Message/Author 

Anonymous posted on Thursday, January 20, 2005  12:18 pm



Hi I have been working in Mplus on several twolevel structural equation models, and sometimes the residual variance of my observed dependent variables is negative. The model fits are high, but I am not sure how to interpret or fix these rv's so they are no longer negative. Please advise. Thank you. 

BMuthen posted on Thursday, January 20, 2005  7:57 pm



If the negative residual variances are large, this is a sign that your model is not appropriate for your data and you need to change your model. If they are small, you may want to fix them to zero. Residual variance are often small on the between level of multilevel models. 

matthew posted on Sunday, November 27, 2005  3:14 am



hi i am a new user of SEM and also face the similar problem. what are the causes of negative residual variance? i mean how inappropriateness of the model would cause this problem but not reflecting on the modelfit indices. i want to ignore it (simply delete it), is there any guideline or significant level of the value so that it would be comfortable to do this? 


there is too much to say on this topic and checking books is helpful.  in sum, reasons for neg vars include small sample size (so neg est even if pop value is pos), model misspecification, and very skewed variables (floor effects). also see my other answer today. 


Hi Could you advise me on the following problem, please? Using CFA, I established discriminant validity between 6 latent variables (x1x6). Then using SEM, I regressed y1, a latent variable with 3 continuous indicators on x1x6. The model fit very well. However, on addtion of a final path, regressing u1 a binary observed variable on y1, I received a warning that the residual covariance matrix is not positive definite.On inspection of the results, I realised there was a negative residual on one of the indicators of y1, and the model fit indices are very poor. What should I do? I tried dichotomising y1, as the indicators are negatively skewed but the model fit is worse. I would be greatful for any advice. Grainne 


Please send your input, data, output, and license number to support@statmodel.com. 


Hello, Is it possible to constrain residual variance of outcome variables to be greater than or equal to zero in Mplus (rather that only equal to zero)? If yes, could you please state how? 


You can use MODEL CONSTRAINT to constrain them to be greater than zero, for example, MODEL CONSTRAINT: 0 < p2; 


Hello Linda, I found a negative error variance for one of my ordinal outcomes (estimator WLSMV), and i'd like to test the inequality H0: error variance is greater than or equal to zero using the Wald test. Is it possible in Mplus? Thank you very much in advance. 


I don't know what your model is, but unless you have a longitudinal or multigroup situation, the residual variances for ordinal outcomes are not free parameters. They are printed as remainders when requesting a standardized solution  perhaps that's where you see the negative value. So since they are functions of other parameters, you cannot do a test on them in a straightforward fashion. If you for instance consider a single factor and no covariates (in a crosssectional, singlegroup, the residual variance remainder is theta, theta = 1  lambda*lambda* psi so you would have to do the Wald test on the new parameter theta (testing against = 0, not > 0). 


Thanks Bengt for your answer. I indeed saw the negative residual variance doing ESEM with WLSMV and Delta parameterization on 2factor model described by a total of 5 ordinal data. 1. But, if one uses the Theta param., the residuals should be the free parameters, shouldn't they? In this case, the Wald test could be directly used on the residual? 2. About the Wald test, I was wondering if it was possible to do a onesided test of H0: residual >= 0 (as opposed to the twosided test H0: residual=0), as it is suggested in the article of Kolenikov & Bollen "Testing negative error variances: is a Heywood case a symptom of misspecification?" http://web.missouri.edu/~kolenikovs/ Hope these questions make sense! Thank you very much for your help. 


1. With the theta parameterization the residual variance is fixed to 1 (unless you have multiple group situation)  so in a way this is giving you residual variance > 0 condition. The residual variance is not a free parameter because it is still not identified so it has to be fixed to a value that determines the parameterization. For the theta parameterization that value is 1. 2. In principle yes  this amounts to dividing the pvalue you get by 2, but again with the theta parameterization you can not do this at all because the residual variance is fixed to one. In the delta parameterization you can do this using the method Bengt outlined above, i.e., by making a new parameter in model constraints that is equal to the residual variance parameter. The residual variance parameter in the model is not really a regular parameter  it is a dependent constrained parameter that you can not access directly so you have to make your own duplicate of it. 

RDU posted on Saturday, February 13, 2010  12:29 am



I have a question concerning the residual variance provided in the standardized model results for categorical outcomes. Since this is a standardized solution, then are the residual variances listed standardized residual variances or are they unstandardized? Furthermore, if they are standardized then how exactly does one obtain the unstandardized residual variances (Is it similar to what it would be in regular regression?). Thanks. 


I think you are asking about the residual variances that are printed with Rsquare. These are raw coefficients that are computed as a remainder from the model estimated results. They are not estimated as part of the model. Categorical outcomes do not have variance parameters. 

RDU posted on Saturday, February 13, 2010  10:32 am



To better clarify my question, I was referring to the residual variances that are provided using Theta parameterization (WLSMV estimation) with categorical data, where standardized model results can be requested. As part of the standardized output, residual variances are given along with each item's R^2. Thus I was wondering whether the residual variance is standardized since it is part of the standardized model output, or whether it is an unstandardized estimate. If it is in fact a standardized residual variance, I also wanted to know if an unstandardized estimate could be obtained or calculated by hand. Thank you for your response. 


With the Theta parameterization, scale factors are given with Rsquare. If you have further questions about this, please send the full output as an attachment and your license number to support@statmodel.com. 

RDU posted on Saturday, February 13, 2010  11:37 am



Yes, I apologize for the confusion. I believe I mistook the scale factors from Theta parameterization for the residual variances provided in delta parameterization. 

RDU posted on Saturday, February 13, 2010  1:40 pm



Given the previous question I am also curious as to whether the residual variances given for delta parameterization are standardized or unstandardized, as theta parameterization was said to provide scale factors and not residual variances...Is this correct? 


Neither the scale factors or residual variances presented with Rsquare are standardized. 

Hemant Kher posted on Thursday, April 21, 2011  8:04 am



Hello Professor Muthen, I have a question, and I hope that you can provide some insights. My question is related to a multipleindicator latent curve model. Using the CFA approach, I estimate a latent construct for 4 different time points (factors F1, F2, F3 and F4  each estimated using the same 4 items). I followed directions to establish measurement invariance (same scale indicator at each time, loadings for nonscale items constrained equal across time, and equal intercepts for nonscale items). The model with CFA works fine with a good fit. However, when I fit a growth model on the factors, I get a negative residual variance for the first factor (F1); the residual variance is small and statistically insignificant (0.026, Z=0.354, p=0.723). When I fix this residual variance for F1 to zero (f1@0;), the change in model fit is negligible and not statistically significant. But I am not sure if doing this (setting factor residual variance to zero) is reasonable. Your thoughts at your convenience would be appreciated. 


Negative residual variances typically reflect a misspecified model. For instance, perhaps a nonlinear growth model is more suitable. Also, instead of fixing the residual variance at zero, you could try holding them equal across time. 

Hemant Kher posted on Thursday, April 21, 2011  8:26 am



Professor Muthen  Thank you for a quick response. Holding the factor residual variances equal across over time has solved the problem. 

Katja posted on Monday, January 14, 2013  1:14 am



Hi! I have a question, regarding a neg. residual variance. There was a post: "If the negative residual variances are large, this is a sign that your model is not appropriate for your data and you need to change your model. If they are small, you may want to fix them to zero. Residual variance are often small on the between level of multilevel models." What is considered as a large/small negative variance? I have a neg. residual variance of ,083. Can i fix it to zero? Thank you! 


Try fixing it to zero and see how this affects the results. 

Back to top 