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A structural equation model is proposed with a generalized measurement part, allowing for 
dichotomous and ordered categorical variables (indicators) in addition to continuous ones. A 
computationally feasible three-stage estimator is proposed for any combination of observed vari- 
able types. This approach provides large-sample chi-square tests of fit and standard errors of 
estimates for situations not previously covered. Two multiple-indicator modeling examples are 
given. One is a simultaneous analysis of two groups with a structural equation model underlying 
skewed Likert variables. The second is a longitudinal model with a structural model for multi- 
variate probit regressions. 
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1. Introduction 

This article considers the specification and estimation of multiple-group (population) 
structural equation models with latent variables having multiple indicators, not all of 
which are continuous. A linear structure for continuous latent variables will be con- 
sidered. However, in the measurement part  dichotomous and ordered polytomous ob- 
served variables (indicators) will be allowed in addition to continuous indicators. Such 
categorical indicators are frequent in many types of applications, and it seems important  
to provide the powerful structural equation modeling tool also for these cases. 

The methodology to be presented unifies and generalizes several lines of psycho- 
metric, econometric and biometric work. For  an overview, see Muthrn  (1983). In particu- 
lar, the paper extends the Muthrn-Christoffersson methodology for factor analysis of di- 
chotomous variables (see e.g. Muthrn, 1978; Muthrn  and Christoffersson, 1981) to handle 
ordered categorical and continuous indicators and general multiple-group structural 
equation models with estimation of latent variable means. Hence, the paper also gener- 
alizes the J r reskog-Sr rbom ("LISREL") methodology for structural equation models (see 
e.g., Jrreskog,  1973, 1977; Srrbom,  1982) to handle properly categorical indicators in 
addition to continuous ones. New results also include a general estimation approach for 
all cases of the model. A three-stage, limited information, generalized least-squares (GLS) 
estimator is proposed, which gives large-sample chi-square tests of model fit and large- 
sample standard errors of estimates. Some examples of analyses that the new techniques 
make possible are GLS factor analysis with (mixtures of continuous and) ordered poly- 
tomous indicators, testing hypotheses of both correlation and level ("mean") structures in 
multiple-group structural equation models, and multivariate structural regression with 
ordered categorical response variables (such as multivariate probit  regression). In the 
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latter case, the new estimator provides a computationally feasible alternative to the 
maximum-likelihood estimator of Muthrn  (1979). 

2. The  General Model  

Consider the following model for G groups (populations) of observation units. For 
each group g a random variable vector ylg) (p x 1) is observed, which may consist of both 
dependent and independent variables (in a structural equation modeling sense), and both 
ordered categorical and continuous variables. Let y*(g) (p x 1) be a vector of continuous 
latent response variables, one for each y~a~ variable. Also, let r/~g) ( m x  1) be a vector of 
continuous latent variable constructs and let x (g) (q x 1) be a vector of observed indepen- 
dent variables for which no model structure is imposed. Observations from different 
groups g are assumed to be independent. In what follows, the super-script g should be 
attached to each array of the model, but will be deleted for simplicity in cases where no 
confusion can arise. 

For  each group, the model is as follows. For  an ordered polytomous Yi with Ci 
categories (including the dichotomous case), 

Yi 

Ci -- 1, if zl, cl-  1 < Y* 

Ci - 2, i f  "~i, c l -  2 < Y~ "( "~i, c i -  1 

1, i f  "~i, 1 • Y~ ~-- 17i, 2 

O, if y* < zi 1 

(1) 

For  a continuous Yi the latent response variable is directly observed, 

Yi = Y*- (2) 

As in conventional structural equation modeling, assume a linear measurement structure, 

y* = v + A t / +  e (3) 

and the linear structural equation system 

r /=  ~ + Br /+  Fx + ~, (4) 

where B has zero diagonal elements and I - B is non-singular. 
For  each group, multivariate normality will be specified for the distribution of y* 

conditional on x. It is useful to distinguish between two cases of the general model. In 
Case A we have q = 0, so that the conditioning on x is vacuous. In Case B we have q > 0. 
Case B is relevant when there is a set of observed independent variables x for which no 
model structure is imposed, so that a distributional specification (such as normality) for x 
is unnecessary. This includes situations with multivariate regression and simultaneous 
equation modeling, where x's can be dummy coded and/or non-stochastic. The distinction 
between Case A and Case B is also important  to the estimation procedure proposed in 
Section 3, when y contains one or more categorical variables. 

Due to the normality specification, it suffices to consider first- and second-order mo- 
ments for the latent response variables. With conventional assumptions, 

E(y* t x) = v + A ( / - -  B ) - l a  + A(I - B)-1Fx,  (5) 

V(y* I x) = A(I -- B)-IW(I  - B ) ' - IA  ' + t9, (6) 

where for Case A (q = 0) the conditioning on x is without effect, so that the last term of 
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(5) vanishes. With categorical y variables, the scale of the latent response variables y* is 
indeterminate and we may consider standardized y*, such that instead of the left sides of 
(5) and (6), we have 

AE(y* I x), (7) 

AV(y*Ix )A ,  (8) 

where A is a diagonal matrix of scaling factors, 

diag (A) = [diag (V(y* I x))]- 1/2. (9) 

In a single group (population) with categorical variables we usually standardize to A = I. 
With categorical y variables, the distribution of the observed variables is deduced by 

integrating over the corresponding latent response variables y* (c.f., Muth6n, 1979; 
Muth6n and Christoffersson, 1981). The integration limits involve the expression [c.f. Eq. 
(1), (11)] 

6i[z,.c - [E(y* I x)]i], (10) 

where 6i is the ith diagonal element of A, c = 0, 1, . . . ,  Ci - 1, and [E(y* I x)]~ is the ith 
row of (5). 

3. The General Estimation Procedure 

This article proposes an estimation approach for the general model, which uses 
weighted least squares with limited, first and second order sample information. The esti- 
mation approach consists of three stages. In the first stage, first order statistics will be 
consistently estimated by maximum-likelihood (ML). In the second stage, second order 
statistics will be consistently estimated by conditional ML for given first stage estimates. 
The details of these first two stages will vary depending on the type of indicators involved 
and whether Case A or Case B is considered. In the third stage, which is common to all 
situations, the model parameters will be consistently estimated, using the first and second 
order statistics generated by the previous stages. 

3.1 The General Model Structure 

It is convenient to summarize the structure of the general model from (5), (6), (7), and 
(8) in three parts, covering both Case A and Case B. Deleting the group index, consider 
the vectors al,  a2, o3, 

part 1: al = A*{K,z - Kv[v + A(I - B) -~]} ,  (11) 

(mean/threshold/reduced-form regression intercept structure) 

part 2: a z = vec {AA(I - B)-IF}, (12) 

(reduced-form regression slope structure) 

part 3 : a 3  = K vec {A[A(I - B) -x~( I  -- B)'-IA ' -t- O]A}. (13) 

(covariance/correlation/reduced-form residual correlation structure) 

Here A is a diagonal matrix of scaling factors useful in multiple-group analyses with 
categorical variables. A* contains the same element as A but diagonal elements are dupli- 
cated for categorical variables with more than one threshold (more than two categories), 
K,  and K,  similarly distribute elements from the vectors they pre-multiply, where K~ has 
a row of zeros for each continuous variable, the vec operator strings out matrix elements 
row-wise into a column vector, and K selects lower-triangular elements from the vector of 
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symmetric matrix elements it pre-multiplies, where diagonal elements are only included if 
the corresponding observed variable is continuous. 

Variable Yi contributes Ci - 1 elements to ~i if it is categorical with Ci categories, 
and a single element (the mean) if it is continuous. Variable y~ contributes q elements to 
0.2- The pair of variables yi and yj contribute a single element to 0.3 if both variables are 
categorical (a correlation), and may contribute one more element for each y that is con- 
tinuous (a variance). Any model fitting into this general framework is identified if and 
only if its parameters are identified in terms of 0"1, 0"2,0"3. 

The model of (11), (12), and (13) utilizes the common structure of Case A and Case B. 
Case A considers means and covariances/correlations of y*; see (5), (6), and (7), (8). For  
Case A, part 1 and part 3 would normally be used. Part 2 is not needed. Part 3 corre- 
sponds to the covariance/correlation structure, while part 1 would also be used when a 
structure on the levels of the latent variables is desired such as in a multiple-group analy- 
sis with estimation of latent variable means. Case A with part 1 and part 3 covers all 
J6reskog-S6rbom (LISREL) models. Case B considers reduced-form regression structures 
for the regression of y* on x; see (5), (6), and (7), (8). Part  1 contains the intercept structure 
(the first two terms of (5) and (7)), part 2 contains the regression slope structure (the last 
term of (5) and (7)), while part 3 contains the residual covariance/correlation structure ((6) 
and (8)). 

3.2 The First and Second Estimation Stages 

The elements of 0"1, 0"2, and 0"3 for each group may be consistently estimated by ML 
as Sl, s2, and s 3 in estimation stages one and two. Consider a random sample of size N for 
a certain group (population). We observe y in Case A, and y and x in Case B. Note again 
that conditioning on x will be ignored below for Case A (q = 0). Let F~ (i = 1, 2, . . . ,  p) 
denote the univariate log likelihood function for y~ given all x's and Fij (i = 1, 2 . . . . .  p; 
j = 1, 2 . . . . .  p; j < i) the bivariate log likelihood function for yl and Y1 given all x's and 
given the estimates from maximization of the F~'s. Maximizing F~'s gives limited infor- 
mation ML estimates of the a x and the 0"2 (Case B only) elements, while maximizing the 
Firs give limited information conditional ML estimates of the 0"3 elements, given esti- 
mates of a~ and 0.2 elements. For  simplicity in the description below, we will only consider 
the case where from maximization of Fij a single correlation is estimated (although when 
one or both of the y's is (are) continuous, estimates of covariances and variances may 
result). 

Let 0"~ and azi denote the vectors of elements contributed by variable y~, and 0.3q the 
single element contributed by the pair of variables y~, yj. Consider the vector of first- 
order derivatives, 

OF ( t~F x OF 1 aF 2 c~F 2 

Oa'~2 0a'22 

OF v OF 63F21 cOFsx OFt, P- 1 ........... P . . .  . (14) 
00.1p t~0.~p 00"321 00"331 00"3pp-lf 

The first two stages of the proposed estimator are defined as: 

BF/00" = O. (15) 

The computations of (15) are straightforward for all combinations of y indicators; see 
Muth6n (1983) and references therein. For  instance, consider the example of p dichot- 
omous y indicators. In Case A, the first stage gives the p estimates of al  (the sample 
thresholds) and the second stage produces estimates of the p(p - 1)/2 tetrachoric corre- 
lations, the elements of 0.3 (see e.g. Muth6n, 1978). Similarly, for Case B, p stage one 



BENGT MUTI-If/N 119  

univariate probit regressions of each Yl on q x's give the p estimates of tr~ (the reduced- 
form regression intercepts) and the p x q estimates of tr 2 (the reduced-form slopes), 
whereas the second stage produces estimates of the p(p - 1)/2 reduced-form residual cor- 
relations of a 3 (see e.g. Muth6n, 1979). 

A consistent estimator of the asymptotic covariance matrix of the estimates 6 ob- 
tained from (15) is given by the following large-sample approximations. Consider the 
asymptotic expansion 

OF 0 2 F  a--~ + ~ (d -- o') ~ O, (16) 

and let 3F/&r be rewritten as 
N 

OF/Oct = ~ OF(r)/&r, (17) 
r = |  

where r runs over the observation units in the particular sample of size N that is con- 
sidered (with multiple groups, the groups are considered separately). With the partitioning 

FAll Alz] 
O2F/Oa Otr' = LA21 Az2A , (18) 

All  is a block diagonal matrix involving the singly subscripted F's and A22 is a diagonal 
matrix with rows corresponding to the doubly subscripted F's. Note that A~2 = 0. In 
large samples, we may use the following common approximations to the probability limit 
of(18). Each matrix on the diagonal of At,  may be approximated as 

u rOV,(r)/(~(r,, 7 , , 
~, LOVi(r)/OCrzij[OFi(r)/Otrii OFi(r)/Oa2J, (19) 

the non-zero elements of A2~ can be approximated as (s = i or j) 

. . . . . .  FOVij(r) c~Fu(r) ] 
°rij(r)/ctTalJ| Off' (20) 

and the diagonal elements of Az2 as 
N 

(OFu(r)/O~aO 2. (21) 
r = l  

Let B denote the above approximation to the A matrix of (18). It then follows that in 
large samples a consistent estimator of the limiting covariance matrix of 6 - tr is 

B_I ~ OF(r) OF(r) 
• =1 2~  Oa' B-a', (22) 

calculated at tr = 6. 

3.3 The Third Estimation Stage 
For group g, let s(g)' = ~,°l[e(g)'~(g)'~(g)"~°2 °3 l ,  (7;(0)' = ~,Ul[a(O)'~(g)'--('q)"t"2 ~'3 J" In the third and final esti- 

mation stage, the model parameters are estimated by minimization of the weighted least- 
squares fitting function 

G 
V 3 = ~ (S (g) -- ~r(O))'W(°)-l(S(°) - -  a(°)), (23)  

g = l  

where the superscript g denotes the 9th group and W t°) is a positive definite weight 
matrix. When the W(°)'s are formed as in (22), a limited-information generalized least 
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squares (GLS) estimator is obtained, with asymptotically normally distributed estimates, 
and with F3 calculated at the minimum providing a large-sample chi-square test of model 
fit to the s~9)'s (see e.g. Browne, 1974). Let 0 be the vector of free and distinct model 
parameters. A consistent estimator of the asymptotic covariance matrix of the estimator 0 
is obtained as 

A~g~'W~)- ~A ~g~ , (24) 
L g = l  _1 

where 

A ~g)= [c~a~gVO0]0= o . (25) 

The computations of the three-stage estimator for the examples below have been 
carried out by a general computer program LACCI (Latent Variable Analysis with Di- 
chotomous, ordered Categorical, and Continuous Indicators), which is being developed 
by the author. The optimizations are carried out by the Fletcher and Powell method as 
modified by Gruvaeus and J6reskog (1970, Note 1), using only first-order derivatives and 
allowing constraints on the parameters in the form of equalities or fixed values. 

3.4 The Three-Stage Estimator in Some Special Cases 

First, consider the situation of all y's being dichotomous. For factor analysis models, 
this case has been studied by Muth6n (1978) and Muth6n and Christoffersson (1981). The 
GLS weight matrix proposed here is different from theirs in that it does not build on the 
asymptotic covariance matrix of proportions, but rather on theory for ML estimators. 
However, for the classic LSAT6 and LSAT7 data sets analyzed in Muth6n (1978) almost 
identical results emerge. The proposed formation of the GLS weight matrix is more gener- 
al in that it can also handle the inclusion of x variables for Case B models. Furthermore, 
the last estimation stage allows for general structural equation models. 

Second, consider situations with y's being ordered categorical or continuous. Here, 
polychoric, polyserial, and ordinary Pearson product-moment correlations may be ana- 
lyzed in Case A. The first two estimation stages estimate polychoric and polyserial corre- 
lations in the same way as discussed in Olsson (1979a) and Olsson et al. (1982). Such 
estimates are now also available in the LISREL computer program (J6reskog and 
S6rbom, Note 2). However, until now correct chi-square model tests of fit or standard 
errors of estimates have not been available with such correlations. Olsson (1979a) present- 
ed the asymptotic variance of a polychoric correlation estimated as in our first two stages. 
His work is extended here in that the proposed GLS weight matrix also gives covariances 
among polychoric correlations (needed to obtain chi-square tests and standard errors of 
estimates). Our general approach to weight matrix formation also applies to the other 
kinds of correlations, the inclusion of part 1 statistics, and the inclusion of x variables. 

4. Examples 

In this section we wilt consider two applications of the general methodology. With 
the first data set we illustrate Case A with ordered categorical variables, using both single- 
group analyses and simultaneous multiple-group analyses. With the second data set we 
illustrate Case B with dichotomous indicators in a longitudinal model. 

4.1 Structural Equation Modeling With Ordinal Likert Scales 

The first data set is concerned with attitudes toward blood donations among donors. 
These data were collected as part of a UCLA Management Field study by R. Hoston, R. 
Johnson, J. Rose and J. Trask under the auspices of S. Hoberman, American Red Cross 
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Blood Services, Los Angeles-Orange Counties Region. L. Cooper and I. Currim, faculty 
supervisors of that project, provided these data for the current research. For this illustra- 
tion we consider a sub-set of the data consisting of 662 individuals of age less than 35, 
further divided into 354 females and 308 males. Preliminary analyses suggested a certain 
interpretable factor structure among a large set of attitude variables. In our illustration, 

TABLE I 

A Structural Equation Model: Item Wording 

and Univariate S ta t i s t i c s  a 

FEMALES (N = 354) MALES (N = 308) 
Category __Cat__c.,q~_ory 

0 i 2 3 4 0 1 2 3 "4 
Strongly Strongly Strongly Strongly 
Disagree Agree Disagree Agree 

Yl :  I plan to keep giving blood at least  once a year. 

Frequency: 16 17, 26 61 234 12 13, 28 75 180 
Percentage: 4.5 4.8, 7.3 17.2 66.1 3.9 4.2, 9.1 24.4 58.4 
S/K/4: -1.486/.893/.800 -1.283/.547/.430 

(-1.780/2.223/3.247) (-1.650/2.019/2.475) 

Y2: I am w i l l i n g  to give blood again. 

Frequency: 8 6 11, 37 292 
Percentage: 2.3 1.7 3.1, 10.5 82.5 
S/K/4: -2.208/3.576/.384 

(-3.118/9.787/4.]13) 

6 3 13, 46 240 
1.9 1.0 4.2 14.9 77.9 

- I .  885/2. 337/. 283 
(-2. 889/9. 065/3. 283) 

Y3: Giving blood sometimes makes me feel weak. 

Frequency: 122 65 59 55 53 123 
Percentage: 34.5 18.4 16.7 15.5 15.0 39.9 
S/K/4: .373/-1.270/-5.814 

68 52 34 31 
22.1 16.9 11.0 10.1 

.704/-.757/-2.526 

Y4: I t  hurt some. 

Frequency: 42 67 112 95 38 38 81 85 74 
Percentage: 11.9 18.9 31.6 26.8 10.7 12.3 26.3 27.6 24.0 
S/K/4: - .149/-.778/-1.437 .048/-.892/-1.691 

30 
9.7 

Y5: The nurses are f r iend ly .  

Frequency: 1 4 41, 100 208 
Percentage: .3 1. I 11.6, 28.2 58.8 
S/K/4: - .926/- .480/- .123 

(-1.240/1.068/.358) 

0 5 35, 112 156 
.0 1.6 11.4, 36.4 50.6 

- .682/- .744/- .181 
(- .933/.202/.062) 

Y6: The equipment and f a c i l i t i e s  are good. 

Frequency: 2 5 75, 130 142 
Percentage: .6 1.4 21.2, 36.7 40.1 
S/K/4: -.302/-1.293/-.474 

( - .650/- .086/- .042) 

1 3 52, 157 95 
.3 1.0 16.9, 51.0 30.8 

- .171/- .897/- .201 
(-.524/.336/.095) 

aA comma is used to denote the col lapsing of categories to the l e f t  of i t .  

S/K/4 stands for Skewness/Kurtosis/4th order cumulant fo r  the collapsed 
continuous var iable scored O, 1, 2, . . . In parentheses are given the 
values for the var iable before col lapsing. 



122 PSYCHOMETRIKA 

we have for simplicity chosen two indicators of each of three important factors. All six 
variables are five-category Likert scales which range from Strongly Disagree to Strongly 
Agree. In Table 1 is given the wording of the six variables and their univariate distri- 
butions. 

The first two variables are of particular importance since they indicate a propensity 
to want to repeat blood donations (the latent variable construct r/1 in Figure 1 below). We 

~32 

FIGURE 1. 
A Structural Equation Model. 
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may note that Females have higher sample proportions for the category Strongly Agree 
on both of the two dependent variables, Yl and Y2. For  Males the proportions are 0.584 
(yl) and 0.779 (Y2), while for Females they are 0.661 (Yl) and 0.825 (Y2). Tests for signifi- 
cant differences in proportions, obtain t-values of 0.690 (Y0 and 0.956 (Y2). This does not 
give a strong indication of sex difference in levels. 

It is of interest to relate yl and Y2 to the other variables, which intend to measure 
various aspects of attitudes towards the donation experience, such as perceived physical 
discomfort (r/2) and pleasantness of treatment (~/a). The structural equation model address- 
ing this, is given in Figure 1. It is of interest to study this model for the two sex groups 
separately and to compare model characteristics across the two sex groups in simulta- 
neous, two-group analyses. 

The above Likert variables are presumably not suitable for ordinary structural equa- 
tion modeling, assuming continuous or continuous multivariate normal indicators 
(scored, say, 0, 1, 2 . . . .  ). First, these Likert variables may not have equidistant scale steps 
and may be better viewed as ordered categorical variables than continuous ones. Second, 
and more importantly, the strong skewness of several of the variables (taken together with 
the small number of categories) will distort ordinary Pearson product moment corre- 
lations (or covariances); see e.g., Olsson (1979b). 

Here, we will instead analyze polychoric correlations, applying Case A of the general 
model. In an initial step, we will assess the appropriateness of the normality specification 
for the latent response variables of y*. For  each pair of indicators we may use the full ML 
estimator, see Olsson (1979a), to estimate the polychoric correlation and the thresholds 
for each indicator, and obtain a large sample Pearson chi-square test of bivariate nor- 
mality in each marginal two-way table. To avoid low bivariate frequencies in these tests, it 
was decided to collapse categories for certain variables. For  y~ the two left-most catego- 
ries were combined, while for Y2, Ys, and Y6 the three left-most categories were combined; 
see Table 1. The results of these tests are given for each of the two groups and all pairs of 
variables in Table 2. 

There seems to be no strong overall indication of misspecification, although for 
Males, Y6 seems to produce rather low probability values throughout. It may be noted 
that conservative approximations to the chi-square tests may be obtained by instead 
using cell frequencies as predicted from the two-stage estimator (which is not fully ef- 
ficient). For  these data, very similar results were observed for the two approaches. 

While some sex differences are anticipated, a first analysis may test for sex invariance 
o f  a~ and 0-3 (not applying the structural model of Figure 1 to a~ and 0-3)- This will be 
carried out here, providing a generalization of tests of group-invariant mean vectors and 
covariance matrices for normal continuous variables (see e.g. J6reskog and S6rbom, Note 
2). In what follows we will use the same collapsing of categories as was done for the tests 
of Table 2; see Table 1. For  each group there are 17 thresholds and 15 correlations. The 
hypothesis of sex invariant a 1 and a 3 was tested in a simultaneous analysis of the two 
groups via the GLS estimator of (23). A chi-square value of 73.53 with 32 degrees of 
freedom was obtained. Allowing a~ to vary over sex, while still restricting 0 3 to be sex 
invariant, resulted in a chi-square of 19.43 with 15 degrees of freedom. Hence, there seems 
to be sex differences in levels (0"~), but there is no indication of sex differences in associ- 
ations (0-3). 

Next, we consider the structural equation model of Figure 1. First, we estimate this 
model for Females and Males separately. In the measurement relation (3) we standardize 
to v = 0 since all y's are categorical. In the structural relation (4), ct is a vector repre- 
senting one mean for each of the two independent latent variable constructs and one 
intercept. In the single-group analyses we may standardize to ~ = 0. The matrix B con- 
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TABLE 2 

A Structural Equation Model: Probability Values for 

Pearson Chi-Square Tests of Bivariate Normality a 

Yl Y2 Y3 Y4 Y5 

FEMALES (N = 354) 

Y2 .06 

Y3 .98 .07 

Y4 .94 .91 .44 

Y5 .18 .02 .77 

Y6 .15 .28 .19 

MALES (N = 308) 

Y2 .22 

Y3 .I0 .13 

Y4 .05 .25 .09 

Y5 .21 .02 .99 

Y6 .08 .I0 .02 

.25 

.31 

•41 

• 02 

.05 

.06 

aEntries are probability values for obtaining at least as large 
a chi-square value (the degrees of freedom vary between entries; 
see text)• 

tains the two slopes. In (6), tp is a matrix containing the single residual variance and the 
covariance matrix for the independent latent variable constructs. Note  that elements of O 
are not included as parameters to be estimated. In the single-group analyses we set A of 
(9) as the identity matrix (see also Muth6n and Christoffersson, 1981, p. 410). 

With the third stage GLS estimator, a chi-square test of model fit to sl and s 3 ob- 
tains six degrees of freedom and indicated well-fitting models for each sex; the values were 
8.99 for Females and 1.49 for Males. Given these results, it is of interest to study sex- 
invariance of the structural equation model parameters. Since the same measurement in- 
strument was used for both sexes, it is relevant to hypothesize sex-invariant measurement 
parameters ~ and A. Sex differences will be allowed for in the structural parameters of B 
and W. Also, with more than one group, we can identify and estimate group differences in 
the vector ~, fixing ~ = 0 for Females. Allowing for group level differences in the latent 
variable constructs would seem to be necessary to account for the group differences in 
estimated thresholds found above. Furthermore,  we will allow the measurement error 
variances of 19 to be different over sex, which is consistent with fixing A = I for Females, 
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TABLE 3.1 

A Structural Equation Model: Estimates for a Model 
of Partial Sex-Invariance. Measurement Parameters a 

125 

Thresholds Scale FactRr Re l i ab i l i t y  
Variable 1 2 3 4 Loading for Males- Females Males 

Yl -1.229 -.944 .816 .825 
(.063, (.059 
-19.5) -16.0 

-.457 1.000 c 
(.048, - -  
-9.5) - -  

1.553 
(.155 
1o.o) 

-1.408 -.912 1.092 
(.082, (.046, (.075, 
-17.2) -19.8) 14.6) 

.516 .979 1.000 c 
(.061, (.075, - -  

8.5) 13.1) - -  

Y2 1.436 .973 .841 
(.154 

9.3) 

Y3 -.411 .076 1.146 .358 .724 
(.065, (.058, (.100 
-6.3) 1.3) 11.5) 

.971 
( .039 
24.9) 

Y4 -1.259 -.530 .278 1.220 .556 
(.060, (.085,- (.090, (.058 (.149, 
-21.0) -6.2) 3.1) 21.0) 3.7) 

Y5 -1.130 1.000 c 
(.063 - -  
-17.9) 

-.153 1.137 
(.048, (.090, 
-3.2) 12.6) 

Y6 -.747 .244 .997 1.417 
(.036, (.056, (.I05, (.121, 
-20.8) 4.4) 9.5) 11.7) 

. I I I  .161 

.524 .407 

.521 .629 

aEntries are: Estimate 
(Standard error, 
Estimate/St. error) 

bScale factors for females are fixed to one 

CFixed parameter 

and allowing the diagonal A elements to be free for Males (group-variant error variances 
is frequently observed in multiple-group analysis of continuous indicators). The chi- 
square for this model was 27.68 with 23 degrees of freedom, indicating a good fit. 

We may also compare the above model with the one that in addition postulates sex 
invariant B and ~P, still allowing for variant c( and A. The chi-square difference was 29.55 
with six degrees of freedom and gives a strong indication of misfit. 

In Table 3 we report the estimates for the model with 23 degrees of freedom, allowing 
for sex differences in B, u/, c(, and A. We also give structural parameter estimates in the 
standardization of unit latent variable construct variances. Males have significantly lower 
means for both q2 (which has a negative influence on r/i) and r/3 (which has a positive 
influence on ql). Of  particular interest is the estimated sex difference in the rh mean. We 
deduce that there is a significantly smaller value for Males, - .343  with a standard error 
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TABLE 3.2 

A S t r uc tu ra l  Equation Model: Estimates f o r  a Model 

of  P a r t i a l  Sex- lnvar iance.  S t r uc tu ra l  Parameters a 

Parameter 
Or_r~iqinal Values Standardized Values 
Females Males ......... Females Males 

Slope f o r  second cons t ruc t  

Slope f o r  t h i r d  cons t ruc t  

Residual variance 

Variance of second cons t ruc t  

Variance of third construct 

Covariance between second 
and t h i r d  cons t ruc t  

I n t e r c e p t  

Mean of  second cons t ruc t  

Mean of third construct 

Deduced mean of  f i r s t  cons t ruc t  

- .687 - .307 
( .610,  ( .156,  
- 1 .1 )  - 2 .0 )  

.366 .428 
( .377,  ( .097,  
• 1 . 0 )  4 . 4 )  

.427 .214 
( .117,  ( .057,  

3.6) 3.8) 

.358 .551 
(.159, (.298, 

2.3) 1.8) 

.524 .315 
(.082, (.067, 

6.4)  4 .7)  

- .298 - .069 
( .052,  ( .039,  

- 5 .7 )  - 1 . 8 )  

.000 b - .344 
- -  ( .072,  
- -  -4.8) 

.000 b - .162 
- -  ( .071,  
- -  -2.3) 

.000 b -.113 
- -  (.057, 
- -  - 2 . 0 )  

.000 b - .343 
- -  ( .065,  
- -  -5.3) 

- .455 - .390 

.293 .411 

.523 .626 

1.000 1.000 

1.000 1.000 

- .688 - .166 

.000 - .588 

.000 - .218 

.000 - .201 

.000 - .380 

aEntries are: Estimate 
(Standard error, 
Estimate/St. error) 

bFixed parameter 

of .065, corresponding to a t ratio of -5.3.  This may be contrasted with the insignificant 
sex differences for the Yl, Y2 proportions, reported at the beginning of this example. 

For comparison, it is also of interest to give results analogous to those of Table 3 for 
the case of scoring the observed variables 0, 1, 2 . . . . .  and applying continuous variable, 
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TABLE 4.1 

A Structural Equation Model: Normal Theory Estimates for 
a 

a Model of Partial Sex-Invariance. Measurement Parameters 
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Error Variance R e l i a b i l i t y  
Variable Intercept  Loading Females Males Females Males 

Yl 2.404 1.000 b .276 .238 .700 .730 
(.075, - -  (.065, (.065, 
32.1) - -  4.2) 3.7) 

Y2 1.754 .580 .108 .126 .668 .632 
(.029, (.054, (.023, (.023, 
60.5) 10.7) 4.7) 5.5) 

Y3 1.574 1.000 b 1.269 .976 .413 .456 
(.075, - -  (.211, (.201, 
21.0) - -  6.0) 4.9)  

Y4 2.070 .591 .998 1.120 .238 .203 
(.054, (.107, (.096, (.115, 
38.3) 5.5) 10.4) 9.7) 

Y5 1.445 1.000 b .320 .328 .359 .353 
(.034, - -  (.039, (.040, 
42.5) - -  8.2) 8.2) 

Y6 1.180 1.156 .352 .260 .405 .479 
(.039, (.179, (.047, (.046, 
30.3) 6.5) 7.5) 5.7) 

aEntries are: Estimate 
(Standard er ror ,  
Estimate/St. er ror )  

bFixed parameter 

normal theory methodology. The GLS estimator assuming group-invariant v and A (~ is 
not involved) resulted in a chi-square of 16.59 with 18 degrees of freedom. The estimates 
are given in Table 4. Due to differences in metrics, only standardized values (including 
t-ratios and reliabilities) are comparable across Table 4 and Table 3. Due to the distor- 
tions in associations referred to above, the normal theory methodology generally gives a 
somewhat different and a more "pessimistic" picture than the categorical variable meth- 
odology. Much of the distortion is absorbed by the measurement parameters, but some 
permeates to the structural parameters. For instance, R 2 for ~/1 is 47.7% for Females in 
Table 3 and 23.6% in Table 4. For Males the corresponding numbers are 37.4 and 31.3. 
Also, the t-ratio for the sex-difference in the r/1 mean is almost five times larger in the 
categorical variable methodology. 

4.2 A Longitudinal Model 

The second data set illustrates Case B of the general model. The author is obliged to 
Paul Duncan-Jones at the Australian National University, Canberra, for providing the 
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TABLE 4.2 

A Structural Equation Model: Normal Theory Estimates for 

a Model of Partial Sex-lnvariance. Structural Parameters a 

Or ig ina l  Values 
Parameter Females 14ales 

Standardized Values 

- .341 
( .100,  
-3.4) 

Slope fo r  second cons t ruc t  - .211 
(.1].2 
-1.9) 

Slope fo r  t h i r d  cons t ruc t  .563 .700 
( .238,  ( .181,  

2.4) 3.9)  

Residual var iance .493 .764 
( .073 

6.8) 

Variance of  second cons t ruc t  .893 
(.220 

4.1)  

Variance of  t h i r d  cons t ruc t  .179 
(.039 

4 .6)  

Covariance between second -2.34 
and t h i r d  cons t ruc t  ( .048 

-4 .9 )  

I n t e r cep t  .000 b - .131 
- -  ( .076,  
-- -1.7) 

Mean of second construct .000 b -.273 
- -  ( . I 0 1 ,  
- -  - 2 .7 )  

Mean of  t h i r d  cons t ruc t  .000 b - .055 
- -  ( .044,  
- -  - 1 .3 )  

Deduced mean of  f i r s t  cons t ruc t  .000 b - .076 
- -  ( .070,  
--  - 1 . 1 )  

.442 
( .077,  

5 .7)  

.817 
( .205,  

4.0) 

.163 
(.037, 

4.4) 

- .056 
( .039,  

- 1 .4 )  

- .248 - .384 

.297 .352 

.687 

1.000 1.000 

1.000 1.000 

-.448 -.153 

.000 -.163 

.000 -.302 

.000 -.130 

.000 -.095 

aEntries are: Estimate 
(Standard error, 
Estimate/St. error) 

bFixed parameter 

data. A random sample of Canberra electors were interviewed four times with four-month 
intervals in 1977 and 1978. The data are fully described by Henderson, Byrne, and 
Duncan-Jones (1981). For  our illustrations we will analyze data from the first and last 
occasion, for 231 individuals with complete data. At each occasion we consider three 
dichotomous items intended to measure "neurotic illness," 
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TABLE 5 

A Longitudinal Model: Descr ipt ive S ta t i s t i c s  
for  the Independent Variables 

129 

N L1 L2 L3 L4 

Correlat ions 

N 1.0000 

LI 0.2162 1.0000 

L2 0.1595 0.5377 1.0000 

L3 0.1807 0.4967 0.4937 

L4 0.2059 0.5270 0.4886 

1.0000 

0.5144 1.0000 

Variances 

20.6573 6.5372 5.8932 4.8975 5.2707 

Means 

9.3074 3.8615 3.1732 2.5758 2.4199 

"In the last month have you suffered from any of the following?" 
Anxiety 
Depression 
Irritability 

The response Yes was denoted by y = 1 and No by y = 0. Below the abbreviations A, D, I 
will be used for these three indicators. It was hypothesized that at each time point (one 
and four) these three items may be viewed as indicators of latent variable constructs t/1 
and r/4 , "current level of neurotic illness." The latent variable constructs are related to a 
set of observed continuous variables: the N scale from the Eysenck Personality Inventory 
(N) and number of "life events" occurring to the respondent in the four months prior to 
each interview (L1, L2, L3, L4). The variable N is intended to measure long-term liability 
to neurosis and is taken here as the average score from occasions two and four. Descrip- 
tive statistics for the background variables are given in Table 5, and the model is given in 
path diagram form in Figure 2. 

Since the same y-items have been administered at the two occasions we may hypoth- 
esize time-invariance of the thresholds and loadings. We may allow for different intercepts 
at the two time points and also allow the variances of the measurement errors of e to vary 
over time by specifying A as diag (A) = (1 1 1 6 x 62 63), where the unit elements 
are fixed. 

The above model is fitted into the general framework by using part 1, 2, and 3. Here, 
a 1, a 2 , and o 3 have 6, 30, 15 elements, respectively. A chi-square value of 32.03 with 32 
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"Y4C 

FIGURE 2. 
A Longitudinal Model. 

degrees of freedom is obtained with the GLS estimator. Hence the notion that we are 
tapping the same latent variable construct at the two time points cannot be rejected. Had 
a significant value been obtained, the three-part model structure makes it convenient to 
separately test for fit the relations between the y's and the x's and between the y's. 

The parameter estimates are given in Table 6. From Table 6 we note a significantly 
larger intercept in the structural relation for the last occasion as compared to the first. 
Using the sample means of N, L1, Lz, L3, and L4 we find estimated r/1 and r/a means of 
1.236 and 1.356, respectively. We may also note the difference in regression slopes for N. 
A chi-square test of slope equality with one degree of freedom obtains a significant value 
of 11.43. This could indicate that the presumed stability over time of the liability to 
neurosis does not hold true as measured by N. 

We may also further constrain the model by specifying time-invariant measurement 
error variances. This means that we would have time-invariant probit regressions for each 
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TABLE 6 

A Longitudinal Model: Estimated Parameters a 
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Item Thresholds Loadings Time-point 4 
Scale Factors 

A 1.915 1.000 b 2.030 
(.220) - -  (.974) 

D 2.451 1.344 1.875 
(.299) (..170) (.949) 

I 1.161 0.721 3.358 
(.180) (.128) (1.975) 

Time-point 1 

Time-point 4 

Structural Regression Coefficients 

Intercept N L 1 L 2 L 3 L 4 

.0 b .100 .079 .0 b .0 b .0 b 
- -  (.016) (.027) . . . . . .  

.975 .023 .031 -.032 -.011 .050 
(.456) (.013) (.020) (.020) (.010) (.029) 

Time-point i .486 
(.087) 

Time-point 4 

Residual covariance matr ix 

.159 .102 
(.082) (.102) 

astandard errors are given in parentheses. 

bFixed parameter. 

of the A, D, I items on the respective ~7; see also Muth6n and Christoffersson (1981, p. 
411). Still allowing for time-varying residual variances, this specification is consistent with 
the restriction 61 = 62 = 63. However, this hypothesis is rejected with a chi-square of 8.06 
on two degrees of freedom. 

5. Conclusion 

In the preceding sections developments have been presented for appropriately deal- 
ing with ordered categorical indicators in structural equation models. What are the limi- 
tations? 

First of all, normality of underlying latent variables was specified. In a Pearsonian 
spirit, the categorical variables were viewed as manifestations of continuous normal vari- 
ables. The present author does not believe that underlying normality is always the most 
appropriate specification. This modeling needs to be confronted with data, e.g. as was 
done in Table 2. It is unknown how sensitive results are to deviations from this state of 
affairs. The normality specification is perhaps less strict in Case B models, where the 
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latent response variable distribution is to some extent generated by the x distribution and 
the normality specification is on the residuals. 

The GLS (as opposed to an unweighted least squares) estimator requires the creation 
of a weight matrix which grows very rapidly with the number of y-variables. This limits 
its practical use to about 15-20 variables, i.e. small-sized problems or the scrutinizing of 
marginal parts of models. No doubt the appropriate creation of the weight matrix re- 
quires large samples. Furtherresearch needs to show what the requirements actually are 
(e.g., in terms of bivariate frequencies for polychorics). 

Although data are often observed in the form discussed here, some researchers may 
find the proposed modeling too complex. People in the scaling tradition may prefer some 
optimal scaling approach, while LISREL users may choose to ignore the scale problem. 
The former approach would seem to give a less powerful analysis. As we have seen, the 
latter way out may be undesirable, although often it may not make that much of a differ- 
ence for structural parameters. However, to quote Cox (1970, p. 18) in discussing logit 
versus ordinary regression: "the use of a model, the nature of whose limitations can be 
foreseen, is not wise, except for very limited purposes." Our approach is computationally 
heavy, but it gives an interesting possibility for a rather detailed analysis. The GLS esti- 
mator provides a general approach for analyzing any kind of statistics for which the 
three-part structure is relevant. What is needed is to find the appropriate weight matrix. 

REFERENCE NOTES 

1. Gruveaus, G. T., & J6reskog, K. G. (1970). A computer program for minimizing a function of several vari- 
ables. Research Bulletin 70-14. Princeton, N.J.: Educational Testing Service. 

2. J6reskog, K. G., & S6rbom, D. (1981). LISREL V. Analysis of linear structural relationships by maximum 
likelihood and least squares methods. Research Report 81-8, Department of Statistics, University of Uppsala. 

REFERENCES 

Browne, M. W. (1974). Generalized least squares estimates in the analysis of covariance structures. South African 
Statistical Journal, 8, 1-24. (Reprinted in D. J. Aigner, & A. S. Goldberger (Eds.), (1977), Latent variables in 
socio-economic models. Amsterdam: North-Holland.) 

Cox, D. R. (1970). The analysis of binary data. London: Methuen. 
Henderson, A. S., Byrne, D. G ,  & Duncan-Jones, P. (1981). Neurosis and the social environment. Sidney: Aca- 

demic Press. 
J6reskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger 

and O. D. Duncan (Eds.), Structural equation models in the social sciences. New York: Seminar Press, 
85-112. 

J6reskog, K. G. (1977). Structural equation models in the social sciences: Specification, estimation and testing. 
In P. R, Krishnaiah (Ed.), Applications of statistics. Amsterdam: North-Holland. 

Muth6n, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551-560. 
Muth6n, B. (1979). A structural probit model with latent variables. Journal of the American Statistical Associ- 

ation, 74, 807-811. 
Muth6n, B. (1983). Latent variable structural equation modeling with categorical data. Journal of Econometrics, 

22, 43-65. 
Muth6n, B., & Christoffersson, A. (t981). Simultaneous factor analysis of dichotomous variables in several 

groups. Psychometrika, 46, 407-419. 
Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44, 

443-460. (a) 
Olsson, U. (1979). On the robustness of factor analysis against crude classification of the observations. Multi- 

variate Behavioral Research, 14, 485-500. (b) 
Olsson, U., Drasgow, F., & Dorans, N. J. (1982). The polyserial correlation coefficient. Psychometrika, 47, 

337-347. 
S6rbom, D. (1982). Structural equation models with structured means. In K. G. J6reskog & H. Wold (Eds.), 

Systems under indirect observation: Causality, structure, prediction. Amsterdam: North-Holland Publishing 
Company. 

Manuscript received 12/4/81 
First revision received 3/16/83 
Final version received 10/27/83 


