Model fit for ML models with categori... PreviousNext
Mplus Discussion > Structural Equation Modeling >
 Seth J. Schwartz posted on Wednesday, October 05, 2011 - 3:49 pm
Dear Linda and Bengt:

I am estimating a model with several categorical outcomes. It is my understanding that, to obtain odds ratios, I need to use the MLR estimator rather than the WLSMV estimator. (The WLSMV estimator will give me probit regression coefficients rather than logistic regression coefficients, correct?)

If this is accurate, then the only model fit indices available to me are the -2LL, the AIC, and the BIC. One of my coauthors wants to know how well the model fits the data, but these indices cannot tell me that - correct? Is there any way for me to tell how well the model fits? Can anything be done with the -2LL, AIC, or BIC to evaluate the fit of a single model to the data? I'm worried that reviewers will criticize me for not making a statement about overall model fit before proceeding to test the signficance of specific paths.

Thanks again for your help.

 Bengt O. Muthen posted on Wednesday, October 05, 2011 - 8:55 pm
If your model has positive df for chi-square when running WLSMV (probit) then it has some left-out paths. If so, you can use ML (logit) and let those paths be free to get the H1 model to test your H0 model against.
Back to top
Add Your Message Here
Username: Posting Information:
This is a private posting area. Only registered users and moderators may post messages here.
Options: Enable HTML code in message
Automatically activate URLs in message