus tested indirect effects although i didn't type bootstrapping)

Q2. I want to test main effects from IV to DV in this model. The thing is that from IV to DV, there are direct paths, as well as indirect paths. Can I sum both direct paths and indirect paths and test total effects (not just sum of two indirect paths)?

Thank you very much!

data: file is data.txt;
variable: names are lid y1-y2 x1-x4 m1-m2;
cluster is lid;
within= x1-x4 m1-m2;
analysis: type=twolevel;
m1 on x1-x4;
m2 on x1-x4;
y1 on m1-m2;
y2 on m1-m2;
y1 on x1-x4;
y2 on x1-x4;
model indirect:
y1 ind m1 x1;
y2 ind m2 x2;
 Taejin Hwang posted on Monday, September 23, 2013 - 12:32 am
I also tried another model drawing on the Mplus syntax for testing indirect effects in a multi-level model as recommended by Preacher, Zyphur, Zhang (2010) & Preacher, Zhang, Zyphur (2011),

data: file is data.txt;
variable: names are lid y1-y2 x1-x4 m1-m2 c1-c5;
usevariables are lid y1 x1 m1;
cluster is lid;
within= x1 m1;
analysis: type=twolevel;
m1 on x1(a);
y1 on m1(b);
model constraint: new(indm);
output: tech1 tech8 cinterval;

Q1. Do you think this modeling is correct?

Q2. in the model results, there is
New/Additional Parameters INDM Estimate S.E. Est./S.E. P-value
0.055 0.022 2.457 0.014

can i refer to estimate and p-value to judge significance of indirect effect?
(I can't understand which part of tech1 and tech8 output I should look for...)

Thank you!
 Bengt O. Muthen posted on Monday, September 23, 2013 - 9:41 pm
Please don't post in more than one window - this is our rule.

Answers to your first message:

Q1 Indirect effect estimation and testing can be done without doing bootstrapping. In my experience it is the exception rather than the rule that you need bootstrapping - you may need it with very small samples or when considering ratio estimates.

Q2. Yes.

Answers to your second message:

Q1. Yes and this should give the same results as in your Model Indirect run.

Q2. Yes, the p-value says that INDM is significant on the 5% level. You don't need to look at tech1 or tech8. You may want to listen to our Topic 1 teachings on mediational modeling.
 Taejin Hwang posted on Monday, September 23, 2013 - 11:01 pm
Thank you very much for your prompt and kind reply!
And sorry for multiple-posting. i'll keep that in mind. Have a lovely week!
 Stefanie Morgenroth posted on Thursday, September 26, 2013 - 7:56 am
Dear Sir and Madame,

I did a bootstrapping - but I don't know how I could interpret the results of the confindence intervals.

Could you help me?

Thank you very much,
Steffi M.
 Linda K. Muthen posted on Thursday, September 26, 2013 - 2:23 pm
Please send your output and license number to support@statmodel.com so I can see which confidence intervals you are using.
 Julia Schorlemmer posted on Thursday, July 02, 2015 - 9:32 am
Dear Sir and Madame,

regarding bootstraping in MLM with Mplus: One question above was: "It says that bootstrapping is not allowed for multi-level modeling. How should I test indirect effects? can i just skip bootstrapping? (Mplus tested indirect effects although i didn't type bootstrapping)".

I wonder why it is not allowed? I could find any reasons... And if you have any literatur recomendation where I can read about the topic Mediation in MLM and bootstrap?
Thank you very much, Julia
 Linda K. Muthen posted on Thursday, July 02, 2015 - 5:50 pm
Multilevel bootstrapping is a research area.

Use the regular standard errors or Bayes if you are concerned that the indirect effect has a non-normal distribution.

Google for literature.
 Julia Schorlemmer posted on Friday, July 03, 2015 - 1:45 pm
Dear Linda,

thank you for your advice!
Back to top
Add Your Message Here
Username: Posting Information:
This is a private posting area. Only registered users and moderators may post messages here.
Options: Enable HTML code in message
Automatically activate URLs in message