Message/Author 


I'm trying to run an LTA with 4 time points and 3 classes for each time point and a single covariate (3 level variable modeled with dummy variables)influencing the transitions, which I modeled as an interaction. I can't seem to figure out if the transition probabilities average over the covariate or are calculated without the covariate. My goal is to determine if the transition probabilities differ by level of the covariate. Can I get this matrix by each level of the covariate? Also, how do I interpret the estimate given for regression of the classes (e.g., C1#1, C1#2) on the covariate? Thanks for your help. 


They average over the covariates. There is not automatic way to get this matrix for each level of the covariate. See the Nylund dissertation on the website for detailed information about LTA. 


Thanks for your help. I'm now having trouble with setting my reference class. I tried changing the starting values, but that didn't work. I want no alcohol use to be the reference class (coded as 0 for all the alcohol variables), but with the output below Class 3 is the problem alcohol class (1s on all the alcohol variables). It is a 3 class model with 4 time points. CLASSES = c1(3) c2(3) c3 (3) c4 (3); ANALYSIS: TYPE = MIXTURE MISSING; MODEL: %OVERALL% c2 on c1; c3 on c2; c4 on c3; MODEL c1: %c1#1% [alcopp6r$1  alcsoc6$1*15] (17); %c1#2% [alcopp6r$1  alcsoc6$1*1] (814); %c1#3% [alcopp6r$1  alcsoc6$1*15] (1521); MODEL c2: %c2#1% [alcopp7r$1  alcsoc7$1*15] (17); %c2#2% [alcopp7r$1  alcsoc7$1*1] (814); %c2#3% [alcopp7r$1  alcsoc7$1*15] (1521); MODEL c3: %c3#1% [alcopp8r$1  alcsoc8$1*15] (17); %c3#2% [alcopp8r$1  alcsoc8$1*1] (814); %c3#3% [alcopp8r$1  alcsoc8$1*15] (1521); MODEL c4: %c4#1% [alcopp9r$1  alcsoc9$1*15] (17); %c4#2% [alcopp9r$1  alcsoc9$1*1] (814); %c4#3% [alcopp9r$1  alcsoc9$1*15] (1521); 


For u = 0, 1 a threshold of 15 ensures u = 1 and a threshold of +15 u = 0. Looks like class 1 and 3 should be switched. 


Hi, I'm running a LTA with 2 time points and would like to know whether transition probabilities vary by gender while controlling for age; and vice versa. Age is categorical (6574; 7584;85+ years). I tried regressing on both age and gender but then I can only estimate gender specific transition probabilities one age group at a time and not across age groups. Yes I read chapter 13...a thousand times. Did I miss something? Instead, would it make sense to use a "known class" for gender and regress on knownclass and age to get my gender transition probabilities while controlling for age? Here's what I have in mind: CLASSES = cg (2) c1(4) c2(5); KNOWNCLASS = cg (sex=0 sex=1); ANALYSIS: TYPE = MIXTURE; MODEL: %OVERALL% c2#1c2#4 on c1#1c1#3 cg age; Thanks! I'm running out of ideas here...and the reviewers will be asking for this! 


It sounds like you want the marginal transition effect for a certain covariate from a model with several covariates. If you create a gender knownclass, a transition probability table for c1 x c2 would give you what you want. I don't recall if this is what the output provides, but do try. Otherwise, perhaps you have to estimate say the gender effect at each age and then weight the transitions probabilities with the frequencies of the ages. 


Exactly, I want the marginal transition effect. I did run the model and the output gives me the mean Cg#1 and the regression coefficients for each (C2#. on Cg#1) and (C1#. on Cg#1). It also gives me the overall transition probabilities (c1 x c2) and the (Cg classes x C1 classes). Now, I’m not certain how to calculate the transition probabilities with a known class (e.g. gender). For example, to estimate transition probabilities from C1#1 to C2#1 when female=1. Do I just add the following terms to calculate the log odds (referring to your 2x2 table in chapter 13): a1 + b11 + (Cg#1) + (C2#1 on Cg#1)? For male, I would just use the table as it is since male=0. Thank you for your precious help. LL 


The LTA dissertation by Karen Nylund on our web site under Papers, Latent Transition Analysis gives details on how to compute transition probabilities as a function of covariates. 

xybi2006 posted on Tuesday, February 24, 2015  6:39 pm



Dear Dr. Muthen, I used latent class analysis to look at how individuals cluster into distinctive groups based on a set of symptoms. Besides only looking at it crosssectionally, I wanted to know how consistent these clusters are over time (I have five waves data). Should I use latent transition analysis to modeling this question? Thank you, 


Yes, that would be natural. But start with 2 timepoints to get into it. 


Dr. Muthen, I am running a power simulation for my LTA study with multiple covariates. As a result, I ran MC example 8.14 (LTA with a continuous covariate) with multiple covariates. I fixed the mean and variance of the other covariates. I also estimated the regression of c1 on all covariates and the regression of the c1c2 transition (c2 regression under classspecific c1 commands) on all covariates. Apart from those changes in the model and model population statements, I did not make any other changes to the example. However, when I run the program, it ignores the model population statements regressing the c1c2 transition on any covariates except for the first and throws this as an error. Please let me know if you have any thoughts on what might be causing this error and thanks for understanding. Thanks, Raghav 


Please send the output and your license number to support@statmodel.com so I can see the error. 

Alvin posted on Monday, August 10, 2015  11:48 pm



Hi Bengt/Linda, I wanted to do a subsidary analysis of crude predictors of the transitional classes. I did a threemodel LTA across two time points with full measurement invariance. Then looked at covariates using the threestep approach, all within Mplus. My question is would be possible to extract class memberships of the transitional classes (I am particularly interested in those who transitioned from T1 asymptomatic to comorbid at T2). I tried to do this using (save cprob) but didn't work. Should I look at class memberships at each time point and then derive transition patterns (e.g. subset those who are in class 2 at T1 and class 3 at T1, assuming that class 2=asymptomatic and class 3=comorbid). Or is there a better way to do this? Your advice much appreciated. 


The cprobs should come out for the combination of all the classes, so you can get the transition values you want. If you have problems, send relevant output and license number to support. 


Hi Bengt/Linda, I'm running a LTA model. I have two time points. At each time 3 classes. I have some concerns about the autoregressive path "C2 on C1", for two reasons: 1. Why "C2 on C1" results in 6 coefficients when the model is unconditional, while 4 coefficients when covariates are added? UNCONDITIONAL MODEL C2#1 ON C1#1 0.569 0.063 8.959 0.000 C1#2 0.293 0.041 7.109 0.000 C1#3 0.000 0.044 0.002 0.998 C2#2 ON C1#1 0.094 0.043 2.207 0.027 C1#2 0.195 0.031 6.308 0.000 C1#3 0.014 0.131 0.107 0.915 CONDITIONAL MODEL C2#1 ON C1#1 14.186 8.637 1.643 0.100 C1#2 13.027 8.638 1.508 0.132 C2#2 ON C1#1 6.313 3.175 1.988 0.047 C1#2 6.309 3.127 2.017 0.044 2. In the unconditional model, the coefficients seems too high (and consequently their ORs). Is this normal? What could be wrong? Thanks, Angela 


Please send the two outputs to Support along with your license number. 


Hi, I'm studying how to include covariates and distal outcomes in a LTA model using a 3step approach. I actually succeeded in it (also requiring measurement invariance). My only concern is about auxiliar variables. Am I correct in affirming that specifications about auxiliar variables like: (R) (E) (R3STEP) (DU3STEP) (DE3STEP) (DCON) (DCAT) have to be used only for LCA? Instead for LTA models covariates are specified as: c1 ON x; c2 ON c1; while outcome are tested using model constraint in order to test means equality? thanks, Angela 


Right. For LTA, see Asparouhov, T. & Muthén, B. (2014). Auxiliary variables in mixture modeling: Using the BCH method in Mplus to estimate a distal outcome model and an arbitrary second model. Web note 21. 


Dear Dr. Muthén, I am running a LTA using the threestep approach according to Web Note 13 and NylundGybson et al (2014) paper. I have three classes at each of both times. I am specially interested in the interactions of the covariates on the transition probabilities and would also need to try out the model with other covariates. I obtain the following message: ONE OR MORE MULTINOMIAL LOGIT PARAMETERS WERE FIXED TO AVOID SINGULARITY OF THE INFORMATION MATRIX.... Moreover, the output give estimates only for latent class patterns 1 1, 2 1 and 3 1. I am not sure why this happens, if my syntax is correct and how should I interpret the results. My syntax is: %OVERALL% T2 ON T1; T1 ON PIPRE MATCOUR; T2 ON PIPRE MATCOUR MKT; Model T1: %T1#3% [T1CLASS#1@3.621]; [T1CLASS#2@0.883]; T2 ON PIPRE MATCOUR MKT; %T1#2% [T1CLASS#1@1.646]; [T1CLASS#2@5.163]; T2 ON PIPRE MATCOUR MKT; %T1#1% [T1CLASS#1@10.567]; [T1CLASS#2@2.714]; T2 ON PIPRE MATCOUR MKT; Model T2: ... (has also fixed values) 


Please send your full output to Support along with your license number. 

Back to top 