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Common applications of latent variable analysis fail to recognize that data may be obtained 
from several populations with different sets of parameter values. This article describes the 
problem and gives an overview of methodology that can address heterogeneity. Artificial ex- 
amples of mixtures are given, where if the mixture is not recognized, strongly distorted results 
occur. MIMIC structural modeling is shown to be a useful method for detecting and describing 
heterogeneity that cannot be handled in regular multiple-group analysis. Other useful methods 
instead take a random effects approach, describing heterogeneity in terms of random parameter 
variation across groups. These random effects models connect with emerging methodology for 
multilevel structural equation modeling of hierarchical data. Examples are drawn from educa- 
tional achievement testing, psychopathology, and sociology of education. Estimation is carded 
out by the LISCOMP program. 
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1. Introduction 

In preparing this presidential address, I decided to touch on not only what I have 
done but also some of what I am doing and would like to see done in the future, both 
in terms of my own research and that of other psychometricians. Before going into the 
specifics of my topic, the general themes will be described. 

In line with my own taste, I will concentrate on applied issues: Although "applied" 
is a relative term meaning different things to different people, I will present more 
general formulas, tables, and graphs than detailed derivations of theories and proofs. A 
second theme is modeling. In line with my own interests, I will focus on the specifi- 
cation of models rather than details of estimation. In my view, too little psychometric 
effort is geared towards realistic modeling which naturally should precede polishing of 
model parameter estimation. A final general theme is the standard statistical assump- 
tion of i.i.d., the assumption of identically and independently distributed observations. 
I will discuss analysis approaches that relax one or both of these assumptions. The 
presentation will also involve effects of ignoring i.i.d, violations, both in terms of 
distortions of regular analysis that maintains this assumption and, more importantly, in 
terms of information not uncovered by regular analysis. 

Before getting into specific modeling issues, I will give a general description of my 
topic, including an outline of the content of the sections. 
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2. Population Heterogeneity 

In interacting with substantive researchers during recent years on issues of psy- 
chometric modeling, I have encountered an interesting common theme, namely that of 
population heterogeneity. Data are frequently analyzed as if they were obtained from a 
single population, although it is often unlikely that all individuals in our sample have the 
same set of parameter values. 

There are many important examples of population heterogeneity in psychometric 
modeling with latent variables. In educational achievement modeling with factor anal- 
ysis and item response theory, the homogeneity assumption is unrealistic when applied 
to a sample of students with varying instructional background. A good example is 
modeling of mathematics achievement for U.S. eighth grade students, where widely 
varying curricula or tracks are being followed, placing more or less emphasis on topics 
such as algebra and geometry (see, e.g., Muth6n, 1988a, 1989a; Muthrn, Kao, & Bur- 
stein, in press). In studies of attitudes and opinions the homogeneity assumption of 
standard measurement models may not be realistic across subsets of the group studied. 
For instance, in survey research the validity and reliability of certain items can be 
expected to vary across subgroups defined by race, gender, region, and issue salience 
(see, e.g., Converse, 1964; Hollis & Muthrn, 1988; Schuman & Presser, 1981). In public 
health research such as psychiatric epidemiology, surveys frequently are concerned 
with data that come from a mixture of"normal"  and "abnormal" subjects, for example 
individuals who have and have not suffered from a "major depressive disorder" (Eaton 
& Bohrnstedt, 1989). 

An alternative view to homogeneity is that data come from a mixture of popula- 
tions with their own sets of parameter values. This relates to statistical modeling called 
finite mixture analysis (see, e.g., Everitt & Hand, 1981). However, the situations we 
will consider are in one sense often simpler than those of finite mixture analysis, since 
the mixing population membership is assumed known with no need for estimating the 
mixing proportions. In another sense, our situations are often more complex than that 
of mixtures, since we will attempt to use population-specific variables that are auxiliary 
to the variables and relationships of primary interest. 

With this general premise as a starting point, section 3 elaborates in more detail the 
consequences of analyzing a mixture of populations with regular covariance structure 
models for latent variables, that is in the tradition of Jrreskog (1978). Given the dis- 
tortions that are shown in this section, section 4 begins by considering if regular mul- 
tiple-group latent variable analysis (Jrreskog, 1971; Srrbom, 1974) is a sufficient solu- 
tion. In section 4.1, the alternative of MIMIC modeling is described. Section 4.2 briefly 
outlines the LISCOMP analysis framework (Muthrn, 1987), both since this naturally 
contains MIMIC modeling for continuous and categorical response variables, and since 
this framework will be shown to encompass the new analysis developments discussed 
in section 6. Section 4.3 analyzes two real-data examples with new types of MIMIC 
modeling for heterogeneous populations. In section 5, a transition is made from these 
traditional fixed-effects latent variable models to models with random parameters for 
hierarchical data. Section 6.1 discusses new types of models that utilize random pa- 
rameter descriptions of heterogeneity, section 6.2 considers the implications for the 
likelihood of normally distributed response variables, and section 6.3 discusses analy- 
sis. Section 7 concludes with an outline of future possibilities. 

3. Latent Variable Mixtures with Varying Levels 

To be more specific about the kinds of heterogeneity to be discussed, consider the 
following latent variable models, also discussed in Muthrn (1989b). In line with regular 
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covariance structure modeling, assume the linear factor analysis measurement  model 
for a set of  p interval-scaled response variables y in G groups (populations), g = 1, 
2 . . . . .  G, 

yg = Vg + A'qg + eg ,  (1) 

where v and A contain measurement  intercept and slope (loading) parameters,  lq is an 
m-vector  of factors, and e is a vector  of residuals. Assume that E (-qg) = Otg, V (-qg) = 
• , V (eg) = 0 ,  and that 

E(yg)  = Vg + A ~ g  = p,g;  (2) 

V(yg) = A ~ A '  + O = Z, (3) 

so that the variable means vary across groups whereas the covariance matrix does not. 
Psychometric  research has covered issues of  invariance in the factor model when 

selecting groups of individuals from an overall population for which a model such as (1) 
holds. For  example, Meredith (1964) utilized Pearson-Lawley selection results to study 
cases where the measurement  parameters of v, A, and O are invariant under certain 
assumptions (see also Muth6n & J6reskog, 1983). This is a result that provides a 
rationale for  multiple-group factor  analysis with restrictions of  measurement  invariance 
(see, e.g., J6reskog, 1971; S6rbom, 1974). The reverse situation of studying the cova- 
fiance structure of an overall population where a certain factor analysis model holds in 
several subgroups appears to have received far less attention. Indeed, some users of  
structural equation models may be under the mistaken impression that when a certain 
simple structure holds in each of  several groups, it also holds for the total sample. 

Referring to the situation of  a mixture of  normal distributions with common ~ and 
mixture proportions w, we may generalize the two-group result of Johnson and Kotz  
(1972) to G groups following (1), (2), and (3): 

G 

~M = ~ -I- Z Wg(tl'g -- ~I'M)(~I" e -- ['I'M)', (4) 
g = l  

where the subscript M represents parameters of  the mixture distribution, l~ is the 
common covariance matrix for each group, and 

G 

~M = ~ .  Wg~ ~. (5) 
g = l  

In general, the second term on the right-hand-side of (4) is such that the model that 
holds for 1£ does not hold for 1£ M. Across-group level heterogeneity may distort the 
structure. Hence,  even when a covariance structure model is true for each group, it 
may not be true for the mixture. 

It is interesting to also consider the special case where complete across-group 
invariance of  measurement parameters holds. Since A and O have already been taken 
to be group-invariant above,  this means that we are now adding the assumption of  
invariant measurement  intercept parameters v. In the case of  equal re ' s ,  (4) simplifies 
as  

~ M = A  ~ + ~'. wgotget~ A ' + O ,  (6) 
g = l  
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where we standardize to Y~g~=l Wg ag = 0. Here, we note that the expression in paren- 
theses consists of the sum of the factor covariance matrix common to each group and 
a component representing variation in factor levels across groups. In terms that will be 
used further on, we may describe these two components as within and between factor 
covariance matrices. If the common factor covariance matrix is unrestricted, a regular 
covariance structure analysis of ~M could fit the same model structure as in each of the 
G groups and take the expression in parentheses as the factor covariance matrix, with 
A and O as the remaining parameter arrays. Hence, we would consider a factor cova- 
riance matrix that is not the correct one for any of the groups. We can therefore 
conclude that even when the model is true for the mixture, it does not have the same 
parameter values as in each group. This fact is well-known in special cases such as 
reliability assessment. Assuming a one-factor model for (6) and defining the reliability 
of an observed variable as the amount of variation explained by the factor, the increase 
in reliability due to increased factor variance going from the group to the mixture is in 
line with the classic results of Lord and Novick (1968, pp. 129-131) on effects of group 
heterogeneity and selection on test reliability. 

Two examples give interesting illustrations of the two different cases considered, 
with and without invariance of the measurement intercepts. 

Example 1. Consider a confirmatory factor analysis model specified as a general- 
factor, specific-factors variance components model for nine variables. As shown in 
Table I the factor loading pattern is such that the general factor influences all variables 
with possibly different loadings, and the three specific factors each influence three 
variables and with equal loadings fixed at one. The factors are taken to be uncorrelated, 
the variance of the first factor is fixed at one, and the variances of the three specific 
factors are free parameters. This model has a variance component interpretation in that 
it partitions the variance in each variable into parts due to the general factor (h 2) and 
the corresponding specific factor (the specific factor variance; Gustafsson, 1988, in 
press). The true parameter values are general factor loadings of 0.5, specific factor 
variances of 0.09, and residual variances of 0.66, resulting in unit observed variable 
variances. The resulting ratios of variance component contributions of general to total 
(G/T) and of specific to general (S/G) are also given in Table 1. 

Assume now that this model, with the above parameter values, holds for each of 
two groups. Suppose that these groups are only different in terms of their factor means 
with no difference for the general factor, a difference of 0.3 for the first two specific 
factors, and a difference of 0.3 for the third specific factor. The value 0.3 corresponds 
to one standard deviation of each of the specific factors. Assume that we are analyzing 
a mixture of observations from the two groups with the mixing proportions 2/3 and 1/3. 
This situation can be studied by forming the population covariance matrix for the 
mixture by (4) and analyzing this matrix by regular maximum-likelihood structural 
modeling software, taking this matrix as the sample covariance matrix. The results are 
very interesting. The standard chi-square fit measure produced by regular software is 
zero with 24 degrees of freedom so that the estimated covariance matrix exactly re- 
produces the input matrix. In this example, measurement intercept invariance holds so 
that the covariance matrix for the mixture obeys (6). If the factor covariance matrix 
were unrestricted, the Equation (6) "between-group" addition to the factor covariance 
matrix clearly could be absorbed. However, here the factor covariance matrix is re- 
stricted. The addition of the between group factor covariance matrix nevertheless gets 
absorbed with the assistance of the general factor loading estimates. Hence, we would 
have no indication of misfit in this case. Despite the fact that the model holds in the 
mixture, the parameter values obtained are not those of the two groups. The right-most 
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TABLE 1 

A Gene ra l -Fac to r ,  Spec i f i c -Fac to rs  Var i ance  
Model  for  Nine Variables 

C o m p o n e n t s  

561 

Loading Matrix True Values(%) Fitted Values(%) 

G S 1 S 2 S 3 G/T S/G G/T S/G 

Xl 1 0 0 25 36 28 31 

k 2 1 0 0 25 36 28 31 

k 3 1 0 0 25 36 28 31 

k 4 0 1 0 25 36 28 31 

X5 0 1 0 25 36 28 31 

k 6 0 1 0 25 36 28 31 

X7 0 0 1 25 36 19 84 

X8 0 0 1 25 36 19 84 

k 9 0 0 1 25 36 19 84 

Note: G stands for general factor, S stands for specific factor, and T stands 
for total. 

columns of Table 1 show the resulting variance component ratios when fitting the 
mixture covariance matrix. A distorted picture results. Note that for the last three 
variables a much inflated specific factor contribution is observed. 

Example  2. Consider now a one-factor model where the measurement intercepts 
are not invariant. Figure 1 shows a diagram of nine observed variables measuring a 
single factor. The variables of Xl and x2 are dichotomous representing two grouping 
variables (e.g., gender and ethnicity). Together with the product x l x  2, these three 
background variables allow for differences in levels for each of the corresponding four 
groups. For example, the direct arrow from x 1 to Yl allows the measurement intercept 
to be different for Yl in the xl = 0 and xl = 1 categories. Similarly, the measurement 
intercept ofy  7 varies over the four groups. Note that the diagram states that conditional 
on group membership, the y variables are uncorrelated when holding the factor con- 
stant, so for each group a one-factor model holds. It is also clear that in the mixture of 
the four groups, this is not true; Yl and Y7 correlate over and above what the factor 
accounts for. 

A numerical example indicates the magnitude of the possible distortion. Assume 
that for each of the four groups, all loadings are 0.7, the factor variance is 1.0, all 
residual variances are 0.51, giving unit y variances. Consider a mixture of the four 
groups in the proportions 3/10, 1/10, 1/10, and 5/10. Assume direct effects from each of 
the three background variables to Y l and Y7 of size 1.0, the standard deviation of the y's, 
and assume for simplicity that there are no effects from the background variables to the 
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G r o u p s  

Ind ica to r s  

FIGURE l. 
A one-factor model with intercepts varying across groups. 

factor. Fitting a one-factor model to ]~M by maximum-likelihood estimation gives a 
chi-square of 14.9 with 27 degrees of freedom assuming a sample size of 500. Since a 
population covariance matrix has been fitted this is not a standard chi-square test value, 
but it gives a noncentrality parameter value from which the power Of rejecting the 
one-factor model can be calculated using the method of Satorra and Saris (1985). The 
rejection power for the sample of 500 is 0.54, indicating that in more than half of the 
samples from this mixture, the one-factor model would be rejected. And this rejection 
occurs despite the fact that the one-factor model is true in each of the four groups. We 
also note that fitting a two-factor model to ~ M  fits perfectly, where Yl and Y7 measure 
the second artificial factor arising from group-heterogeneity in measurement intercepts. 

It might be thought that the group-variation in parameter values could be captured 
in regular latent variable analysis using multiple-group structural modeling (Jfreskog, 
1971; Srrbom, I974, I982). As powerful as this technique is, however, it can not 
capture common forms of heterogeneity sufficiently well. There are two important 
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requirements of such an analysis that are often not fulfilled. One is that sizeable samples 
are available for each group. We would want enough observations in each group to be 
able to compute stable correlation coefficients or variances and covariances. At the 
very least, we would like to have more observations in each group than variables. A 
second requirement is that group membership can be properly viewed as a fixed vari- 
able with finite levels to which inference is drawn. In what follows, examples will be 
presented that indicate important application areas where heterogeneity does not come 
in these forms. 

In passing we may also note that regular multiple-group analysis also assumes that 
group membership does not vary across the variables. Muthrn (1988b; 1989a) considers 
modeling in such a case with item-specific group-membership arising due to dichoto- 
mous opportunity-to-learn information for a set of mathematics test items, where the 
difficulty of each item is shifted by these opportunity-to-learn variables. 

4. An Alternative Attempt at Capturing Heterogeneity: MIMIC Analysis 

The path diagram of Figure 1 suggests an interesting alternative approach to cap- 
turing heterogeneity. The diagram has the form of a so-called MIMIC model (multiple 
indicators, multiple causes; see, e.g., Hauser & Goldberger, 1971). In such a model one 
or more latent variables intervene between observed background variables x predicting 
a set of observed response variables y. This section will describe in general terms how 
MIMIC modeling can detect and describe heterogeneity, put this modeling in a general 
framework, and give two examples. 

4.1 MIMIC Modeling of Heterogeneity 

MIMIC modeling may be seen as a way of investigating a hypothesized measure- 
ment model (a factor analysis model) for a set of response variables y capturing a set of 
factors. The factors and the y's are predicted by a set of regressors x that may be viewed 
as the covariates the y's are conditioned on. A generic MIMIC model is shown in Figure 
2 for the case of a single factor. 

Although conditioning on a set of x variables may appear to forfeit the latent 
variable modeling objective of finding invariant measurement structures, the inclusion 
of a set of relevant x variables provides MIMIC modeling with important extra infor- 
mation about such a measurement model. This enables an investigation of hypotheses 
of construct validity and invariance across subpopulations. First of all, predictors of the 
factors can be studied with respect to differential predictive strength, and at the same 
time give a stronger test of dimensionality. Second, of particular importance for cate- 
gorical response variables, the inclusion of x variables enables a data-driven specifica- 
tion of the latent variable distributions. If the x's are not normal, the latent variables 
they predict will not be normal, and hence, the latent response variables customarily 
specified to underlie the y's will not be normal. In Muthrn (1989c) this fact was utilized 
to compute so called non-normal tetrachoric correlations for the response variables. 
These correlations were estimated from the MIMIC model and then subjected to reg- 
ular exploratory factor analysis. Third, and of immediate interest to us here, is the 
possibility of heterogeneity detection and modeling (also, see Muthrn, 1988a, 1988b; 
Hollis & Muthrn, 1988). Heterogeneity can be studied in two ways. In both cases, we 
assume that we are considering grouping variables among the x's. 

First, we may allow for across-group variation in factor means. In line with the 
mixture cases studied in section 3, we consider 

g(~g [Xg) = FXg ; (7) 
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Regressors Response 
Items 

o 

x f "y 
FIGURE 2. 

A one-factor MIMIC model. 

V(~gl Xg) = ~ ,  (8) 

where the g subscript varies across the group observations, F is a matrix of regression 
coefficients, and W is a covariance matrix. Although the covariance matrices of the 
factors 7/are assumed constant across the groups, the means are allowed to vary. For 
example, in Example 1, the two groups could be represented by a single dichotomous 
variable x that allows for the given factor mean differences. While the regular factor 
analysis of the covariance matrix involving only the response variables would lead to 
the biases shown for this example, a MIMIC analysis would essentially analyze the 
"within" covariance matrix, pooling across the two groups, thereby avoiding the bias. 
This appears to be an underutilized method (see, however, Keesling & Wiley, 1974) and 
one that does not appear to have been previously available for categorical data (see, 
however, Mislevy, 1985, 1987). 

Second, the MIMIC approach allows for across-group heterogeneity in measure- 
ment intercepts. In the MIMIC context this is handled by allowing direct effects (bro- 
ken arrows in Figure 2) from x's to y's. As was the case in Example 2 depicted in Figure 
1, x variables corresponding to groups are thereby able to shift the level of the mea- 
surement intercepts. Specifying a standard MIMIC model with'no direct effects as a 
base-line model, the need for including such direct effects can be detected by model 
modification techniques and the noninvariance accounted for where needed. 

In contrast to multiple-group analysis, the MIMIC approach is restricted to mod- 
eling under the assumption of a group-invariant covariance matrix for the observed 
response variables, conditional on grouping variables represented by the x's. But with 
insufficient sample sizes for multiple-group analysis, this may be the best alternative. At 
least the levels of the variables are allowed to vary. Also, relative to multiple-group 
modeling, it is easy to accommodate a more fine-tuned categorization of the sample, 
using many groups. 
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4.2 The LISCOMP Framework 

Before turning to specific examples of MIMIC heterogeneity modeling, it is in- 
structive to consider how this fits into a general modeling framework. This framework 
has been utilized in the author's program "LISCOMP (Analysis of linear structural 
equations with a comprehensive measurement model)," described in more detail in 
Muthrn (1983, 1984, 1987). The program was used in all examples in this article. 

Let y* be a p-dimensional vector of latent, continuous response variables for which 
a standard linear measurement model for m factors ~7 holds, 

y* = v + A~I + e. (9) 

The y* variables correspond to p observed y variables, which may be dichotomous 
(also, see Muthrn, 1978, 1979; Muthrn & Christoffersson, 1981), ordered polytomous 
(Muthrn, 1983, 1984; Olsson, 1979; Olsson, Drasgow, & Dorans, 1982), continuous and 
censored (Muthrn, 1985, in press), continuous nonnormal (see, e.g., Browne, 1982, 
1984; Muthrn, 1989d), and continuous normal (see, e.g., Muthrn, 1987). A set of C - 
1 threshold parameters link each latent response variable y* to its corresponding ob- 
served y, where y has C categories. For a continuous unlimited y, we take y = y*, while 
a censored y is only observed as y* between censoring points. 

A set of linear structural equations are also specified, 

• 1 = ot + B~I + Fx + 4, (10) 

where x represents a set of q observed variables, B and F are structural regression 
parameters, and ~ is a vector of residuals. In the LISCOMP framework, this model is 
considered for G groups. 

Without x variables (q = 0), the above model specification includes all regular 
structural equation models for continuous y's (see, e.g., Bentler, 1980, 1983; J/Sreskog, 
1973, 1978), using y and r/to represent both independent and dependent indicators and 
factors. Multiple-group analysis with level structures (thresholds, means, or intercepts) 
for categorical and other nonnormal y's provides unique features. The inclusion of the 
x variables allows for the possibility of a regression-based analysis. This unique 
LISCOMP feature allows for the less restrictive assumption of conditional normality, 
given x. Assuming conditional normality for y* given x, LISCOMP modeling considers, 
for each of G groups, the components of 

E(y* Ix) = ~1 + II2x; 

V(y* Ix) = 1-13, 

where 

~ 1  = 1~ + A ( I  - B ) - l o t ,  

H2 = A(I - B)-IF, 

I13 = A ( I  - B ) - l a l t ( I  - B ) ' - I A '  + O .  

(11) 

(12) 

(13) 

(14) 

(15) 

A corresponding set of thresholds is also considered for categorical y variables. In 
LISCOMP, the components of (11) and (12) are broken down into the three parts of (13) 
through (15), levels (~1), slopes (H2), and correlations (H3), each of which may be used 
alone or in combination with other parts. If there is no mean structure, or threshold 
structure with categorical variables, the ¢r I structure need not be included. If there are 
no x variables, the conditioning on x is vacuous and H 2 disappears. If only a correlation 
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(covariance) structure is of interest, the I13 structure is used. For example, for a 
MIMIC model with categorical response, as will be exemplified in section 4.3, x's are 
present and the slope (112) and residual correlation (113 ) components would normally be 
fitted since this would consider the full implications of the model. However, we will 
also show an example where the analysis focuses on a residualized correlational struc- 
ture, in which case only the 113 structure is used. 

For the case of normally distributed response variables y, the estimation of MIMIC 
models was considered by Jfreskog and Goldberger (1975). It was pointed out that 
when applying maximum-likelihood, the same fitting function was obtained when as- 
suming joint normality of y and x as when assuming normality of y conditional on x (in 
which case the x's need not be normally distributed; see also Jrreskog, 1973, p. 94). 
Muthrn (1979) studied maximum-likelihood estimation for the case of dichotomous 
response variables and Muthrn (I984) considered the generalization to ordered poly- 
tomous responses using a limited-information generalized least-squares estimator. 
There is also a choice in the categorical case between assuming joint or conditional 
normality, although here the assumption refers to the latent response variables (y*'s) 
underlying each of the observed categorical y variables. Assuming joint normality leads 
to the use of latent variable correlations: tetrachoric, polychoric, biserial, polyserial, 
and tobit (Muthrn, 1985, in press). A fact that has not been emphasized enough was 
pointed out in Muthrn (1983, 1984), namely that this assumption is unnecessarily re- 
strictive and, as opposed to the normal response variable case, does not give the same 
estimates as the assumption of conditional normality. The conditional normality ap- 
proach leads to a structural analysis of regression coefficients, that is a regression-based 
as opposed to a correlation-based approach. 

Muthrn (1987, chap. 6) gives an overview of LISCOMP estimation in one or 
several groups with limited-information generalized least-squares (GLS) for categorical 
variables and nonnormal continuous variables and with normal theory GLS and ML for 
normally distributed variables. Briefly stated, the statistics to be analyzed for group g 
(g = 1, 2 . . . . .  G) may be assembled in the vector sg and the corresponding population 
entities in the vector trg. The weighted least-squares estimator 

G 

F=Y~ 
g=1 

(s~ - { r e ) ' W ~ l ( s g  - % ) ,  (16) 

is applied to the simultaneous analysis of G independent samples, where Wg may be 
chosen as an approximation to the asymptotic covariance matrix Of Sg to yield a limited- 
information GLS estimator. The fitting function F of (16) is used for categorical and 
other non-normal response variables y, including censored variable estimators, multi- 
pie-group ADF (Muthrn, 1985, 1989d), and regression-based analysis. When the y 
variables are normally distributed (and the regression-based approach is not used), the 
weight matrix of the GLS estimator simplifies and F reduces to 

o ( N g  - 1) tr [ ( ~  - Sg)Sgl] 2 + Ng tr [S~-1($'~ - p~)(~ - i~e)'] 
F* = ~ N -, (17) 

g = l  

where Ng is the sample size of group g, tr stands for trace, Sg is the usual sample 
covariance matrix, ~g is the sample mean vector, and N is the total sample size. For 
normally distributed y variables we may also use the maximum-likelihood estimator 
(also, see section 6), modifying (17) as 
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G Ng[log I~gt + tr  ( ~ ; I T g )  - log ISgl - p ]  
F** = 

g = l  N 
(18) 

where Tg = Sg + ($'g - i~g)($'g - ltg)'. 

4.3 MIMIC Heterogeneity Examples 

Example 3, Consider the following analysis of depression and anxiety based on 
data from Baltimore and Durham (Eaton & Bohrnstedt, 1989). In Muthrn (1989c), a 
factor analysis was carried out for a set of dichotomously scored symptom items ad- 
ministered within the Epidemiological Catchment Area Program to approximately 3,500 
individuals at each of the two sites. Three clearly interpretable factors, termed Phobic 
Anxiety, Somatic Anxiety, and Depression, were found for a subset of 27 items. It is of 
interest to take this analysis further to study differences in factor and symptom levels 
across groups (also, see Muthrn, 1989b). It is well known for example that these 
symptoms vary in prevalence across gender and ethnicity. Different sites may also 
show differences due to their varying sociodemographic composition. Indeed, judging 
from the mixture examples of section 3, the heterogeneity of levels across groups 
makes the factor analysis results questionable. 

A regular structural modeling approach would in this case carry out an analysis of 
each gender × ethnicity × site group separately and then test for measurement invari- 
ance in a multiple-group analysis where factor mean differences could be estimated. In 
this case, however, the large total sample size is not large enough to support a stable 
estimation of the correlations for all of the groups. This is because the symptoms are 
rare with few people admitting to both of any pair of symptoms. This therefore gives an 
example of what was discussed at the end of section 3, namely that regular latent 
variable modeling is often inadequate due to lack of sufficient sample sizes for the 
groups. 

MIMIC modeling provides a solution in this case. The groups may be represented 
by a set of dummy x variables, in this case seven variables representing the cells of the 
2 x 2 x 2 table formed by gender (female or not) x ethnicity (black, nonblack) x site 
(Durham or not). Since the response variables are dichotomous, the regression-based 
approach assuming conditional normality for the y*'s given the x's is advantageous. 
This approach also allows for variation in the factor means across the eight groups and 
can also capture non-invariance in the measurement intercepts for those items where 
this is warranted. 

The MIMIC model estimation was carried out by LISCOMP's limited-information 
generalized-least squares estimator for dichotomous response from (16). A base-line 
model with no direct effects was first applied, followed by a model modification where 
the need for direct effects where detected with the help of modification indices of 
first-order derivatives for fixed parameters (see Muthrn, 1989b). The estimated model 
gave a factor pattern that actually closely agreed with what was found in factor analysis 
of the tetrachoric correlations when analyzing the y's only, so here the possibility of 
distortion was not realized. Other LISCOMP estimates are given in Table 2, where the 
columns correspond to the dummy x variables, the first three rows correspond to the 
three factors, and the last 27 rows correspond to the items. Entries are unstandardized 
structural regression coefficients. Here, we will only be concerned with sign and sig- 
nificance of the effects. 

From the first three rows we note, for example, that Females have a higher So- 
matic Anxiety factor level than Males (0.53) and that this is the only factor that has a 
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T ABL E 2 

Es t imated  Effec ts  o f  Groups on Factors  and I tems 

FEMALE DURHAM BLACK FB FD BD FBD 

ANXETY .53* -.18 .51" .15 -.09 -.09 -.11 
SOMATIC .22* .29* -.06 -.21 -.07 -.06 .41" 
DEPRESS .24* -.07 -.06 .30* .03- .05 -.19 

ANIMALS .00 .00 .00 .00 .00 .00 .00 
BREATH .00 .00 .00 .00 .00 .00 .00 
BUGS .08 .22 .00 .05 -.06 .00 .00 
O.£)SIK) .00 .00 -.02* .00 .00 .00 .00 
CROWD .00 .00 .00 .00 .00 .00 .00 
CRYING .51" .00 .00 .00 .00 .00 .00 
DIZZY .00 .00 .00 .00 .00 .00 .00 
PANIC .00 .00 .20* .00 .00 .00 .00 
APPETITE .00 .00 .00 .00 .00 .00 .00 
SLEEP .00 .00 .00 -.15" .00 .00 .00 
SLOW -.17" .00 .00 .00 .00 .00 .00 
INTEREST .00 .00 .00 .00 .00 .00 .00 
TIRED .00 .00 -.12" .00 .00 .00 .00 
WORTHLESS .00 .00 .00 .00 .00 .00 .00 
THINKING .00 .00 .00 .00 .00 .00 .00 
DEATH -.12" .00 .00 .00 .00 .00 .00 
HEIGHTS -.32* -.08 -.30* .32 -.06 - .12 -.02 
HOPELESS .00 .00 .00 .00 .00 .00 .00 
NERVOUS .15" .00 -.24* .00 .00 .00 .00 
GOINGOUT .00 .00 .00 .00 .00 .00 .00 
HEARBEAT .00 .00 .00 .00 .00 .00 .00 
PUBTRANS .00 .00 .00 .00 .00 .00 .00 
DYSPH .00 .00 .00 .00 .00 .00 .00 
STORMS .25* .00 .00 .00 .00 .00 .00 
TUNBRI .00 .00 .00 .00 .00 .00 .00 
WATER .00 .00 .00 .00 .00 .00 .00 
WEAK .00 .00 .00 .00 .00 .00 .00 

*Significant on 1% level 

site-specific effect. The remaining rows show interesting instances of direct effects from 
the group variables to the items. Consider, for example, the item Crying. Crying is an 
indicator of depression. Females have a higher depression factor mean and are there- 
fore expected to admit to this symptom to a higher degree than Males. The positive 
direct effect (0.51), however, shows that the Crying level for Females is elevated 
beyond what would be predicted by the factor increase. This means that the Crying 
indicator does not show measurement invariance across gender. Consider next (Fear 
of) Heights. This item is an indicator of Anxiety. Blacks (and Females) have a higher 
Anxiety factor mean that non-Blacks (Males). However, the negative direct effect 
shows that the expected corresponding increase in Fear of Heights prevalence is not 
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fully realized for Blacks (Females); the Fear of Heights item has different measurement 
characteristics in these groups. 

In this situation there appears to be no good alternative to the regression-based 
MIMIC approach. What is sometimes tried is to do a regular factor analysis of the items 
for the total sample, compute factor scores, and calculate means for the different 
groups. As pointed out in Muthrn (1989b), this analysis ignores the different forms of 
level heterogeneity and does not properly fit even the univariate distributions of the 
items. It also suffers from the usual estimation errors of factor scores. Indeed, for this 
example, results emerge that conflict with those presented above. 

Example 4. As a somewhat different example of MIMIC modeling of heterogene- 
ity, consider a general-factor, specific-factors model of the kind discussed in Example 
1 of section 3 (also, see Gustafsson, 1988; in press). In this case we analyze 40 dichot- 
omous mathematics achievement items from the U.S. eight grade sample of the Second 
International Mathematics Study (Crosswhite, Dossey, Swafford, McKnight, & 
Cooney, 1985). In previous analyses by Muthrn, Burstein, Gustafsson, Webb, Kim, 
and Short (1989) several uncorrelated specific factors with narrow item domains cor- 
responding to instructional segments had been identified orthogonal to a general math 
achievement factor influencing all items. As in Example 1, there was an interest in 
studying the variance contribution of the specific factors relative to the general factor. 
These analyses were based on confirmatory factor analysis using tetrachoric correla- 
tions. However, the analyses did not take into account the strong degree of heteroge- 
neity in instructional background and eighth grade curricula, which realistically would 
cause strong variation in factor levels. There were about 200 classes in the sample of 
3,724 students. These classes had been categorized into Remedial, Typical, Enriched, 
and Algebra. To at least account for group differences across these categories, three 
dummy variables were used as x variables in a regression-based MIMIC analysis. The 
dummy variable gender was also added to reflect possible gender heterogeneity. 

The analysis in this case is carried out in two steps. First, a multivariate probit 
regression is carried out to get estimated slopes and an estimated correlation matrix. 
Here, the factor model is not imposed, but H2 and II 3 of (14) and (15) are unrestricted. 
Second, the corresponding estimated correlations among the y* variables are computed 
(also, see Muthrn, 1989c). These correlations are then subjected to a confirmatory 
analysis with the model used for the regular tetrachorics. In effect, then, the MIMIC- 
type analysis works with a pooled-within tetrachoric correlation matrix. 

The results are given in Table 3. The rows correspond to the specific factors and 
the entries are percentage variation in the items (y* variables), where the general factor 
entry corresponds to the average variance contribution for the items of that specific 
factor. The two left-most columns of percentages refer to the regular tetrachoric anal- 
ysis for the y's  only, while the two right-most columns refer to the MIMIC-based 
analysis. 

The regular analysis of y 's  shows for example that the variance contribution of the 
specific factor Angular (for angular measurement items in geometry) is about 40 percent 
(11/28) of that of the general factor. In the MIMIC-based analysis, the corresponding 
contribution is about 60% (13/22). Relative to the regular analysis, the MIMIC-based 
analysis consistently decreases the general factor variance contribution, while the spe- 
cific factor contributions are about the same or slightly higher. The decrease in the 
general factor contribution is natural since conditioning on class type, the MIMIC- 
based analysis to some extent controls for selection effects that are presumably most 
strongly related to the general factor; part of the variation in the general factor which 
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TABLE 3 

Component Estimates Item Variance (%) for a General 
Factor, Specific-Factor Variance Component  Model 

For 8th-Grade Math 

Specific Analysis of Correlations for 
Factors 

y only y given X 

General Specific General Specific 

VISUAL 3 7 4 3 2 4 
ALGTRANS 3 2 9 2 5 1 0 
DECIMAL 2 8 7 2 2 7 
PERCENT 3 5 1 0 2 9 1 0 
ESTIMATE 3 2 9 2 5 1 0 
APPROX 2 3 7 1 8 7 
NUMCOMP 3 5 4 2 7 5 
QUADRLA 3 9 9 3 2 1 0 
ANGULAR 2 8 1 1 2 2 1 3 

is observed in the regular analysis is due to between-group differences (compare with 
(4) in section 3). 

This example shows the benefits of an analysis of a pooled-within matrix, in this 
case a type of tetrachoric correlation matrix (correlations estimated for the y* variables 
assumed to underlie the dichotomous y's). Still, only a very crude representation of 
instructional differences is obtained by the class type dummy variables. Further reduc- 
tions in heterogeneity can realistically be expected from using more refined groupings. 
For example, it would be interesting to analyze this variance component model while 
controlling for level differences across classrooms. With 200 classrooms this obviously 
leads to a very cumbersome analysis with a proliferation of parameters even in a 
MIMIC framework. Furthermore, classrooms have been randomly selected and a ran- 
dom effects representation of classroom differences may be more appropriate than the 
MIMIC approach of a fixed (non-random) parameter for each factor mean in each 
classroom. This is what we described as the second type of inadequacy of regular latent 
variable analysis at the end of Section 3. Leaving the MIMIC framework, we will now 
turn our attention to the modeling of heterogeneity using random parameter techniques 
applied to latent variable structural models. 

5. Random Parameter Modeling 

Regular structural equation modeling with latent variables, either with groups rep- 
resented in a multiple-group analysis or a MIMIC analysis with groups corresponding 
to x variable combinations, take a fixed effects approach. Parameters are viewed as 
varying over a finite number of groups. An alternative is the random effects approach, 
where parameters are viewed as continuous, random variables. The random parameter 
approach is well-established in random coefficient regression in, for example, econo- 
metrics and agriculture, including of course variance component estimation; see, for 
example Swamy (1970), Maddala (1977), and Mundlak (1978). Recently, these tech- 



BENGT O. MUTHI~N 

TABLE 4 

571 

Overview of  the Mult i level  Research Field 

Re~,ression t)arameters 

Regressor Fixed Random 

Fixed Ordinary Random coefficient 
regression regression 

Random Simultaneous 
equations 

Scarcity of research 

Random Latent variable 
and structural 
latent models 

Scarcity of research 

Source: Muthtn & Satorra (1989). Multilevel Aspects of Varying Parameters in 
Structural Models. In R. D. Bock (Ed), Multilevel analysis of educational data. 

niques have become more accessible and more popular in educational research through 
the development of so called multilevel regression models and software for the analysis 
of hierarchical data; see, for example, Aitkin and Longford (1986), Burstein (1980), 
Burstein, Kim, Delandshere (1988), de Leeuw and Kreft (1986), Goldstein (1986, 1987), 
Longford (1987), Mason, Wong, and Entwistle (1984), and Raudenbush and Bryk 
(1988). Here it is recognized that much educational data is not obtained as a simple 
random sample but in a hierarchical fashion with students sampled within schools and 
classrooms. 

In a chapter of a recent book on multilevel analysis (Bock, 1989a), Muthtn hnd 
Satorra (1989) attempt to structure the multilevel research field from the point of view 
of structural models with latent variables. Table 4, taken from their chapter, gives a 
simple 3 x 2 classification of relevant modeling approaches. 

For all entries, we may Consider the essence of the modeling as regressions, where 
the measurement part of a structural model represents regressions on latent regressors. 
The columns correspond to regression parameters that are treated as fixed versus 
random. Let us consider each row in turn. First, consider regressors that are fixed, or 
random but conditioned upon. With fixed parameters, this is the standard regression 
case, with the generalization to random parameters described in the references just 
mentioned. Random regressors occur when a variable takes the role of both an inde- 
pendent and dependent variable in a simultaneous equation system or path analysis 
model. Although techniques are well-developed for fixed parameters, there is a scarcity 
of research in the random parameter case. For the case of random and latent regressors, 
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such as in factor analysis, there is also a scarcity of research in the random parameter 
case. The remainder of this article will consider the situation of this bottom right cell. 
Although some work exists in these areas, such as de Leeuw (1985), Schmidt and 
Wisenbaker (1986), Goldstein and McDonald (1988), McDonald and Goldstein (1988), 
and Muthrn and Satorra (1989), much more remains to be done. 

Muthrn and Satorra (1989) identify two distinguishing features of multilevel mod- 
eling: 

1. We are considering a heterogeneous population. Individuals are observed 
within different groups, and it is realistic to assume that individuals of different groups 
obey different response processes and relationships between variables. 

2. We do not have independence among all our observations. It is realistic to 
assume that individuals within a group share certain influencing factors and hence have 
correlated observations. 

In our discussion of heterogeneity we have so far considered the first of these two 
aspects, the across-group parameter variation. However, as was shown in the mathe- 
matics achievement example, Example 4 of the last section, the heterogeneity often 
comes in the form of hierarchical data for which the second aspect is important as well. 
Hence, we will now consider relaxing both of the two parts of the i.i.d, assumption as 
mentioned in the introduction. 

6. Methods for Hierarchical Data 

6.1 La ten t  Variable Models  with Random Parameter  Variation 

Consider now some extensions of a model proposed in Muthrn and Satorra (1989). 
The first model variation will be termed the Muthen-Satorra varying factor means 
model, which may be viewed as a parsimonious baseline model for heterogeneous 
groups. The Muthen-Satorra model was motivated by applications such as the mathe- 
matics achievement analysis of Example 4, where strong heterogeneity could be ex- 
pected for the levels of the factors. For individual i within group g, consider the factor 
analysis model 

Ygi  = V + A'qe i + Egi ,  (19) 

where E (egi) = 0 and V (eg i) = O for all g's and i's, and 

1]g i --~ atg "}- tOgi" ~ (20) 

atg = at + Fzg + 8%, (21) 

where ag is a group-level random component, tog i is an individual-level random com- 
ponent, and z e is a vector of observed group-level variables. 

Conditional on group g, 

E(~gi I g) = atg, (22) 

V(~lgi I g) = V(t~). (23) 

In line with the mixture and MIMIC assumptions of sections 3 and 4, the factor mean 
is allowed to vary across groups and the factor covariance matrix is not. Note that atg 
is a random variable vector in this specification. Considering the special case of no 
group-level variables z and a single factor, only the single parameter V (~a) would be 
needed to capture the group heterogeneity in factor levels. In contrast, the regular fixed 
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effects latent variable approach would use G - 1 parameters (one parameter is fixed for 
identification purposes). 

This modeling specifies correlated factor scores for individuals i and j in group g, 

We obtain 

and 

with 

Cov ('%e, ~lgj') = FV(z)F' + V(~ ) .  (24) 

Ygi = v + A(et + Fzg + 8%) + Atog i + Egi, (25) 

V(y) = Xw + X~, (26) 

Xw = AV(to)A' + O; (27) 

Xs = AFV(z)F'A' + AV(8~)A'. (28) 

Consider again the speciM case of no group-level variables z. We note that a regular 
analysis of V (y) would consider the estimation of A, V (to) + V (Sa), and O so that the 
within and between components of the factor covariance matrix would be confounded 
(compare (4)). These components will become separable given within- and between 
covariance information as described below. 

In line with our discussion in previous sections, the varying factor means model of 
(19) through (28) may also be augmented by allowing for across-group variation in the 
measurement intercepts so that as for OLg in (21), Vg is a random vector written as a 

. ° ~ • . 

function of group- evel variation Zg and By. If there are no z s, this adds a matrix 
component V (8~) to XB in (28). Assuming that this matrix is diagonal and there are no 
z's, the Xw and XB structures are the same with equal factor loading matrices. 

Considering a factor analysis model structure for both Xw and XB suggests inter- 
pretating the model as simultaneously fitting factor models to the within and between 
covariance matrix parts, with certain parameters possibly being invariant across levels. 
This interpretation focuses on analysis on multiple levels and their interactions, com- 
monly referred to as multilevel modeling (see Burstein, 1980; McDonald & Goldstein, 
1988; Schmidt & Wisenbaker, 1986), while our model description has focussed on 
improving the usual individual-level modeling by allowing for across-group parameter 
heterogeneity in variable levels. 

The Muthrn-Satorra assumption of equality of loading matrices in Xw and XB is 
clearly seen in the two terms involving A in (25). Although this equality constraint may 
be a good approximation in many factor analysis contexts, certain applications may 
require different effects of group and individual-level factor components on the ob- 
served variables. In this context, it is interesting to note some early "multilevel factor 
analysis modeling" attempts. Cronbach (1976) reanalyzed Bond-Dykstra data on read- 
iness measures across classrooms using within and between covariance matrices. Using 
a similar approach, H/irnqvist (1978) analyzed primary mental ability scores for stu- 
dents in Grades 4 through 9 across classes and districts. In both instances, there were 
indications of different factor structures at the different levels. 

It is also clear that the above specification is directly generalizable to structural 
relations among the factors, where there may be group-level variation in structural 
equation intercepts, factor means, and measurement intercepts. The Muthen-Satorra 
specification of using different parameter matrices V (to) and V (8) for within and 
between factor variation then generalizes to allowing for different structural slopes and 
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structural residual variances on the within and between levels. Muthfn (1989e) consid- 
ers further modeling, estimation, and computation aspects. 

In all these model variations, this article focuses on estimation of the structural 
parameters underlying t~ z, l,y, l~zz, l~yz, I~ w, and I~ B. In terms of multilevel modeling 
we note that such parameters are in Bayesian terms referred to as hyperpopulation 
parameters (see e.g., Lindley & Smith, 1972). In line with the Bayesian approach, we 
may also be interested in estimating each group's factor value etg, assuming "exchange- 
ability" of the G groups. This is a generalization of factor score estimation to the group 
level. In the regression model context, such estimation is often carded out by Empirical 
Bayes (see e.g., Braun, Jones, Rubin, & Thayer, 1983; Rubin, 1980, 1983). 

6.2 The Likelihood for Hierarchical Data 

To understand the differences between regular latent variable analysis of observa- 
tions from heterogeneous groups and multilevel modeling with randomly varying pa- 
rameters it is instructive to consider the likelihood of the data. Assume g = I, 2 . . . . .  
G independently observed groups with i = 1, 2 . . . . .  Ng individual observations within 
group g. Let N = ENg be the total number of observations. As before, let z and y 
represent group- and individual level variables, respectively. In line with Tiao and Tan 
(1965) and others, arrange the data vector for which independent observations are 
obtained as 

= (z~, y~,, Y~2 . . . . .  Y~N), (29) 

where we note that the length of dg varies across groups. The mean vector and cova- 
fiance matrix of dg are 

If, zz symmetric ] 

~de = 
LIN, ® : yz Is ,  ® l~w + 1N 1/~, ® 2gB 

(30) 

(31) 

where IXz and ~l,y are the mean vectors of z and y, ® denotes the Kronecker product, 
INs denotes a vector of Ng unit elements, IN, is the identity matrix of dimension N e, Xyz 
contains the covariances between z and y, and X w and XB are covariance matrices for 
y (compare section 6.1). Assuming multivariate normality of dg, the maximum-likeli- 
hood (ML) estimator minimizes the function 

G 

F** = ~ {log I]~gl +(dg - [ t l L g ) ' ] ~ ; l ( d g  - p , g ) } .  (32) 
g = l  

Consider the case of no group-level variables z. From (31) we note that if ~;B = 0, the 
Ygi observations are independent not only across g but also across i. In this case, F** 
reduces to the regular structural modeling ML fitting function for N identically and 
independently distributed observations on y. The matrix XB allows for explicit model- 
ing of the correlations among observations within homogeneous groups (see Point 2 in  
the Muthfn-Satorra quote of section 5). If XB ¢ 0, we do not have N independent 
observations. 

The general likelihood expression of (32) was studied by McDonald and Goldstein 
(1988) in the context of multilevel structural equation modeling, with the somewhat 
different aim of providing multilevel latent variable path analysis with relations both 
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within and across levels. The work of McDonald and Goldstein is an important con- 
tribution in that they worked out simplifications to the computationally unwieldy 
expression of (32). It turns out that the g-th term reduces to simpler matrix expressions, 
the size of which do not involve the number of observations within groups but only the 
number of variables, 

log [~,zz I + (Ng - 1) log IXwl + log IXgl 

+ t r  {[.~.,~z 1 + N g X z z l ~ . ~ z X ; l X y z ] ~ z l ] ( z g  - Itl.z)(Zg - ILl, z) '  } 

-- 2 N g  tr {X~zl~,fzXgl(~'g - IlOy)(Zg - lit, z)' } 

{ } + tr Xw I ~ (Ygi-  t t y ) ( Y g i -  ~ y ) '  
i = 1  

-- Ng tr {[Xw 1 - Xgl](~'g - ~lLy)(yg -- ~Ly)'}, 

where 

(33) 

~ g  = ~ W  + Ng~,B.z, (34 )  

]~B.z --- ~ B  -- ~ y z ] ~ z l ' ~ z  • (35 )  

It is interesting to consider the special case of balanced data, that is, equal Ng's  
across groups. Also, assume no group-level z variables and ~y unrestricted. In this 
case, the fitting function F** of (32) simplifies considerably and reduces to 

F* = G log I n - l a w  + ~Bt + (N - G) log t~wl + G tr  [(n-l~w + ~)-~SB] 

+ (N - G) tr [Xw~Spw], (36) 

where n is the common group size, Sn is a between-group sample covariance matrix 

G 
SB = G -1 ~ (5'g - ~)(~'g - ~')', (37) 

g = l  

and Spw is the regular pooled-within sample covariance matrix, 

a n 

S p w  = ( N  - G) -1 Z Z ( y g i -  Yg)(Ygi- ~'g)'. 
g = l  i = l  

(38) 

Although most psychometricians have apparently been unaware of this, the possibility 
of fitting multilevel covariance structure models with the ML fitting function of (36) has 
in fact been available for 20 years! In his unpublished dissertation, Schmidt (1969) 
studied multivariate random effects models and provided a general computer program 
for maximum likelihood estimation using a Fletcher-Powell optimization algorithm. 
Schmidt and Wisenbaker (1986) studied the slightly more general case of structural 
equation modeling and presented an example which we will reanalyze shortly. 

Consider now a simple reformulation of the general likelihood expression in (32) 
through (35), due to Muth6n (1989e). Note that the group-level variation in y may be 
expressed as 
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V(~g) = N~ll£w + I~B, 

and consider the between-group covariance matrix 

l£zz symmetric ] 
~ gg -~- 

~yz N; I~w + ~,BJ" 

The fitting function F** may then be written as 

(39) 

(40) 

D 

F = ~] Ga{log I Xaal + tr[Xd-alSBa]} 
d = l  

+ ( N -  G){log I I~wl + tr[l~wlSpw]}, (41) 

where D is the number of distinct group sizes, Gd is the number of groups of a particular 
size, and 

Ssd = G ~  1 

for vk' = (zk, Yk'), IX' = (ixz', IXy'). 

ad 

Z 
k = l  

(Vk- IX)(Vk- IX)', (42) 

This way of writing the likelihood has interesting connotations. Consider first the 
balanced case. Here, we have a single distinct group size (D = 1) and one SB matrix. 
In the case of IX unrestricted, F simplifies to that SB need not be centered around the 
population mean as in (42), but can instead be centered at the overall sample mean. 
When there are no group-level variables z, the resulting expression is equivalent to 
Schmidt's Equation (36). The division of the F expression into two lines suggests 
optimization via existing multiple-group structural equation modeling software for ML 
estimation, such as LISCOMP! F can in fact be optimized in a two-group simultaneous 
analysis of a between group with G observations and sample covariance matrix SB and 
a within group with N - G observations and a sample covariance matrix Spw (compare 
with (18)). As described by Muth6n (1989e), any of the model variations discussed in 
connection with the Muth6n-Satorra model can be handled in this framework. 

In the unbalanced case with IX unrestricted, there are several group sizes (D > 1) 
and several SBd matrices. Centering the SBd'S at the sample mean no longer gives ML 
estimation, since the ML estimate of IX is not the overall sample mean. However, given 
large samples, the overall sample mean may not be far from the ML estimate of Ix. 
Using the sample mean instead of IX yields a simple and perhaps quite reasonable 
estimator that can still be handled in a multiple-group fashion with only slightly mod- 
ified structural modeling software. These matters are studied further in Muth6n (1989e). 

6.3 Analysis of Hierarchical Data 
The new modeling possibilities presented by multilevel models create a need to 

consider an appropriate model testing sequence. To clearly understand the data struc- 
ture, a step-wise sequence of increasingly more complex models is recommended as 
follows. 

Step 1. To check that the hypothesized structural model is at all reasonable, it is 
useful to first analyze the regular sample covariance matrix by regular models. Al- 
though failing to take multilevel aspects into account may create a certain amount of 
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distortion in this analysis, the usual kinds of misspecifications are presumably of larger 
magnitude and are the first ones that should be cleared up. If ];s = 0 in the multilevel 
setting, this analysis gives the same ML estimates as a multilevel structural analysis as 
pointed out in connection with the likelihood for hierarchical data. If the model fit is "in 
the ballpark", go to Step 2. 

Step 2. The second step is to fit the ~w structure to the pooled-within matrix 8pw 
by regular structural modeling. This provides a check of the appropriateness of the 
model and takes level heterogeneity into account, much like the MIMIC analyses 
discussed in section 4. For the balanced case, this gives the same ML estimates as a 
multilevel structural model with ];s free (unrestricted). If the model fit is in the ball 
park, go to Step 3. 

Step 3. Test significance of between-group variation (and within-group correlat- 
edness) by multilevel analysis comparing fit of ];B = 0 versus ];B free in either of two 
ways: 

(i) using ];w free; 
(ii) using the structure of ]; w applied in Steps I and 2. 

If ];B is significantly different from zero, go to Step 4. 

Step 4. Use multilevel modeling applying the model of Steps 1 and 2 to ];w and use 
as a base-line model for ~B the Muthrn-Satorra varying factor means model. 

Step 5. If needed, relax the Step 4 restrictions on ];8 as appropriate, for example 
in terms of the Muthrn-Saton'a loading matrix invariance and allowing intercept vari- 
ation. Or, if Step 4 gives a well-fitting model, test further restrictions related to ];8, in 
steps ending with ];s = ];w- 

An example will now be provided for a balanced case using LISCOMP. 

Example 5. Figure 3 shows a path diagram for a structural model studied by 
Schmidt and Wisenbaker (1986). It refers to data from the National Longitudinal Study, 
with observations on a national sample of high school students graduating in 1972. In 
this case, student observations are obtained hierarchically within high schools. Schmidt 
and Wisenbaker studied balanced data with 13 students per school. It is of interest to 
study heterogeneity in the variable levels using the Muth~n-Satorra varying factor level 
specification. We may also investigate heterogeneity in measurement intercepts. Re- 
lated modeling was studied in Schmidt and Wisenbaker. As was the case in their 
analyses, the between level variation in Foreign Language Courses caused nonconver- 
gence and this variable was deleted in our analyses, so that the factor of Verbal Skill 
Courses is identically equal to the observed variable English Courses. The between and 
pooled-within sample covariance matrices used in the analyses are given in Table 5, 
using the definitions of (37) and (38). Here Sex is coded as 1 for Males and Ethnicity is 
coded as 1 for Whites. 

Table 6 presents the results of applying our model testing sequence to the NLS 
model of Figure 3. From Step 3 it is clear that there is a strong need for a multilevel 
model that does not restrict ];e to zero. The simple Muthrn-Satorra type multilevel 
model fits the data sufficiently well and there appears to be no need to include further 
parameters in the model, such as intercept variation. The factor analysis model of 
Muthrn and Satorra is of course here reparameterized as a structural model so that 
different within and between group structural equations are considered. 
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Sex 

____.lEthn,city 
Verbal 

Aptitude 

Score 

SES ) ~ Skill 
Courses 

Father's 

Education 

Mother's 

Education 

English 

Courses 

FIGURE 3. 

Foreign 

Language 

Courses 

t 
Model For National Longitudinal Study Data (Source: Schmidt & Wisenbaker, 1986). 

Table 7 gives the estimated model, conveniently presented in terms of individual 
(within)- and group (between)-level parameters, in line with Schmidt and Wisenbaker 
(1986). The structural variances under the heading "Between"  reflect parameter het- 
erogeneity in terms of across-school variation in factor (or variable) means. We note 
that the between-school structural variance of Verbal Aptitude is about 18% of the total 
Verbal Aptitude variance. It is sometimes argued that the between component is rel- 
atively small due to the fact that the within component partly contains errors of mea- 
surement. In this case, however, the variance ratio pertains to the variance of the 
error-free factor. For the endogeneous SES factor the between-school contribution is 
somewhat larger, about 26% of the total SES variance. The structuring of the within- 
and between factor covariance matrices in terms of structural equations gives an in- 
teresting interpretation of the across-school heterogeneity. The differences in R 2 for the 
within and between regressions of Verbal Aptitude are striking, 20% versus almost 
80%, perhaps in line with the increase in "ecological correlations" as compared to 
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TABLE 5 

579 

B e t w e e n  and  Wi th in  Sample  Cova r i ance  Mat r ices  
for NLS Data 

B e t w e e n  
Foreign 5.9277 
English 0.0860 6.1225 
Reading 2 .2541-0 .4485  5.0019 
Vocab. 2 .2231-0.5654 3.5118 3.7543 
Sex -.0574 .0163 - .0032 .0056 .0338 
Ethnicity .0160 - .0109 .3239 .2672 .0042 .0699 
F A E D  1.2078 -.1890 1.4349 1.3478 .0082 .0938 1.2466 
MOED .7726 -.0752 .9743 .8658 .0106 .0618 .7242 .6471 

W i t h i n  

Foreign 16.7090 
English 0.8619 4.5062 
Reading 7.0760 1.156324.1637 
Vocab. 5.8330 1 .054312.641415.8329  
Sex -.1989 -.0037 -.0054 - .0347- .2589  
Ethnicity .0895 .0282 .3662 .2708 .0033 
FAED 1.6774 .3029 2.2122 1.9478 .0163 
MOED 1.2817 .2524 1.6933 1.5199 .0206 

.1073 

.0888 4.2629 

.0585 1.7908 2.8427 

Source: Schmidt & Wisenbaker (1986). Foreign and English have been 
divided by 40. 

regular ones (Robinson, 1950). There are also differences in terms of value and signif- 
icance of the structural coefficients. This is for example true for the influence of Verbal 
Courses (English courses) on Verbal Aptitude, where in contrast to the student-level 
relation, the Verbal Aptitude variation across schools appears not to be significantly 
influenced by Verbal Courses. Further tests can be made of similarities of within and 
between level structural regressions, but were not carried out here. 

It is interesting to note that the Step 1 regular structural analysis of the regular 
sample covariance matrix gives results that are rather similar to those of the "Within" 
column, both in terms of estimates and standard errors of estimates. Referring back to 
the themes outlined in the introduction, a regular individual-level analysis does not give 
a strongly distorted picture but is, in this case, roughly correct as far as it goes. The 
point is that the regular analysis is incapable of uncovering interesting aspects of the 
data related to between-group variation. 



580 

NLS Model:  

Model 

PSYCHOMETRIKA 

TABLE 6 

Tests of  Fit (N -- 1,300, G = 100) 

2 
X d.f. 

1. Regular analysis 

2. Regular on 

3. Multilevel, 
I; B = 0, Y~W free 

4. Multilevel, 
Muthrn-Satorra  

pooled-within 

3.2 7 

3.0 7 

1,363.0 28 

20.2 20 

7. Conclusions 

In terms of latent variable methodology, this article has covered a rather wide 
variety of techniques, although they all share the capability of uncovering various forms 
of population heterogeneity. It was pointed out that latent variable modeling by mul- 
tiple-group, MIMIC, and multilevel analysis are useful techniques for modeling heter- 
ogeneity. For the type of applications that we have considered, MIMIC analysis was 
shown to be superior to multiple-group analysis. Multilevel analysis provides further 
flexibility and interesting possibilities will also be opened up when using multilevel 
analysis in combination with MIMIC and multiple-group approaches. 

It seems clear that random parameter multilevel modeling techniques have further 
untapped potential for latent variable analysis in heterogeneous populations. This is 
true whether one is interested primarily in the random parameter part of the statement 
or the multilevel part. An immediate example is longitudinal modeling, in which case 
the individual takes the role of independently observed groups within which correlated 
observations (corresponding to students within classrooms) are obtained over time. 
Such modeling can recognize across-individual parameter variation and may begin to 
respond to the Rogosa (1987) critique of structural equation modeling being insensitive 
to individual differences in growth (also, see Rogosa & Willett, 1985). Some interesting 
initial work in this area is described in, for example, Bock (1983; 1989b), Gibbons and 
Bock (1987), Hedeker, Gibbons, and Waternaux (1988), and Raudenbush and Bryk 
(1988). See also Muthrn (1989f). 

Other areas are largely unexplored. For example, can this approach be used for 
demographic cross-classifications in surveys? Here, one can study a group defined as a 
certain multiway cross-classification and allow across-group differences in parameters 
despite the fact that very few individuals belong to some of the groups. This modeling 
would then recognize that individuals of the same cross-classification share certain 
common experiences and may have correlated observations. This also relates to prop- 
erly accounting for complex sampling procedures in estimating structural models (also, 
see Goldstein & McDonald, 1988). Finally, the MIMIC examples of section 4 both 
referred to categorical response variables, while section 6 only discussed normal var- 
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Verbal Aptitude 
Verbal Courses 
SEX 
Ethnicity 
SES 

Verbal Aptitude on: 

Verbal Courses 
SEX 
Ethnicity 
SES 

Verbal Courses on: 

TABLE 7 

NLS Model 4 Estimates 

Structural Variances 

Within Between 

14.38 3.12 
4.51 5.78 
0.26 (24.5) 0.01 (2.86) 
0.I1 (24.5) 0.06 (6.23) 
2.54 (10.9) 0.88 (5.18) 

Structural Slopes 

Within Between 
R 2 = 0.20 R 2 = 0.79 

Raw* Stand. Raw Stand. 
0.19 (3.44) 0.11 -0.07 (-1.07) -0.09 

-0.19 (-0.83) -0.03 -1.39 (-0.70) -0.09 
2.42 (6.50) 0.21 3.14 (4.53) 0.44 
0.81 (7.86) 0.34 1.17 (5.81) 0.62 

R 2 = 0.01 R 2 = 0.01 

Raw Stand. Raw Stand. 
SEX -0.03 (-0.21) -0.01 0.86 (0.26) 0.04 
Ethnicity 0.16 (0.86) 0.03 0.05 (0.04) 0.01 
SES 0.12 (2.57) 0.09 -0.23 (-0.68) -0.09 

*Raw means unstandardized coefficients; Stand. means standardized. 
Z values in parentheses. 

iables. Much remains to be done in the area of heterogeneity analysis by multilevel 
models for categorical and other nonnormal data. Some initial work has been done by 
Wong and Mason (1985), Longford (1988), and Bock (1989b). 

To conclude, one might ask if the modeling techniques discussed above, even in 
the outlined extensions, are sufficient in terms of capturing heterogeneity in real data. 
In my opinion, the answer to that question is no. Real-world applications would appear 
to require much more elaborate models. As an example related to the anxiety and 
depression example (Example 3), the diagnosis of a major depressive episode is made 
based on what could be measured as a set of dichotomous symptom items, where the 
individual has to have been sad for two weeks and have at least four of a set of eight 
other symptoms (Eaton & Bohrnstedt, 1989). If the sad item is not switched on, the 
other symptoms indicate a syndrome of a different kind. This measurement and clas- 
sification situation does not correspond to a standard factor analysis model, even when 
making the usual allowance for the dichotomous nature of the responses. Heterogeneity 
is at hand, where the items obey one model with the sad item switched on and another 
model when it is not. This is reminiscent of the econometric switching regressions 
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situation with different regimes (see, e.g., Maddala, 1983, pp. 283-287), although in a 
latent variable context. One may, for example, entertain the possibility of  classifying 
the individual into depressed and not depressed categories when the sad item is 
switched on, and provide a continuous factor score when it is not. This relates to 
models that mix latent class and latent trait specifications, discussed by Yamamoto 
(1988). But even so, individual heterogeneity is likely to require more complex models. 

In summary, it is safe to say that real-world applications require further develop- 
ment of more tailored modeling that carefully takes into account the special features of 
a certain subject-matter application area. This can probably only be done well in close 
collaboration with substantive researchers. There is a challenge, however, for meth- 
odological researchers to provide such tailored modeling within more generally appli- 
cable methods that avoid a proliferation of dataset-specific techniques. 
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