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LATENT VARIABLE STRUCTURAL EQUATION MODELING 
WITH CATEGORICAL DATA* 

Bengt MUTHkN 

Unioersity of California, Los Angeles, CA 90024, USA 

Structural equation modeling with latent variables is overviewed for situations involving a 
mixture of dichotomous, ordered polytomous, and continuous indicators of latent variables. 
Special emphasis is placed on categorical variables, Models in psychometrics, econometrics and 
biometrics are interrelated via a general model due to Muthen. Limited information least 
squares estimators and full information estimation are discussed. An example is estimated with a 
model for a four-wave longitudinal data set, where dichotomous responses are related to each 
other and a set of independent variables via latent variables with a variance component 
structure. 

1. Introduction 

This article gives a general overview of the specification and estimation of 
latent variable structural equation models, with particular emphasis on the 

case of dichotomous and ordered polytomous observed variables 
(indicators). With some recent exceptions, the methodology available to date 
is intended for the case of continuous indicators only. Developments for 
categorical indicators are important since in many applications, particularly 
in the social and behavioral sciences, observed variables frequently have a 
small number of categories with non-equidistant scale steps, and often they 
are dichotomous (binary). The categories of such variables may be scored 
for subsequent treatment as continuous, interval scale variables. Pearson 
product-moment correlations and covariances are, however, unsuited for 
these quasi-continuous variables, particularly when the variables are skewed. 

When such variables are forced into the mold of traditional structural 
equation models, a distorted analysis will result. 

This article draws on new developments presented in Muthen (1981a), 
where a general structural equation model and its estimation was proposed. 
Muthen’s model allows for both dichotomous, ordered polytomous, and 
continuous indicators of latent variables. With this general model, a large 
body of methodological contributions from psychometrics, biometrics, and 
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econometrics can be conveniently interrelated. This is carried out with 
respect to modeling in section 3. Section 4 considers estimation approaches, 
while section 5 presents the estimation of a social-psychological longitudinal 
model with features that are relevant to many fields of application, including 
econometrics. 

2. A general model 

Muthen (1981a) considered the following model for G groups (populations) 
of observation units. The model is presented in a somewhat re-arranged way 
here. For each group g is observed a random dependent (endogenous) 
variable vector yCg) (p x 1) and a random independent (exogenous) variable 
vector xCg) (q x 1). Observations from different groups are assumed to be 
independent. In what follows the super-script g should be attached to each 
array of the model, but will be deleted for simplicity in cases where no 
confusion can arise. Each observed variable may be continuous or 
categorical with ordered categories. The observed variables are assumed to 
be generated by a set of underlying latent continuous variables in the 
following way. For each group, assume the linear structural equation system 
for a set of m latent dependent variables v] and a set of n latent independent 
variables 5, 

where a (m x 1) is a parameter vector of intercepts, B (m x m) is a parameter 
matrix of coefftcients for the regressions among the q’s such that the diagonal 
elements of B are zero and Z-B is non-singular, r (m x n) is a parameter 
matrix of coefficients for the regressions of q’s on t’s, and 5 is a random 
vector of residuals (errors in the equations). 

Also assume the linear ‘inner’ measurement relations for a set of p latent 
response variables y* and a set of q latent response variables x*, 

(2) 

x*=v,+Axt+6, (3) 

where vY (p x 1) and v, (q x 1) are parameter vectors of intercepts, A, (p x m) 
and LI, (q x n) are parameter matrices of coefficients (loadings) for the 
regressions of the latent response variables on the latent variables in the 
structural relations, and E (p x 1) and 6 (q x 1) are random vectors of residuals 
(errors of measurement). 

The observed variables are assumed to be related to the latent response 
variables by a set of p+q “outer” measurement relations. For a certain latent 
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response variable, z* say, two alternative types of measurements, z say, are 
allowed. With a categorical z with, say, C categories we assume the 
monotonic relation, 

z=C-1 if rc_,<z*, 

=C-2 if ~c-~<z*~rc-~, 

(4) 

=0 if Z*sZ,, 

where the C- 1 z’s are threshold parameters defining category intervals on 
z*. With a continuous z we simply have the identity 

z-z*. (5) 

The following specification is made regarding the first- and second-order 
moments of the random variables. In (l), E(@=K (n x i), V(t)= @ (n x n), V(i) 
= Y (m x m), and c has zero expectation and is uncorrelated with 4. In (2) 
and (3) the residual vectors have zero expectation, E is uncorrelated with q 
and 4, and 6 is uncorrelated with 5. Let 0, (p xp) and 0, (q x q) be the 
covariance matrix of E and 6, respectively. Also, [, E and 6 are mutually 
uncorrelated. 

Muthen distinguished between two cases concerning the specification of 
the distribution of the observed variables. This distinction is particularly 
important with categorical dependent variables. 

Case A. Specification of the density f(y*‘,x*‘) for the joint distribution of 
y* and x*. This determines the joint distribution of (y’,x’) by (4) and/or (5). 
For each group, the,parameter arrays of Case A are r,,, r,, vy, vX, nY, A,., O,, 
@,, ~1, B, r, K, p’. 

Case B. Specification of the density f(y* 1 x) for the conditional distribution 
of y* given x. This is of interest in the special case of the model where all 
independent variables are considered to be continuous, with q = n and 

x=x*=5, (6) 

so that (1) may be rewritten as 
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This determines the conditional distribution of y given x by (4) and/or (5). 

Case B may be considered as the ‘fixed x’ case, meaning that no structure is 
imposed on the marginal distribution of x. The parameter arrays of Case B 

are rY, v,, A,, O,, c(, B, r, ‘Y. 

Muthen considered the multivariate normal distribution for both Case A 
and Case B. For Case A, it is then sufficient to consider E(y*‘,x*‘) and 
V(y*‘, x*‘), and for Case B, E(y* 1 x*) and V(y* ( x), 

E ‘;: = [I[ V,+li,(~-B)- ‘(Cl+f-K) 

V, + il,K 1 > (8) 

/i,C,,n; + 0, (symmetric) 

n,c,,n; 1 A,@A:+o, ’ (9) 

where 

&,,=(I-B)-‘(IT’+Y)(l-B)‘-‘, (10) 

C,,=W(I-B)‘-‘, (11) 

and 

E(y* 1 x)=v,+A,(I-B)~‘tx+A,(I-B)-‘TX, (12) 

VY* ) x)=A,(l-B)-‘Y(I-B)‘-‘A;+@,. (13) 

3. Overview of related models 

In its special cases, the general model reviewed above is related to several 
other models, used in different application areas. Modeling will be 
overviewed here utilizing this general model. Although the categorical case 
will be emphasized it is straightforward and convenient to also include in a 
condensed way the more familiar case of continuous variables. 

3.1. Continuous variables 

A basic model is Joreskog’s so-called LISREL model, presented 
Jijreskog (1973,1977). In LISREL, all indicators are considered to 
continuous, so that (5) holds for all outer measurement relations, i.e., the 
latent response variables are all observed. The original LISREL model was 
concerned with the special case of a single group (G= l), and used the 
standardization a=O, K=O, so that E(q)=O, E(t)=O. Case A and Case B 
were both considered, using the normality assumptions. Case B, when further 
specialized to involve no measurement structure and no measurement errors 
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in (2), has p=m and y=q. The case of p=m (and q=n) will be referred to as 

the single-indicator case, as opposed to the multiple-indicator case. It has 
been extensively studied by econometricians in the analysis of linear 
simultaneous equation systems [for familiar references, e.g. see the overview 
in Jiireskog (1973, pp. 93-9.5)]. LISREL is a hybrid modeling of linear factor 
analysis (inner) measurement relations [see e.g. Lawley and Maxwell (1971)], 
see (2) and (3), combined with a linear simultaneous equation system for the 

factors, see (1). This has proven very useful, particularly in social and 
behavioral science applications. For overviews with illustrations and 
additional detail, see e.g. Aigner and Goldberger (1977), Bentler (1980), 

Bentler and Weeks (1980), Bielby and Hauser (1977), Browne (1982) and 
Jiireskog (1978). 

Retaining the requirement of continuous indicators, simultaneous analysis 

of several groups, g= 1,2,. . . , G, and the inclusion of structured means via the 

parameter arrays a(9) and K(~) has been incorporated in the LISREL 
framework more recently. The multiple-group factor analysis of Jareskog 
(1971) was extended by Siirbom (1974) to study not only differences and 
similarities in covariance structure but also in factor means. Multiple-group 

analysis with structured means was developed into more general LISREL 
models in Sijrbom (1982) with applications to latent variable ANCOVA 
[S&-born (1978)] and the analysis of longitudinal data [Jiireskog and SGrbom 

(1980)]; see also JGreskog and Stirborn (1981). 

3.2. Categorical variables: Single indicators 

Turning to situations with categorical response variables, consider first the 
single-indicator case. Here we find Case B models. The simplest situation is 
that of univariate and multivariate regression with categorical response 
variables. Methodology for this situation is well-known to econometricians 
and an excellent review with econometric applications covering dichotomous, 
ordered and unordered polytomous response is given in Amemiya (1981). 
These models originated in biometric work, notably probit/logit regression in 
bioassay [see e.g. Bliss (1935)]. Probit regression is a special case of the 
general model of section 2, while logit regression and related log-linear 
modeling fall outside this model. In the multivariate case the general model 
gives the multivariate probit model of Ashford and Sowden (1970). 
Multivariate logit models are not directly related to this model structure; 
there is no multivariate logistic distribution with logistic marginal 
distributions that have unconstrained correlation coefficients [see Gumbel 
(1961) and also Amemiya (1981, pp. 1525-1531) and Morimune (1979)]. As 
opposed to multivariate regression, simultaneous equation models generally 
place a structure on the reduced-form regression coefficients and possibly 
also the reduced-form error covariances/correlations. With categorical 
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response variables, such models have recently attracted a growing interest in 
econometrics, but do not seem to have been utilized in biometrics or 
psychometrics. Some important contributions are Amemiya (1978), Heckman 
(1974,1978) and Maddala and Lee (1976). 

3.3. Categorical variables: Multiple indicators 

We now consider the more complex situation of categorical response 
variables, where there are multiple indicators of latent variables. 
Developments here have mainly come from psychometric work. Consider 
first the measurement part of the general model. Here, the latent response 
variables for the observed response variables are related to the latent variable 
constructs by a factor analysis type measurement model. With dichotomous 
indicators, probit models have been considered also here, although the 
independent continuous variables are now latent. In item response (latent 
trait) theory language [see, e.g., Lord (1980)] the general model with 
dichotomous indicators implies the so-called two-parameter normal ogive 
item characteristic curve model of Lawley (1943,1944), Lord and Novick 
(1968) and Bock and Lieberman (1970). For a set of items (dichotomous 
variables) designed to measure a certain trait (factor), conditional 
independence is assumed to hold, given the factor. In the general model the 
analogous assumption is the diagonality of the measurement error covariance 
matrix (0, or 0,). Note, however, that correlated errors can be handled. For 
related one-, two- and three-parameter logistic item response models, see e.g. 
Andersen (1980). The general multiple-factor model has been studied by Bock 
and Aitkin (1981), Christoffersson (1975) and Muthen (1978), both for 
exploratory (‘unrestricted’) and confirmatory (‘restricted’) factor analysis. 
Muthen and Christoffersson (1981) generalized the model to handle 
simultaneous multiple-group analysis, where various degrees of invariance 
over populations can be studied. As in the continuous variable case, 
modeling of factor mean differences over populations is then of interest, see 
e.g. Muthen (1981b). 

The extension of the measurement model to more than two ordered 
categories by (4), in combination with both (2) and (3), is straightforward and 
natural. For special cases, this was first proposed by Edwards and Thurstone 
(1952), and later studied by e.g. Bock and Jones (196Q Samejima (1969) and 
Bartholomew (1980). [Note the biometric counterparts of Aitchison and 
Silvey (1957) and Gurland, Lee and Dahm (1960).] The unordered 
polytomous case, not covered by the general model above, was studied by 
Bock (1972). Further contributions are found in Samejima (1972). 

The extension to structural equation modeling with categorical response 
variables as latent variable indicators was first brought forward in Muthtn 
(1976a), and further developed in Muthen (1977,1979,1982a). Here, Case B 
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was considered with dichotomous observed variables for each latent response 
variable, Muthen (1979) considered a multiple-indicator-multiple-cause 
(MIMIC) model analogous to the MIMIC model discussed in Joreskog and 
Goldberger (1975) for the case of continuous response variables, while 
Muthen (1976b) studied a model with reciprocal interaction between two 
dependent latent variable constructs. 

The general model of section 2 covers not only Case A and Case B of the 
general structural equation model but also any combination of dichotomous, 
ordered categorical, and continuous indicators in the measurement part. 
Further generalizations of the measurement part are possible. One example is 
the inclusion of categorical-continuous or limited dependent observed 
variables [see, e.g., Tobin (1958) and Amemiya (1973, 1982)]. 

4. Estimation 

The general model of section 2 can be estimated in various ways. Two 
basically different approaches have been attempted for special cases of this 
model, limited information (univariate and bivariate) multi-stage weighted 
least-squares (WLS), and full information, maximum likelihood (ML) 
estimation. Limited information estimation has been motivated by the fact 
that when categorical response variables are involved, a straight-forward 
application of ML may lead to heavy computations. 

4.1. Limited information estimation 

Muthtn (1981a) proposed a three-stage limited information WLS 
estimator. Muthen summarized the structure of the general model in three 
parts, encompassing both Case A and Case B. The three parts are 
respectively a mean/threshold/reduced-form regression intercept structure, a 
reduced-form regression slope structure, and a covariance/correlation 
structure. Any of the three parts may be used alone or together with any of 
the other parts. A computer program LACCI [Muthen (1982b)] may be used 
for all computations (LACCI was utilized for the analyses of section 5). The 
model structure will first be presented in its full generality and then explained 
through a set of special cases. For each group, deleting the group index, 
consider the three population vectors (TV, g2 and g3: 

Part I (mean/threshold/reduced-form regression intercept structure) 

Part 2 (reduced-form regression slope structure) 

(14) 

(15) cr2 = vet {dA,(Z-BJ ‘r,}, 
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Part 3 (covariance/correlation structure) 

a,=Kvec{A[A,(l-B,)mlYz(I-B,)‘-‘A;+O,]A}. (16) 

Here, A is a diagonal matrix of scaling factors particularly useful in multiple- 
group analyses with categorical variables, A* contains the same element as A 

but diagonal elements are duplicated for categorical variables with more than 
one threshold (more than two categories), K, and K, similarly distributed 
elements from the vectors they pre-multiply, the vet operator strings out 
matrix elements row-wise into a column vector, and K selects lower- 
triangular elements from the symmetric matrix elements it pre-multiplies, 
where a diagonal element is only included if the corresponding observed 
variable is continuous. 

For Case A, part 2 is not needed. We may stack the dependent variables 
followed by the independent variables into a single vector. Then, the arrays 
of the three-part model structure organize the parameters as 

7,= 
TY 11 7, ’ 

v,= VY [I v* ’ 

A,= [ *Y 
0 

1 o ,? = 0 A,’ [ 0, 0 (symmetric) I> 0, 

a 
Ciz= [I K ’ 

B l- 
B’=O o’ 

[ 1 
TZ has no counterpart, Yy,= 

Y (symmetric) 

0 Q, 1, 
For Case B, 

7, = 7,, vz=v y, A=Ay, 0, = o,, 

a,=a, B,=B, rz=l-, Yz= YJ. 

With the normality specification on the latent response variables, any 
model that tits in the general framework is identified if and only if its 
parameters are identified in terms of g(1),.(2) ,..., c(‘), where o(~)’ 
= @Jr, #’ ,a’$‘). Muthen (1981a) utilized this fact in that statistics stg) were 
produced as consistent estimators of acg), in order to estimate the model 
parameters in a final estimation stage. Preceeding estimation stages give scg), 
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where only limited information from bivariate sample distributions is needed. 
In the final estimation stage, a WLS fitting function with a general, full 
weight matrix is used, 

F = 2 ($7) _ a’9))‘j,@7- +(d _ &d), 

g=i 
(17) 

where the (limited information) generalized least squares (GLS) estimator is 
obtained when lVg) is a consistent estimator of the asymptotic covariance 
matrix of stg). For the estimator based on the minimization of (17) there is no 
requirement that the sy’ elements form a positive definite matrix, although in 
large samples absence of this would indicate a mis-specified model. With 
GLS, F calculated at the minimum provides a large-sample chi-square test of 
model lit to the first- and second-order statistics. Large-sample standard 
errors of estimates are also readily available. 

With continuous indicators only, the model structure in the single-group 
case can usually be encompassed by the covariance matrix structure alone, 
i.e., part 3 of Muthen’s three-part structure. With A = I, part 3 includes the 
LISREL model structure. In a multiple-group analysis, the model usually 
also implies a structure on the observed variable means, so that both part 1 
and part 3 would be used, where part 1 in this case simplifies to v,+A,(Z 
-B,) ‘cI,. The bivariate sample statistics vectors .sig) and sSg’ have elements 
from the sample mean vector and the ordinary sample covariance matrix Scg). 
Part 2 is not needed here. Joreskog (1973,1977) considered the full 
information, maximum likelihood (ML) estimator in the single-group case, 
while S&born (1974,1982) considered ML in the multiple-group case. GLS 
estimation was considered for various single-group cases of the model by 
Bentler and Weeks (1980), Browne (1974,1982) and Jiireskog and Goldberger 
(1972), and for multiple-group cases by Lee and Tsui (1982) and Muthen 
(1981a). The ordinary GLS estimator requires that the fourth-order 
cumulants of the observed variables are zero, which is fulfilled by the 
normality specification for the latent response variables in the general model. 
In this case GLS is asymptotically equivalent to ML, and the limited 
information approach is equivalent to full information. Considering the 
single-group case, the GLS weight matrix for part 3 is here a function of S 
only, and the above fitting function F may be rewritten in the familiar way, 

(18) 

where N is the sample size and C is the population covariance matrix 
containing the rr3 elements. Going beyond the restriction of multivariate 
normal variables, Browne (1982) discussed asymptotically distribution-free 
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GLS estimation. The full weight matrix then includes third- and fourth-order 
moment information. This can also be handled by (17). 

While obtaining scg) is straightforward with continuous indicators, its 
elements have to be computed iteratively when categorical indicators are 
involved. As opposed to the continuous case, the distinction between Case A 
and Case B becomes important to estimation. First consider Case A with 
dichotomous indicators. Christoffersson (1975), Muthen (1978) and Muthen 
and Christoffersson (1981) studied factor analysis by unweighted (ULS) and 
GLS estimators that use only first- and second-order sample information, i.e., 
univariate and bivariate proportions. With the normality specification on the 
latent response variables, this approach leads to the analysis of sample 
thresholds and sample tetrachoric correlations. The population tetrachoric 
correlation is the (latent) correlation between a pair of latent response 
variables; see, e.g., Brown and Benedetti (1977) and Pearson (1900). For each 
two-by-two table, one tetrachoric correlation element and two threshold 
elements are estimated by ML. The former produces an element for the ~(39) 
vector and the latter produces two elements for the sp) vector. Rapid and 
numerically efficient algorithms have been described by Divgi (1979) and 
Kirk (1973). Muthen (1978) developed the limited information GLS weight 
matrix corresponding to the tetrachoric correlation vector sy’ and the 
threshold vector sy). It uses sample information up to and including fourth- 
order moments. 

For Case A with ordered polytomous variables and mixtures of ordered 
polytomous variables and continuous variables, similar statistics can be 
produced. The latent correlations are then called polychoric and polyserial 
respectively, and their estimation has been discussed in Jaspen (1946), 
Lancaster and Hamdan (1964), Martinson and Hamdan (1971), Olsson, 
(1979a), Olsson, Drasgow and Dorans (1981), Pearson (1904,1913), Pearson 
and Pearson (1922) and Tallis (1962). Given bivariate information, ML 
estimation of the thresholds (C- 1, for each categorical variable with C 
categories) and the latent correlation coefficient presents an overidentified 
model and is more time-consuming than in the tetrachoric case. Olsson 
(1979a) and Olsson, Drasgow and Dorans (1981) discuss a simpler two-stage 
estimator, where thresholds are estimated from the univariate distributions, 
and the correlation is estimated by conditional ML, given the threshold 
estimates from the first stage. The two estimators are equivalent in the 
tetrachoric case. Algorithms for computing tetrachoric, polychoric and 
polyserial correlations have recently also been included in the LISREL 
computer program; see Jijreskog and Sijrbom (1981). 

To summarize, the three stages of Muthen’s estimation are for Case A with 
categorical variables: the estimation of population thresholds, the estimation 
of population latent correlations given estimated thresholds, and the 
estimation of model parameters given estimated correlations and thresholds. 
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For Case A with categorical indicators, only part 3 is needed in a single- 
group analysis; the threshold vector r would then not be estimated. With 
categorical indicators, diagonal elements are not included in part 3. In a 
multiple-group analysis, part 1 would also be included to identify and 
estimate level differences in latent variable constructs. With categorical 
indicators, the elements of part 1 correspond to the lower integral limits for 
the standardized latent response variables, when integrating to determine the 
distribution of the observed variables. Group differences in the variances of 
the latent response variables can be captured by d(g)(d*(g)). 

The estimation approach presented for Case A with categorical indicators 
may be seen as producing more suitable coefficients of association than the 
ordinary Pearson product-moment correlations and covariances applied to 
scored categorical variables. In psychometrics it is well-known that product- 
moment correlations for the observed variables in these cases are not free to 
vary between - 1 and + 1, are dependent on the marginal distribution for 
each variable, and underestimate the value of the latent correlations 
described above, particularly with markedly skewed categorical variables. 
General references, are, e.g., Carroll (1961) and Pearson (1913), and specific 
references on factor analysis are, e.g., Ferguson (1941) discussing ‘ditliculty 
factors’ for dichotomous test items, and Mooijaart (1982) and Olsson (1979b) 
discussing skewed polytomous variables. Using latent correlations may be 
seen as robustifying correlations against categorized and skewed variables, 
‘stretching’ correlations to be able to assume values throughout the - 1, + 1 
range, independent of the univariate marginals. The use of latent correlations 
built on the normality specification is of course only one way of ‘stretching’. 
Simpler well-fitting models may perhaps be found using other statistics sy’, 
such as the measures of association discussed in chapter 11 of Bishop, 
Fienberg and Holland (1975). Tetrachoric and biserial coefficients are used in 
psychometric item analysis work. For a discussion of the normality 
specification in this context, see e.g. Carroll (1961) and Lord and Novick 
(1968, ch. 15). 

For Case B with categorical response variables, no distributional 
assumptions are made on the independent variable vector xcg). Particularly, 
normality is not required. Building on Muthen (1976b, 1982a), Muthen 
(1981a) utilized this fact in proposing univariate and bivariate regression to 
produce statistics for the final estimation stage. In the first estimation stage, 
reduced-form regression coefficients are estimated from univariate ML 
regressions to produce s2 (9) for part 2. Given these estimates, stage two 
performs bivariate ML regression [see e.g. Ashford and Sowden (1970)] to 
estimate a single reduced-form residual correlation for each pair of variables. 
Computationally, this may be done very efhciently. The residual correlations 
correspond to part 3, where only lower-triangular elements are included in 
c$J). Part 1 here structures reduced-form regression intercepts, which is of 
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particular interest in multiple-group analyses. This type of analysis has not 
yet been explored in practical work, but seems to hold great promise for 
both biometric, psychometric, and econometric applications. An application 
of this type is presented in section 5. 

Related limited information, least squares estimation approaches for 
special cases of Case B have been presented in econometric work; see e.g. 
Amemiya (1978) and Lee (1979). 

4.2. Full information estimation 

The full information ML estimation of models fitting into the general 
framework above, is still largely undeveloped. Note that when all indicators 
are categorical the distribution of the observed variables (y and x for Case A, 
y for Case B) is multinomial, and that it will be determined by integration 
over the multivariate normal latent response variables. Since the multivariate 
normal distribution function does not exist in a closed form, computational 
difficulties may arise already for more than two variables. Bock and 
Lieberman (1970) developed the ML estimator for factor analysis of 
dichotomous variables. A small numbei of variables could be handled, since 
the normal multiple integral may in this case be replaced by a single 
integration over the assumed single factor. A computational breakthrough 
for this problem was presented in Bock and Aitkin (1981), building on the 
EM algorithm; see Dempster, Laird and Rubin (1977). In thjs approach, 
values for the factors are considered ‘missing’ and are estimated in the E- 
step, whereas univariate probit regressions may be carried out in the M-step 
to estimate model parameters. This avoids computation of multivariate 
normal distribution functions and models with many items and more than 
one factor can be handled. Bock and Aitkin (1981) and Gibbons (1981) 
studied exploratory factor analysis. However, it seems possible in principle to 
develop this EM approach to general Case A situations, although perhaps 
resulting in heavy computations with complex models involving correlated 
errors, a large structured latent variable construct covariance matrix and 
multiple groups. With continuous indicators, the EM approach has been 
studied by Rubin and Thayer (1982) [see also Bentler and Tanaka (1982)] for 
the factor analysis model, and by Chen (1981) for the MIMIC model. 

Muthbn (1979) discussed the ML estimator for Case B involving 
dichotomous response variables. No more than two response variables were, 
however, attempted. A numerically feasible approximation to the multivariate 
normal distribution function was presented in Clark (1961); see also 
Amemiya (1981, pp. 1523-1524). Gibbons and Bock (1982) discussed this 
approximation and the EM approach for full information estimation in a 
Case B model with dichotomous response variables. 
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Comparisons between limited information and full information estimators 
would be of interest. This has not yet been carried out rigorously for any 
general case of the model. Two empirical results are available for the factor 
analysis model with dichotomous indicators. The five-item LSAT6 and 
LSAT7 data sets ivere analyzed by one factor using both ML and limited 
information GLS; see Christoffersson (1975) or Muthen (1978). The model lit 
for the first data set was very good, while there was a marginal indication of 
misfit for the second. In both cases both the estimates and the estimated 
standard errors were close, with no indication of a significant loss of 
information by using only bivariate information. 

5. A longitudinal model 

The following example illustrates Case B of the section 2 general model, 
estimated by the Muthen (1981a) approach. The author is obliged to Paul 
Duncan-Jones at the Australian National University, Canberra, for providing 
the data and the basic ideas for the causal modeling. The data consist of a 
random sample of Canberra electors interviewed four times with four-month 
intervals, in 1977 and 1978. The data are fully described by Henderson, 
Byrne and Duncan-Jones (1981). We will analyze data for 231 individuals for 
whom complete data are available. 

The response variables at each time point are four dichotomous items 
intended to indicate ‘neurotic illness’. They arose from the following question: 

‘In the last month have you suffered from any of the following? 

___ 

Anxiety 
Depression 
___ 

Irritability 
Nervousness 

The response Yes was denoted by y = 1 and No by y=O. In the figure and 
tables below, the abbreviations A, D, I, N will be used to denote these 
variables. 

It was hypothesized that at each time point these four items are indicators 
of a latent construct of ‘current level of neurotic illness’ denoted by q,, 
C= 1,2,3,4. The measurement structure of these items has also been 
investigated in Muthen and Christoffersson (1981). The four items will be 
related to a set of independent observed variables in the following way. 
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We will consider a longitudinal model for the relation between the Q 
variables and the independent variables, which generalizes certain 
econometric variance component modeling to latent dependent variables; see 
e.g. Maddala (1971), Lillard and Willis (1978) and Jiireskog (1978b). Assume 
the model 

where yts is the coefficient for the time-specific effect of the latent independent 
variable 5, on qt, allowing for lagged effects. Also, y10 is a latent individual 
component which does not vary over time and [, is an error component 
which is uncorrelated with the 5, variables and with qO, but is possibly 
correlated over time. It is further assumed that the time-independent 
component is determined as 

?o=Yoso+io~ (20) 

where to is a latent independent variable and co is a random error. 

In this application, an indicator of to is the N scale from the tiysenck 
Personality Inventory, which is intended to measure long-term liability to 
neurosis. The variable N is here taken as the average score from occasions 
two and four. As indicator of each of the time-specific components 5, we use 
the score on a variable measuring the number of ‘life events’ occurring to the 
respondent in the four months prior to each interview. These will be denoted 
by LI, L2, L3 and L4. Since each of the live 5 variables above has only a 
single indicator, the corresponding continuous observed variables will be set 
identically equal to these latent variables. The resulting model is graphically 
depicted in a convenAona1 path diagram as in fig. 1. 

The model of fig. 1 may be fitted into the general framework as follows. 
Part 2 and part 3 of the three-part model structure. will be used. Let y* 
(16 x 1) be the latent response variables taken from left to right in fig. 1 and 
let q’ =(ylo vi qZ q3 q4). By standardizing the v parameters to zero, the (inner) 
measurement part is 

y*=nq+&. (21) 

The first column of the 16 x 5 matrix II consists of zeros. Since the same 
questionnaire was administered at all occasions, we let the /i matrix have a 
time-invariant structure, with equality of loadings for the same item at 
different time points. Let Ai be the loading for the ith item. To determine the 
scale of each Q, we will set A1 to unity. The mean of q is standardized to 
zero by fixing c1 (5 x 1) to a vector of zeros. No time invariance is specified 
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Fig. 1. A longitudinal model. 

for the 16 x 1 vector of thresholds r, allowing for differences in means of the 
same item over time. Modeling of these differences over time could be 
attempted, using the reduced-form regression intercepts of part 1. With time- 
invariant thresholds, differences in means of q, over time are identifiable and 
may be estimated. This will not be carried out here. 

Let x’=(N LZ L.2 L3 L4) and c’=(&, iI c2 c3 c4). For the 5 x 1 vector v, we 
have 

(I - B)Y/ = fx + 5, (22) 

where 

0 0 0 0 0 

1 0 0 0 0 

B(5x5)= 1 1 0 0 0 0 ) 

10000 

1 0 0 0 0 

1 
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yo 0 0 0 0 

0 I 0 

Yll 0 0 0 
r(5x5) = y21 yz2 0 0 . 

0 Y31 Y32 733 o 

0 Y41 Y42 Y43 Y44 

1 
To complete the specification, 0 (16 x 16) is a diagonal error covariance 
matrix restricted so that the variances of y* given x are unity. Frequently in 
longitudinal data, errors for the same variables are correlated over time, but 
here there was no indication of this. Furthermore, Y (5 x 5) is here a 
diagonal covariance matrix with {, variances hypothesized to be equal. Also, 
we let A = I (16 x 16), since a single group is analyzed. 

Under Case B of the model, the first estimation stage consists of 
computing the sixteen univariate ML probit regression of each dichotomous 
item on the vector x. The correlations and variances of the x variables are 
given in table 1. The probit regressions give consistent estimates of the 
elements of the reduced-form regression matrix n (I- B)-‘T. The estimates 
are given in table 2. The eighty elements make up the sample vector s2. The 
standard errors given in parentheses pertain to each univariate regression. 

Table 1 

The longitudinal model: Correlations and variances for the 
independent variables. 

N 
Ll 
L2 
L3 
L4 

Correlations 

1.0000 
0.2162 1.0000 
0.1595 0.5371 1.0000 
0.1807 0.4967 0.4937 1.0000 
0.2059 0.5270 0.4886 0.5144 1.0000 

Variances 

20.66 6.537 5.893 4.898 5.271 

Given s2, the second estimation stage involves the computation of the 
120 bivariate probit regressions of all pairs of the dichotomous items on 
x, estimating [see, e.g., Ashford and Sowden, (1970)] each of the 120 
lower-triangular elements of the reduced-form residual correlation matrix 
,4(l- B)- ‘Y(Z - B)‘- ‘A’ + 0. These s3 values are given in table 3. Inspecting 
s3 shows that the elements correspond to a non-positive definite covariance 
matrix. The sub-set of elements corresponding to the covariance matrix for 
the first three occasions is positive definite as is the covariance matrix for the 



Table 2 

The longitudinal model: sz. univariate regression standard errors (in 
parentheses), and estimated o2 (underneath). 

Dependent 
variable N LI LZ L3 L4 

Al 0.0722 
(0.0222) 
‘0.0669’ 

Dl 0.1617 
(0.0269) 
0.1168 

0.088 1 - 0.0295 0.0063 0.05 11 
(0.0493) (0.05 18) (0.0597) (0.0524) 
0.0397 0.0000 0.0000 O.OCOO 

0.0841 
(0.0552) 

0.0192 -0.0352 - 0.0089 
(0.0557) (0.0652) (0.0560) 
0.0000 O.OOilO OCCOO 

0.0961 -0.1246 0.0217 
(0.0480) (0.0558) (0.0522) 
0.0000 0.0000 O.OOOC 

- 0.0069 0.0600 - 0.0296 
(0.0513) (0.0628) (OC609) 
O.OQOO 0.0000 0.0000 

II 0.076 1 
(0.0213) 
0.0801 

NI 0.1612 

‘0.0694 

0.0773 

(0.0444) 
0.0476 

0.023 3 
(0.0291) (0.0584) 
0.1545 0.0918 

A2 0.052 1 
(0.0229) 
0.0669 

0.0005 
(0.0559) 

D2 0.1153 
(0.023 1) 
0.1168 

12 0.1030 
(0.0218) 
0.0801 

‘0.0319’ 

0.0598 
(0.0462) 
0.0558 

0.0745 
(0.0470) 
0.0383 

N2 0.1642 0.0584 
(0.0282) (0.0525) 
0.1545 0.0738 

A3 0.0998 0.0401 -0.0121 
(0.0256) (0.0594) (0.0706) 
0.0669 -0.0139 -0.0131 

03 0.1342 - 0.0865 
(0.0291) (0.0628) 
0.1168 - 0.0242 

13 0.0656 
(0.0214) 
0.0801 

0.0300 - 0.0086 0.0598 0.0593 
(0.0477) (0.0502) (0.0552) (0.05 10) 

-0.0166 -0.0157 0.0758 O.OOOC 

N3 0.1371 
(0.0292) 
0.1545 

- 0.0560 -0.0811 0.1591 - 0.0694 
(0.0673) (0.0650) (0.0680) (0.0749) 

- 0.0320 - 0.0303 0.1462 O.OCOO 

A4 0.0450 0.0387 - 0.0645 
(0.0227) (0.0598) (0.0648) 
0.0669 0.0130 - 0.0483 

04 0.0699 
(0.0224) 
0.1168 

0.0309 
(0.0682) 
‘0.0227 

14 0.0704 0.0857 
(0.0215) (0.0440) 
0.080 1 0.0156 

N4 0.1837 - 0.0379 -0.1471 0.0326 0.0357 
(0.0365) (0.0541) (0.0810) (0.0767) (0.0714) 
0.1545 0.0301 -0.1117 0.0464 0.1071 

0.0329 0.0194 0.067 1 
(0.0570) (0.0699) (0.0584) 
0.0123 OCCOO 0.0000 

0.0194 0.0249 - 0.0530 
(0.0541) (0.0612) (0.0653) 
0.0215 0.0000 O.OOOC 

0.0552 -0.0575 0.04 13 
(0.0460) (0.0496) (0.0463) 
0.0147 o.OcKJo 0.0000 

- 0.0058 0.0419 -0.0534 
(0.053 1) (0.0677) (0.0711) 
0.0284 0.0000 0.0000 

0.0242 
(0.0584) 

- 0.0229 

- 0.0022 0.1090 
(0.0708) (0.0701) 
0.0633 0.0000 

0.1419 0.0338 
(0.0651) (0.0557) 
0.1106 0.0000 

0.0489 
(0.0657) 
0.0201 

0.1070 
(0.062 1) 
0.0464 

- 0.0875 0.0720 0.077 1 
(0.0619) (0.0690) (0.0668) 

- 0.0844 0.0351 0.0810 

-0.0182 0.0952 
(0.0585) (0.0512) 
0.0241 0.0555 

- 0.0254 
(0.0469) 

--0.0579’ 



Table 3 

The longitudinal model: sg and estimated cj (underneath). 

Al 1. 

Dl 0.5978 1. 

I1 

0.3950 

0.3315 0.2213 
0.3775 0.2956 

Nl 0.5776 0.5198 0.2799 
0.5817 0.4555 0.4353 

A2 0.3765 0.1076 
0.2670 0.209 I 

D2 - 0.098 1 0.0616 
0.2091 0.1637 

12 0.2250 0.0533 
0.1998 0.1565 

N2 0.3371 0.1989 
0.3079 0.2411 

A3 0.4684 0.3068 0.2538 0.4168 
0.4480 0.3508 0.3352 0.5106 

D3 0.2820 0.3988 -0.1009 0.4460 
0.3508 0.2747 - 0.2625 0.4045 

I3 

N3 

0.4166 0.2748 
0.3352 0.2625 

0.5636 0.5507 
0.5166 0.4045 

A4 0.2886 0.1616 0.2107 
0.3643 0.2853 0.2727 

04 0.2805 0.4201 0.1104 
0.2853 0.2234 0.2135 

14 

N4 

A3 

03 

13 

N3 

0.2952 0.4073 
0.2727 0.2135 

0.3590 0.2658 
0.4202 0.3290 

1. 

0.3417 1. 
0.4280 

0.6480 0.3922 
0.4091 0.3203 

0.5616 0.4737 
0.6304 0.4936 

A4 

D4 

14 

N4 

0.3455 0.3009 
0.4206 0.3294 

0.2868 0.3242 
0.3294 0.2579 

0.2642 0.2084 
0.3148 0.2465 

0.2195 0.3340 
0.4850 0.3798 

1. 

1. 

0.4432 1. 0.3389 
0.1998 

0.1220 
0.1565 

0.3648 
0.1496 

0.0855 
0.2305 

0.3079 

0.2942 
0.2411 

0.1727 
0.2305 

0.4555 
0.4394 

0.2964 
0.4199 

0.6554 
0.6471 

0.6336 
0.3578 

0.3229 
0.2802 

0.5490 
0.2678 

0.5419 
0.4127 

0.5446 
0.3365 

1. 

0.4561 
0.3288 

0.4686 
0.5067 

1. 

0.5193 
0.4843 

1.0 

0.1058 0.1262 0.1693 
0.2802 0.2678 0.4127 

0.2472 0.1722 0.1978 
0.2194 0.2097 0.3231 

0.4198 
0.3551 

0.4406 
0.2509 

0.3620 
0.3866 

0.7732 
0.5958 

0.2448 
0.4202 

0.7030 
0.3290 

0.2247 
0.3144 

0.5996 
0.4845 

0.3581 0.4525 0.2653 
0.2097 0.2004 0.3088 

0.1284 0.1981 0.5161 
0.3231 0.3088 0.4759 

0.0276 0.2363 0.4169 
0.2635 0.2518 0.3881 

0.2144 0.0255 0.3793 
0.2063 0.1972 0.3039 

- 0.0564 0.4267 0.4103 
0.1972 0.1885 0.2904 

0.1071 0.2829 0.4303 
0.3039 0.2904 0.4475 

0.1180 
0.3866 

0.2833 
0.2635 

0.3783 
0.2041 

0.1421 
0.3144 

0.1974 
0.2518 

0.4980 
0.3881 

0.4070 
0.4718 

0.3900 
0.3148 

0.2903 
0.2465 

0.4013 
0.2356 

1. 

0.6026 
0.4850 

1. 

0.5589 0.477 1 
0.3798 

0.3048 
0.3630 

0.6736 
0.5594 

1. 
0.4810 

0.3637 
0.4597 

0.7692 
0.7084 

0.4821 1. 
0.3600 

0.6010 0.3302 1. 
0.5547 0.5302 

0.3608 
0.3630 
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fourth occasion. The non-positive definiteness may be due to the relatively 
small sample size (N=231) or it may indicate that normality for y* given x 
does not hold exactly. This does not seem to be a serious problem, however, 
since the tit to sJ, as reported below, seems to be reasonably good. Also, for 
the parameters pertaining to the first three occasions the results are very 
similar when analyzing all four occasions as specified, compared to analyzing 
only the first three occasions. 

In estimation stage three, we may fit 0’ =(c& a;) to s’ = (s; s;). The pi part 
is not included since its 16 elements are not restricted with the 16 free 
parameters of r. The remaining total number of 16 free parameters are 
contained in A, r and Y and give the 200 elements of g2 and 03. The model 
is hence considerably overidentitied. We note that the parameters of ,4 and r 
are identified in terms of the elements of (r2. Also, the parameters of _4 and Y 
are identified in terms of the elements of (r3. 

Differences in scales of the x variables and in variability of the elements of 
s2 and sJ, will here be taken into account in the following way. We may 
estimate n and r using the crZ part with a diagonal weight matrix, with 
diagonal elements obtained from the standard errors reported in table 2 
above. Furthermore, n and Y may be separately estimated by ULS, using 
the o3 part only. Any differences in the estimates of the common parameters 
of _4 may be attributed to sampling variability and lack of model fit. 

Table 4 

The longitudinal model: Parameter estimates. 

Estimated loadings 

Alternative I1 

a2 1.* 
03 1.* 

2, & & 

1.747 1.198 2.309 
0.763 0.746 1.139 

Estimated f 

N Ll L2 L3 L4 

‘lo 0.0669 o^ 0” P 0” 
?I v 0.0397 w w 0” 
‘12 V 0.0319 0.0123 0” 0” 
la (r -0.0139 -0.0131 0.0633 0” 
74 V 0.0130 -0.0483 0.0201 0.0464 

Estimated ‘P 

::, w 0.373 0.194 
12 0” 0” 0.194 
:: V @ 0” 0.194 

V 0” 0” 0” 0.194 

‘Fixed parameter. 
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The estimated CJ~ and ~~ are reported above in table 2 and table 3, 
respectively, underneath the corresponding values of s2 and s3. We note that 
in general the fit seems to be reasonably good. The parameter estimates are 
given in table 4. The I coefficients do exhibit some differences between the 
two alternatives of estimation, using the o2 part and using the (TV part. The r 
coefficients for the lagged effects (elements below the diagonal) are in certain 
cases negative, but may be within the sampling variability. 

From these results and the covariance matrix of x we may deduce the 
estimated covariance matrix for the latent variable constructs qo, ql, q2, q3 
and q4. They are reported in table 5. Note that the variances of qt (t 
= 1,2,3,4) are rather stable. It is also of interest to note that the variation in 
these constructs is to a large extent accounted for by the individual, time- 
invariant component of qo. The percentage variation of v. relative to the 
variation in q, is estimated as 68.1, 68.1, 68.3 and 67.7, respectively. 

Table 5 

The longitudinal model: Estimated covariance matrix 

for qO, ql, q2, q3 and V& 

‘lo 0.465 
‘II 0.472 0.683 
82 0.472 0.489 0.683 
V3 0.469 0.478 0.478 0.681 
V‘l 0.47 I 0.483 0.481 0.482 0.687 
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