Message/Author 


Hi, I am new to MPlus and I am a bit lost in all the information available. I am interested in identifying different trajectories of a continuous indicator (3 timepoints), as well as a set of cavariates that predicts class inclusion. Finally, I want to see if the trajectories have different consequences (distal outcomes at T3  continuous). Below is my syntax: MODEL: %OVERALL% int slp  sw1@0 sw2@1 sw3@2; int WITH slp; int slp ON sex Excl1 Vict1 PrSoc1 F_Inv1 FQ1 M_SSup1 M_NgI1 M_Pow1; C#1C#3 ON sex Excl1 Vict1 PrSoc1 F_Inv1 FQ1 M_SSup1 M_NgI1 M_Pow1; %c#1% int; slp; %c#2% int; slp; %c#3% int; slp; %c#4% int; slp; My questions are: 1. Is it necessary to include the regression command of the intercept and slope in all classes (or just in the Overall model)? 2. How to compare the trajectories regarding the distal outcomes? Thank you! Miguel 


1. The standard and more parsimonious approach is to not let the regression vary across classes, so you specify it only in Overall. 2.The distal outcome means will vary across classes as the default. If you want to test mean differences you label these means and then compute their difference in Model Constraint. if you don't want to include the distal in the model, you can study these means using the Auxiliary option DCON. Note that as a first step you may want to use the default of classinvariant variances and therefore not mention int, slp in each class. 


Hello, Professor, Thank you for your reply! I've tried using your suggestion, but I keep getting this error message: *** ERROR in VARIABLE command Unrecognized type in the AUXILIARY option: DCON The syntax is as follows (I've tried different possibilities, though, like writing the DCON option after every variable name, and the result was the same): AUXILIARY=(DCON) actout3 shy3 lrnprob3 sc_comp3 soc_ac3 behav3; Also, when I use the E or the DU3STEP options, I don't get any errors. Thank you! Miguel 


DCON was introduced in Version 7.1. Perhaps you are using an earlier version. 


Yes, in fact, I'm using version 7. In that case, what is your recomendation? Is the AUXILIARY=(E) option ok (contrary to what I said before, the DU3STEP option doesn't work either)? Miguel 


I would recommend getting Version 7.2. E and DU3STEP have been replaced by a better method. See also Web Note 15 on our website for a manual 3step method. 


Thank you, Professor, I'm trying to perform the 3 step method, but I can't seem to find the "Logits for the Classification Probabilities the Most Likely Latent Class Membership (Row) by Latent Class (Column)" table. I can only find the "Average Latent Class Probabilities". Can you tell me why this happens? Also, if my original model has an entropy of .889 (sample size =260), do you think there will be severe bias if I choose the AUXILIARY=(E) option? Thank you! 


I don't think we added these logits until Version 7.11. 

Anne Arnett posted on Tuesday, August 12, 2014  10:27 am



I am fitting a growth mixture model with a continuous outcome (a3a15, 5 time points measured at different ages for each participant). Latent classes are predicted by a continuous variable (x). I also have a distal binary outcome. My data includes siblings, so the model TYPE= MIXTURE RANDOM COMPLEX. The model is: MODEL: %OVERALL% i s  a3a15 AT cage3cage15; i s on x; C on x; My question is, is it necessary to include the statement 'i s on x'? When I do this with more than 2 classes estimated, I get a nonpositive PSI, and when I remedy this by fixing s@0, it makes it very difficult to replicate the LL. What would it mean to have x only predicting C, rather than all of the latent variables? Thank you. 


i s on x; says that these growth factors vary as a function of x also within classes. So for instance, a high x value tends to create a high i, a high starting point, within each of the classes. You can check BIC to see if i s on x; is needed. 

Anna King posted on Tuesday, September 16, 2014  1:35 pm



Dear Professor, I'm trying to use the PC method to analyze a GMM model. I included AUXILIARY into the VARIABLE part. I don't know why it didn't work. It kept telling me that X is an unknown variable. Could you please tell me why? Below is the codes I wrote. Thanks! Title: PC Method VARIABLE: NAMES = y1y4 x; USEVARIABLES ARE y1y4 x; CLASSES = c(2); AUXILIARY=x(R); DATA: FILE IS Math.dat; analysis: type=mixture; model: %overall% i s  y1@0 y2@1 y3@2 y4@3; [y1y4@0]; i* s*; i with s*; y1y4*; [c#1*0]; c#1 on x1*; %c#1% [i*]; [s*]; %c#2% [i*]; [s*]; Output: tech9; 


A better method is Auxiliary x(R3STEP). You should not include x in the modeling as you do when saying: c#1 on x1*; 

Anna King posted on Tuesday, September 16, 2014  4:26 pm



Thanks, Professor! I did run the program but I couldn't find any regression coefficients for class and the covariate. Do you know how to get that? Thanks! 


Check that you are doing it correctly as described in Appendix A page 3 of the paper on our website: Asparouhov, T. & Muthén, B. (2014). Auxiliary variables in mixture modeling: Threestep approaches using Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 21:3, 329341. The posted version corrects several typos in the published version. An earlier version of this paper was posted as web note 15. Appendices with Mplus scripts are available here. 

Anna King posted on Wednesday, September 17, 2014  8:32 am



Sorry to disturb you again, Professor! I did use the 3step method this time and I have the codes like: Title: 3step Method VARIABLE: NAMES = y1y4 x1 x2; USEVAR ARE y1y4 x1 x2 x3 x4 ; CLASSES = c(2); AUXILIARY = x1x2(R3STEP); DEFINE: x3=x1; x4=x2; DATA: FILE IS Math.dat; ANALYSIS: type=mixture; model: %overall% i s  y1@0 y2@1 y3@2 y4@3; [y1y4@0]; i* s*; i with s*; y1y4*; [c#1*0]; c#1 on x3*; c#1 on x4*; %c#1% [i*]; [s*]; %c#2% [i*]; [s*]; Output: tech1 Tech8; The output part shows the regression coefficients from Categorical Latent Variables on X3 and X4. Then there is also "TESTS OF CATEGORICAL LATENT VARIABLE MULTINOMIAL LOGISTIC REGRESSIONS USING THE 3STEP PROCEDURE". May I know which numbers I should take? Also, does my code make any sense? Many thanks in advance! 


This is not what Appendix A shows. I don't understand why you have this Define statement. Instead, to see the effects of x1 and x2 on c, say Title: 3step Method VARIABLE: NAMES = y1y4 x1 x2; USEVAR ARE y1y4; CLASSES = c(2); AUXILIARY = x1x2(R3STEP); DATA: FILE IS Math.dat; ANALYSIS: type=mixture; model: %overall% i s  y1@0 y2@1 y3@2 y4@3; 

Anna King posted on Wednesday, September 17, 2014  9:52 am



So, "TESTS OF CATEGORICAL LATENT VARIABLE MULTINOMIAL LOGISTIC REGRESSIONS USING THE 3STEP PROCEDURE" shows the regression coefficients between class and covariates? I wrote the last codes based on Appendix C because the No.15 paper mentions that in MPlus Version 7 estimations using the 3step method is not allowed although within a montecarlo simulation it is allowed. So, the DEFINE command is used to duplicate the variable that is to be used in the model. It seems that I don't need to do this any more. Is that correct? Thanks! 


Q1. Yes. Q2. Use Version 7.2 

Anna King posted on Saturday, October 04, 2014  7:27 pm



Dear Professors, May I know if I can get result report on variance explained by the covariates for each growth factor under the growth mixture model? Thanks! 


Rsquare is provided by using the STANDARDIZED option. 

Anna King posted on Tuesday, October 14, 2014  6:50 pm



Sorry to disturb you again, Professor. How can I save variance explained in an output? Also, is there any command that can save covariate effects on the latent class? That is: Is there a way to save the regression coefficients for covariates on each latent class? It looks like I can save all other parameter estimates but these coefficients... Many thanks, as always! 

Anna King posted on Wednesday, October 15, 2014  9:21 am



Dear Professor, I hope I made my question clear. As per what I asked in my last posted message, I meant to ask if there is a way to save the regression coefficients estimates from "TESTS OF CATEGORICAL LATENT VARIABLE MULTINOMIAL LOGISTIC REGRESSIONS USING THE 3STEP PROCEDURE"? Many thanks! Anna 


Variance explained is Rsquare. You get that by asking for STANDARDIZED in the OUTPUT command. No, these values cannot be saved. 

Anna King posted on Friday, November 28, 2014  7:33 pm



Dear Professor, I'm using both 1step and the new 3step method to estimate covariates effects on the growth part (intercept and slope) of a 2class growth mixture model. It seems I get exactly the same results from the two methods. Could you please check if my codes are correct or, I should get the same results? My codes will be followed in the next message. Thanks, Anna 

Anna King posted on Friday, November 28, 2014  7:43 pm



Title: 1step method VARIABLE: NAMES = y1y4 x1 x2; USEVARIABLES ARE y1y4 x1 x2; CLASSES = c(2); ... MODEL: %overall% i s  y1@0 y2@1 y3@2 y4@3; i*2 s*.4; i with s*.45; y1y4*.75(ve); [c#1*0.02]; !Class proportion i s on x1 x2; %c#1% [i*10]; [s*2]; i on x1*0.3 x2*0.5; s on x1*0.2 x2*0.2; %c#2% [i*11]; [s*2.5]; i on x1*0.5 x2*0.2; s on x1*0.2 x2*0.1; Title: 3Step method VARIABLE: NAMES = y1y4 x1 x2; USEVARIABLES ARE y1y4 x1 x2 x3 x4; CLASSES = c(2); AUXILIARY = x1x2(R3STEP); DEFINE:x3=x1;x4=x2; ... MODEL: %overall% ... (same as the above) i s on x3 x4; %c#1% [i*10]; [s*2]; i on x3*0.3 x4*0.5; s on x3*0.2 x4*0.2; %c#2% [i*11.22]; [s*2.55]; i on x3*0.5 x4*0.2; s on x3*0.2 x4*0.1; Many thanks! ~ Anna 


Please send the outputs for the two runs to support along with your license number. 

Daniel Lee posted on Saturday, March 14, 2015  1:17 pm



Hi Dr. Muthen, I conducted a GMM for religiosity and found a 3 class trajectory  high throughout (1), highbut declining across time, and consistently low (3). I would like to now examine if these three classes might condition the protective role of religion on the stressdepression link. That is, can I run a parallel process model between religion and depression, where the effect of religion on depression is conditioned by the person's latent growth class membership? So  people who are constantly religious at a high level (class 1) may benefit MORE from religion than a person who is constantly at a low level (class 3). I'm not sure how to include these classes into the parallel process model between religion and depression to examine whether the effect of religion is conditional on the person's growth trajectory (class 1, 2 or 3). Any insight would be greatly appreciated! Thank you! 


How is the effect of religion on depression different from the effect of GMM trajectory classes for religiosity on depression? 

Daniel Lee posted on Saturday, March 14, 2015  9:04 pm



Oh! I didn't know I can run a parallel process with a GMM trajectory on a LGM trajectory. Is that possible? If so, I would appreciate any resources that can help me write the mplus stytax for this kind of analysis! 


Start from UG ex7.14 and modify it for your purposes. 

Back to top 