Message/Author 

Sunny Shin posted on Thursday, February 11, 2010  12:39 pm



Hi Linda, Somehow, mplus doesn't save a factor score. here is my input. I appreciate your help in advance. TYPE = IND; VARIABLE: NAMES = AID PSUSCID REGION GSWGT1 H1PF16 H1PF20R H1PF14R H1PF18R H1PF19R H1PF21R H1FS5R H1ED16R H1ED17R; USEVARIABLES = H1PF20R H1PF18R H1PF19R H1PF21R H1FS5R H1ED16R H1ED17R; IDVARIABLE = AID; MISSING = ALL (999); CLUSTER = PSUSCID; STRATIFICATION = REGION; WEIGHT = GSWGT1; ANALYSIS: TYPE = COMPLEX; MODEL: planful BY H1PF18R H1PF19R H1PF20R H1PF21R; distract BY H1ED16R H1FS5R H1ED17R; OUTPUT: STANDARDIZED MODINDICES (4); SAVEDATA: FILE IS CFA_SR.sav; SAVE IS fscores; FORMAT IS free; 

Sunny Shin posted on Thursday, February 11, 2010  1:02 pm



I just found that fscores is not supported in Type = complex. Thanks. 


Mplus does provide factor scores with TYPE=COMPLEX. 


Dear Linda, In SAS it is possible to extract “latent variable score regression coefficients”. In SAS these coefficients are used to calculate a factor score. Is it also possible in MPLUS to extract “latent variable score regression coefficients”? 


See the FSCOEFFICIENT option of the OUTPUT command. 


Dear Linda, Thanks for your answer! I am trying to compare the way SAS and MPLUS calculate factor scores. Both use the regression method and the parameter estimates and fscoefficients are the same for both programs. In both programs the fscoefficients are multiplied with standardized observations. To mean it seems that in SAS observations are standardized as ((obsmeans)/sd)), whereas in MPLUS they are standardized as(obsmeans). Do you know what the advantages are of the different standardization methods? Cecile 


Cecile Your understanding of Mplus is correct. In principle it doesn't matter what standardization is used as long as it implies the correct factor score (posterior mean). However from your information above it seems that you would get different results in the two programs. You should make sure that the factors scores you get agree with those computed by Mplus using the savedata command. savedata: save=fs; file=...; Tihomir 


Dear Tihomor, Thanks for your explanation. Bij default sas uses a prior distribution to calculate a factor score. If I understand you well Mplus uses a posterior distribution to calculate factor scores. With the "prior distribution approach" I used the following strategy. 1) I calculated a factor score for controls. 2) I calculate a factor score for cases using the factor score coefficients for controls multiplied by observations which were standardized according to the distribution in controls (so I used mean + sd values of controls to standardize the distribution) Is such an approach also possible when using a posterior distribution? If yes, how can I extract the posterior mean + sd from MPLUS? 


Here are a couple of clarifying points. Mplus also uses a prior distribution  a normal distribution. The standard regression method of computing factor scores gets the estimates from the peak of the posterior. So in this regard, there seems to be no differences between SAS and Mplus. I don't understand your 1) and 2) steps. You mention "controls"  is that a certain group and you also have other groups? If you have several groups, it seems like there is a better approach that can be used. 

Back to top 