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A recent article in the Journal of Management gives a critique of a Bayesian approach to factor 
analysis proposed in Psychological Methods. This commentary responds to the authors’ critique 
by clarifying key issues, especially the use of priors for residual covariances. A discussion is also 
presented of cross-loadings and model selection tools. Simulated data are used to illustrate the 
ideas. A reanalysis of the example used by the authors reveals a superior model overlooked by the 
authors.
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Consider a researcher who, drawing on theory, formulates a measurement model; designs 
a measurement instrument; collects data; estimates a typical confirmatory factor analysis 
(CFA) model with zero cross-loadings and residual covariances; and finds that the fit statis-
tics indicate a poor fit between the data and the model. What should the researcher do in this 
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arguably common situation? From a practical perspective, traditional CFA approaches limit 
the researcher’s ability to investigate cross-loading and residual covariance parameters. It is 
well known that a stepwise relaxation of parameters using model modification indices both 
abandons the original theoretical hypothesis and risks leading to the wrong model. Freeing 
all cross-loadings from their fixed zero status leads to traditional applications of exploratory 
factor analysis (EFA) with rotations, where the focus has typically been on the number of 
factors rather than the hypothesized location of important versus ignorable factor loadings. 
Freeing all residual covariances uses up all degrees of freedom so that the model is no longer 
identified. A new approach using Bayesian structural equation modeling (BSEM) resolves 
these issues as described in Muthén and Asparouhov (2012).

In essence, the focus of this approach is not only to test the model but to generate ideas 
about possible model modifications that can yield a better-fitting model. Thus, the goal of 
BSEM is not to confirm or disconfirm the CFA model but to provide the means to evaluate 
the difference between the hypothesized CFA model and the data. In doing so, the BSEM 
approach may identify possible cross-loadings, or residual covariances, present in the popu-
lation model that may have been otherwise missed by the CFA approach and that may be 
meaningful. As we discuss below, the alternative view that these cross-loadings or residual 
covariance should be avoided, which stems from problems with the way these have tradition-
ally been included in a model, appears neither realistic nor in line with the principles of clas-
sical test theory or recent statistical studies.

In a special issue of Journal of Management devoted to Bayesian estimation (Zyphur & 
Oswald, 2015), Stromeyer, Miller, Sriramachandramurthy, and DeMartino (2015: 508) pro-
vide a discussion of BSEM, stating,

Given the promise we see in the BSEM technique to enable management scholars to push the 
boundaries of theory testing, we offer the following series of recommendations to guide the 
future use of the BSEM technique with regards to measurement model development.

The Stromeyer et al. (2015) recommendations, however, are flawed in that they are based 
on criticisms of BSEM that the current article shows are not justified. Muthén and Asparouhov 
(2012) discussed two key factor analysis application areas for BSEM: cross-loadings and 
residual covariances. Stromeyer et al. have objections in both of these areas. In their critique 
of BSEM with cross-loadings, they argue that this can obscure measurement problems and 
lead to misestimated factor correlations. On the basis of our experience and our simulation 
studies, we dismiss these objections. Their strongest critique concerns the residual covari-
ance application of BSEM. Their Recommendation 6 (pp. 514-515) states three reasons for 
why this technique should be avoided and concludes that it should not be used until guide-
lines become available. In this paper, we present our disagreement with this view, addressing 
the Stromeyer et al. concerns by providing a detailed account of the proper use of BSEM with 
residual covariances. It is shown that this technique in fact provides unique insights not 
obtained by other factor analysis approaches.

The current paper also presents our disagreement with Recommendation 5 of Stromeyer 
et al. (2015: 513-514), where it is stated that Bayesian information criterion (BIC) should be 
given preference over discrepancy information criterion (DIC) for model selection involving 
BSEM. Our view is that only DIC properly accounts for the BSEM parameters with small-
variance priors.
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In the following pages, we address each of these three issues in turn (cross-loadings, 
residual covariances, DIC vs. BIC). Illustrations are provided using several simulated data 
examples. Finally, we apply the BSEM technique thus illustrated to a reanalysis of the 
Stromeyer et al. (2015) example. This reanalysis leads to an alternative model that is over-
looked by using ordinary factor analysis or BSEM with only cross-loadings.

Cross-Loadings in BSEM

First we want to point out that the Stromeyer et al. (2015) criticism of the cross-loadings has 
nothing to do with the BSEM method per se but concerns cross-loadings in general. The authors 
do not have a problem with how cross-loadings are found and estimated with BSEM; rather, they 
argue against the general use of cross-loadings, thereby dismissing several other well-accepted 
modeling techniques, such as EFA and exploratory structural equation modeling (Asparouhov & 
Muthén, 2009). Stromeyer et al. argue that modeling cross-loadings is akin to “modeling noise.” 
We disagree. Psychometric indicators are seldom perfectly pure construct indicators. Even com-
pletely reliable ratings of insomnia or physiological measures of sleep patterns are likely to pres-
ent significant levels of true score (i.e., valid) associations with multiple constructs, such as 
burnout, depression, stress, drug abuse, and so on. Morin, Arens, and Marsh (in press) note,

Remember that, according to the reflective logic of factor analyses, the factors are specified as 
influencing the indicators, rather than the reverse. Thus, small cross-loadings should be seen as 
reflecting the influence of the factor on the construct-relevant part of the indicators, rather than 
the indicators having an impact on the nature of the factor itself.

It follows that these small cross-loadings do not taint the constructs by adding “noise” but rather 
allow them to be estimated using all of the relevant information present at the indicator level.

Stromeyer et al. (2015) go on to ask why scholars would want to develop instruments that 
include cross-loadings. We do not argue that researchers should not aspire to develop indicators 
that are as close to perfect as possible. Although “pure” indicators of a single construct may 
exist, we surmise that such indicators remain at best a convenient fiction and that, in practice, 
most indicators will present both some level of random noise and also some level of construct-
relevant association with other constructs (Marsh, Lüdtke, Nagengast, Morin, & Von Davier, 
2013; Marsh, Morin, Parker, & Kaur, 2014; Morin et al., in press; Sass & Schmitt, 2010; 
Schmitt & Sass, 2011). Relying on a measurement model that makes these associations explicit 
through cross-loadings is clearly a better way forward than relying on methods where these 
cross-loadings are swept under the rug. Thurstone (1947) proposed his “simple structure” prin-
ciples to ensure conceptual clarity in the assessed constructs and as a set of rules to guide factor 
rotation, not as a set of guidelines to determine whether a factor solution was meaningful or not. 
In a typical BSEM cross-loading model, a limited number of midsize cross-loadings will be 
added to the CFA model, and all remaining cross-loadings will be near zero. Thus the BSEM 
cross-loading model does not compromise the conceptual clarity of the constructs.

Stromeyer et al. (2015) take issue with the argument that the exclusion of cross-loadings will 
result in “inflated” factor correlations. Recent statistical literature on measurement models 
including cross-loadings (Marsh et al., 2009, 2010, 2014; Morin et al., in press) show that factor 
correlations tend to be upwardly biased when true cross-loadings are constrained to be zero. 
This argument is based not on an opinion but on the results from simulation studies (Asparouhov 
& Muthén, 2009; Sass & Schmitt, 2010; Schmitt & Sass, 2011) and studies based on simulated 
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data (Marsh et al., 2013; Morin et al., in press). The advantage of such studies is that the true 
population model is known and thus could be used as an objective benchmark against which to 
compare the results from the estimated models. Thus, such studies are able to provide guide-
lines that are based on empirical facts rather than opinions, such as those expressed in Stromeyer 
et al. In addition, simulation studies can be used to show that adding small variance prior cross-
loadings in a BSEM model does not lead to “artificially reduced common factor covariance,” 
contrary to what Stromeyer et al. claim to be a logical conclusion.

What the above-mentioned studies showed was that even when small and substantively 
meaningless cross-loadings are present in the population model but ignored in CFA models, 
the factor correlations will tend to be substantially biased. Interestingly, these studies also 
show that when the population model meets the independent cluster assumptions inherent in 
CFA, relying on models allowing for the estimation of cross-loadings will nevertheless result 
in unbiased estimates of factor correlations notwithstanding the loss in parsimony associated 
with these models. Overall, these studies clearly show that the inclusion of cross-loadings is 
neither logically flawed nor logically incorrect but rather empirically supported by statistical 
research. Going back to the flawed argument that cross-loadings “taint” the nature of the 
constructs, these results rather show that it is the exclusion of these cross-loadings that modi-
fies the meaning of the constructs.

The key to successful use of cross-loadings in a BSEM application is determining the 
small variance of the cross-loadings prior that will allow the nonzero cross-loadings to be 
estimated while keeping the rest near zero. This should be done as is described in the next 
section for the residual covariances, beginning with a very small prior variance that makes 
the BSEM and the CFA model identical and slowly increasing the variance until improve-
ments in model fit diminish and/or quality of model identification diminishes as measured by 
the rate of convergence in the Bayesian iterations. Appendix A gives a summary of the steps 
recommended for BSEM with both cross-loadings and residual covariances.

Residual Covariances in BSEM

Stromeyer et al. (2015) point out that BSEM cross-loadings analysis is much easier to 
estimate and interpret than BSEM residual covariance analysis. We argue that this should not 
be the case and that both approaches use the same basic idea, which is to explicitly model 
some otherwise unmodeled source of influence on the indicators used within a specific mea-
surement model. Whereas cross-loadings model meaningful associations between items and 
nontarget factors, residual covariances model shared sources of influence on the indicators 
that are unrelated to the factors, such as wording effects (e.g., negatively worded items or 
items with parallel wording), context (e.g., items referring to similar contexts, such as work 
vs. family), and so on. In more technical terms, both approaches involve adding to the model 
a set of potentially misspecified parameters with small priors around zero. These parameters 
are neither completely fixed to zero nor completely free but are instead approximately fixed 
to zero. In BSEM, we preserve the hypothesized SEM model while allowing the data to drive 
away from zero some of these additional parameters when evidence in the data exists. Despite 
the fact that the priors for the BSEM residual covariance analysis are more advanced than for 
the BSEM cross-loadings analysis due to its multivariate nature, simple guidelines are avail-
able and clarified below.
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The BSEM method with residual covariances uses small informative priors for the resid-
ual covariance parameters in CFA to estimate a full residual variance-covariance matrix as 
part of the CFA model estimation. With this method, the residual covariance matrix is uncon-
strained by the model but is constrained by the prior. We consider a simple CFA model for a 
factor η and a loading matrix Λ:

                                                        Y = + + ,ν Λη ε                                                           (1)

where

                                                               Var( ) =ε θ                                                               (2)

is a diagonal residual covariance matrix. We consider situations where the CFA model does 
not fit the data well according to the posterior predictive p value (PPP; Muthén & Asparouhov, 
2012) and illustrate what can be learned from a BSEM analysis with unconstrained residual 
covariances.

For the BSEM method, we set a prior for the θ matrix as the inverse Wishart prior

                                                            θ ~ dD,d ,IW ( )                                                          (3)

where d is the degrees of freedom of the distribution and D is the diagonal matrix equal to the 
CFA estimate of θ. This choice of prior is motivated as follows, drawing on Muthén and 
Asparouhov (2012: 335). The prior mean for θ is

                                                          
d

d p 1
D,

− −
                                                          (4)

where p is the number of observed variables. The prior mode for θ is

                                    
d

d + p+1
D.                                                           (5)

Thus for all off-diagonal elements of θ, the prior mean and the prior mode are both zero. 
For the diagonal elements of θ and sufficiently large d, both the prior mode and the prior 
mean will be close to D. As d increases, the prior variance for all parameters converges to 
zero; see formulas (A15) and (A17) in Muthén and Asparouhov (2012). Setting the d param-
eter to a large value is equivalent to analyzing the CFA model with residual variance param-
eters fixed to the CFA estimates D and residual covariance parameters fixed to zero. Thus the 
estimated BSEM model for large d would be equivalent to the CFA model, and it would yield 
PPP = 0 when the CFA model has PPP = 0. We conclude that the BSEM model would be 
rejected when d is sufficiently large.

Stromeyer et al. (2015) state that BSEM models with unconstrained residual covariances 
will yield outstanding model fit regardless of what model is specified. This statement is 
incorrect for three reasons. First, the authors ignore the basic asymptotic result that as d is 
sufficiently large, the PPP for the BSEM model will become the same as the PPP for the CFA 
model, that is, the BSEM model with large d will reject the model in those cases where the 
CFA model is rejected. Second, in their own data analysis, the authors fail to investigate prior 
sensitivity as recommended in Muthén and Asparouhov (2012). If these authors had explored 
inverse Wishart priors with different degrees of freedom, they would have inevitably obtained 
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BSEM models with large degrees-of-freedom parameter d and PPP = 0. Just as in the cross-
loading BSEM analysis, very small prior variances for the cross-loadings are necessary as 
part of the model estimation; so is the BSEM residual covariance analysis with large degrees-
of-freedom parameter d. The idea behind BSEM is simple. Attach a small-variance prior to 
all possible additions to the CFA model and let the data determine if such additions are neces-
sary. The basic BSEM logic converts a fixed-to-zero parameter to an approximately fixed-to-
zero parameter by specifying a small-variance prior. In that regard, Stromeyer et al. 
misrepresent the BSEM logic and the basic BSEM implementation. Third, the authors mis-
represent the primary goal of estimating a BSEM model, which is not to confirm or discon-
firm the CFA model but to evaluate the sources of the differences between the hypothesized 
CFA model and the data. The interpretation of that difference and the actual conclusions of 
the BSEM analysis are entirely up to the substantive researcher.

Gradually lowering the degrees-of-freedom parameter d in the BSEM model would yield 
a more flexible model where the residual covariances are no longer severely constrained to 
zero. For a sufficiently low degrees-of-freedom parameter, the BSEM model will essentially 
estimate a completely unconstrained variance-covariance matrix. Therefore, such a model 
would yield a high PPP value, and the model would not be rejected. This happens because the 
prior restrictions are minimal, and thus the BSEM model is sufficiently close to the unidenti-
fied and unrestricted model without the prior restrictions, not because the BSEM residual 
covariance approach is flawed.

In this section, we illustrate the proper usage of BSEM with several examples. For each 
example, a CFA model is estimated and is rejected based on PPP = 0. The CFA analysis is 
then followed up with a BSEM analysis. Here we assume that any cross-loading BSEM 
analysis has already been completed, and we focus only on the residual covariance. With a 
sufficiently low degrees-of-freedom parameter d, the PPP for the BSEM analysis is guaran-
teed to be greater than 0.05. We conduct BSEM sensitivity analysis by varying the degrees-
of-freedom parameter d with the primary goal of determining the largest d that yields a PPP 
value greater than 0.05.

We consider this model to be the BSEM model of interest. By definition, this model is not 
rejected by the data and can be considered to be the BSEM model closest to the CFA model 
that fits well enough. This model resolves all of the CFA model misfits. At the same time, the 
larger the degrees-of-freedom parameter d is, the stricter the prior, and thus the CFA model 
modifications will be the smallest possible. This model is also better identified than models 
with lower d parameters and yields faster convergence. We summarize the BSEM sensitivity 
analysis in several steps.

Step 1. Select a starting value for d. Possible starting values are d = 100 (for N ≈ 500), d = 1,000 (for 
N ≈ 5,000), or d = 10,000 (for N ≈ 50,000).

Step 2. Estimate the BSEM model with the initial or current d value with three possible outcomes.

(a) Fast convergence (similar to CFA) and PPP > 0.05: You can use that BSEM model.
(b) Slow or no convergence: Increase d and repeat Step 2 with new d.
(c) Fast convergence but PPP < 0.05: Decrease d and repeat Step 2 with new d.

In the above process, the rate of increase or decrease of the d values can be selected in 
an ad hoc manner. For example, if a starting value of d = 100 is used, depending on the 
result, the next value of d can be 50 or 150. The above iterative process should not take 
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more than five iterations, ideally. Note also that following the above process, we techni-
cally do not arrive at the maximum d values for which PPP > 0.05. We arrive at a d value 
that yields fast convergence, which can be interpreted as the model is sufficiently identi-
fied, and for which PPP > 0.05, which can be interpreted as the model fits sufficiently well 
as compared to the CFA model. These two characteristics of the BSEM model should be 
sufficient to make inference on the needed model modifications. If the inference is not 
clear, one possibility is to consider higher values of d that still yield PPP > 0.05. This will 
tend to reduce the values of the estimated residual covariance and perhaps make the infer-
ence easier.

Also note that in the construction of the inverse Wishart prior, it is important to use the 
exact D matrix from the Bayes CFA estimation when the degrees-of-freedom parameter d is 
large. If d is small, one can use an approximate and rounded D matrix because the prior is not 
strong and unlikely to yield misfit due to mismatch in the residual variances. For large d, 
however, if D is not set as in the CFA model, the PPP may reject the BSEM model due to a 
mismatch in the residual variance rather than the residual covariance.

The BSEM model can help us discover the places where the CFA model fails. Whether or 
not the CFA model is modified based on BSEM discoveries is a separate issue. This decision 
should depend on what the BSEM analysis determines and the possible substantive interpre-
tations. Below, we illustrate five different possible outcomes from the BSEM analysis. In 
some situations, good model modifications can be discovered. In others, BSEM would sug-
gest that the CFA misfit is due to small and unimportant residual correlations and the main 
model should stay unchanged.

The advantage of using BSEM is that the model modifications are based on the original 
CFA model and the BSEM analysis includes the original CFA loadings pattern. For example, 
evaluating the differences between the model-estimated and observed variance-covariance 
matrix does not provide that kind of embedding of the original model and would simply point 
out which observed covariances are not matched by the model rather than how the model 
should be modified.

Large Isolated Residual Covariances

In this section, we show that BSEM can pinpoint a few large residual correlations that are 
responsible for the misfit (such as when two items have strictly parallel wording). Such large 
correlations can be included and interpreted in a modified CFA model. Consider a simulated 
factor analysis example with six indicators and a single factor. All means are set to zero. All 
loadings and residual variances are set to 1. In the data generation, we include a residual cor-
relation of 0.50 between the first two indicators. The sample size for this simulated example 
is 500. The CFA analysis without any residual correlations is rejected with PPP = 0. The 
BSEM model with d = 100 is not rejected and satisfies the goal of the BSEM sensitivity 
analysis. To set up the prior for the residual covariances in BSEM, we set D to be the identity 
matrix as all CFA residual variance estimates are close to 1. The estimate for the residual 
correlation between the first two variables is 0.30 and statistically significant. All remaining 
residual correlations are smaller than 0.11 and not significant. Thus the BSEM analysis sug-
gests that a residual correlation is the main reason for the CFA model misfit. This correlation 
can be included in the CFA model to improve the model fit, the accuracy of the parameter 
estimates, and the accuracy of the factor score estimates.
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Missing Factor

In this section, we show that BSEM can point to a missing factor in the CFA analysis (such 
as when one tries to estimate a single organizational commitment factor when in fact items 
measuring commitment to the organization and the workgroup are included). We generate a 
data set based on a two-factor model where each factor has three indicators. Parameters are 
set as in the previous section. Estimating a CFA model with one factor yields a model rejec-
tion. The BSEM model with d = 250 is not rejected and satisfies the goal of the BSEM sen-
sitivity analysis. All residual correlations are estimated to be between 0.25 and 0.38 by 
absolute value, and all are statistically significant. Some correlations are positive and some 
are negative. Clearly this situation is easy to distinguish from the situation presented in the 
previous section. The fact that all correlations are misfitted should be interpreted as evidence 
that the one-factor model is an insufficient representation of the data, and the possibility for 
more factors should be explored.

Extra Factor: Two Factors Instead of One

In this section, we show that BSEM can suggest reducing the number of factors by com-
bining two highly correlated factors into one (such as when one tries to estimate multiple job 
satisfaction factors when in fact all items tap into the same overarching construct). We simu-
late a factor analysis example with six indicators and a single factor. In the data generation, 
we also include a residual correlation of 0.7 between the first two indicators. The data are 
analyzed with a CFA model with two factors with three indicators each. The CFA model is 
rejected. The correlation between the two factors is estimated to be 0.8, which is high but not 
sufficiently so to consider combining them. The standard error for the factor correlation is 
0.06. The corresponding BSEM analysis with d = 50 is not rejected. The correlation between 
the two factors is 0.98 with a standard error of 0.05. This is clearly enough evidence to con-
sider combining the two factors into one. In addition, the BSEM analysis points to a residual 
correlation between the first two indicators. That residual correlation is estimated to be 0.41 
and is statistically significant. All other residual correlation parameters are smaller than 0.19 
and can be considered ignorable. Using this BSEM analysis, we can conclude that the two 
factors should be combined as one and that there is one isolated residual correlation.

Extra Factor: Unstable Factor That Can Be Replaced by Residual 
Correlations

In this section, we show that BSEM can suggest reducing the number of factors by 
eliminating unstable factors and replacing them with isolated residual correlations (such as 
when the presence of positively and negatively worded items suggests the existence of two 
factors when in fact a single construct is assessed but methodological artifacts need to be 
controlled for). We simulate a factor analysis example with six indicators but only the first 
three have loadings of 1 and the remaining three have loadings of 0. Two residual correla-
tions are included in the data generation Θ34 = 0.4 and Θ56 = 0.7. The sample size is 200. 
We analyze the data with a two-factor CFA model. The first factor is measured by the first 
three indicators. The second factor is measured by Indicators 3 through 6. Thus the CFA 
model includes a cross-loading from the second factor to the third indicator. The CFA is 
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rejected with PPP = 0. However, all main loadings are significant. The cross-loading is not 
significant. The BSEM model with d = 50 is not rejected. In the BSEM model, the structure 
for the first factor appears to be unchanged, but the structure for the second factor is 
changed completely. Now the loadings for the last two indicators are small and insignifi-
cant, while the cross-loading is significant. This indicates that the second factor is poorly 
defined and is constructed simply to account for some isolated residual correlations. The 
estimate for Θ56 is 0.55 and statistically significant, while all other covariances are not. The 
remaining structure of the second factor is now based only on one main loading (Indicator 
4) and one cross-loading (Indicator 3), which also suggests that the factor is replaceable by 
the residual correlation Θ34. The BSEM analysis identified a poorly defined factor and 
identified two residual correlations that can be added to the model instead of that factor, 
arriving again at the true model that generated the data.

Small Residual Correlations

In this section, we show that BSEM can suggest that the failure of the CFA model may be 
due simply to small residual correlations. If these correlations are small, one option is to 
retain the original CFA model and treat it as a good approximation to the data. Here, we gen-
erate data from a one-factor model with six indicators, adding the following residual correla-
tions Θ12 = Θ14 = 0.05 and Θ13 = Θ35 = –0.05. The sample size is 500. The CFA one-factor 
model is rejected, while the BSEM model with d = 100 is not rejected. The BSEM residual 
correlations are all less than 0.1 and not statistically significant. These BSEM results are 
quite different from those in the previous sections and can lead us to the conclusion that no 
major model change is needed and the misfit in the CFA analysis is due to minor differences 
between the model and the data.

BSEM Residual Covariances Conclusion

The BSEM model points out which residual correlations are not accounted for by the CFA 
model, which factors have stable structures, and which do not. That information can be used 
for modifying the CFA model to obtain a better-fitting model. One key issue in considering 
the BSEM results is which covariances/correlations should be freed as candidates to be 
included in the CFA model. In making this decision, we should consider the statistical signifi-
cance as computed by the BSEM model estimation as well as the substantive significance, 
meaning whether or not the estimated value is perceived to be sufficiently large to be of 
substantive importance.

Two of the possible outcomes are clear. If a correlation is substantively and statistically 
significant, it should be included in the CFA. If a correlation is substantively and statistically 
insignificant, it should not be included and should be fixed to zero. There is some ambiva-
lence in the remaining two situations, and the decision is somewhat subjective. We provide 
some general guidance in that regard. If a correlation is substantively significant but not 
statistically significant, one can increase the degrees-of-freedom parameter d in the BSEM 
estimation. If that parameter is not sufficiently large, the estimated standard errors in the 
BSEM estimation may be artificially too large due to poor model identification. Thus, 
increasing d may align the substantive and statistical significance. On the other hand, if a 
parameter is substantively insignificant but statistically significant, we may choose to treat 
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that parameter as approximately zero and interpret the CFA model as a sufficiently good 
approximation for the data. In addition, consider the fact that the estimation of the residual 
correlation parameters is tied up with the estimation of the factor model, that is, the estimates 
of the residual correlation parameters are not independent. If only one correlation is misfitted 
by the CFA model, the BSEM model may show more than one statistically significant cor-
relation involving the same variables due to the fact that the model will attempt to compen-
sate the misfit and thereby affect the remaining correlations related to those indicators. In 
such situations, focusing on the biggest correlations in the BSEM model can be used as a 
good strategy. For example, if two correlations are statistically significant within the same set 
of factor indicators but only one is substantively significant, we can choose to free only that 
one in the CFA model and hope that the resulting factor model adjustment will reduce the 
value of the remaining one. In this somewhat ad hoc process, the PPP value should be used 
to evaluate the CFA model fit.

The Use of DIC Versus BIC in BSEM Analysis

Stromeyer et al. (2015) discuss the use of DIC and BIC to choose among models in BSEM 
analysis. Because of the special nature of the BSEM parameters, we think DIC is more 
appropriate than BIC for comparing BSEM to CFA models. The model complexity penalty 
for DIC is based on the estimated number of parameters, while the penalty for BIC is based 
on the actual number of parameters. Thus BIC can unnecessarily penalize the BSEM model 
by counting small-variance prior parameters as actual parameters and thereby overshadow-
ing information provided by BSEM. For this reason, we find that the recommendation given 
in Stromeyer et al. (2015: 513-514) to place more weight on BIC than DIC is misguided, and 
we illustrate this with a simulation study.

For both BSEM and CFA models, DIC is computed as follows. In each Markov chain 
Monte Carlo (MCMC) iteration, we compute the deviance for the current parameters:

                                        D p Y( ) = 2log[ ( | )],Θ − Θ                                                    (6)

where p(Y | Θ) represents the likelihood of the observed data given the current parameters Θ. 
We then compute the effective number of parameters pD:

                                                      p D DD = ,− Θ( )                                                         (7)

where −D represents the average deviance across all MCMC iterations and −Θ represents the 
average of the parameters across the MCMC iterations. Finally, DIC is computed as

                                                    DIC= D+ p .D                                                          (8)

The computation of BIC in Mplus is performed as follows:

                                              BIC log= D +k N ,Θ( ) ( )                                                   (9)

where k is the number of model parameters and N is the sample size.1
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For BIC and DIC, a low value is preferred. This is obtained for high log-likelihood/low 
deviance and low model complexity penalty. The complexity penalty for DIC is the esti-
mated number of parameters pD, and for BIC, it is klog(N). For BIC, the model complexity 
penalty increases with sample size and uses the actual number of parameters k rather than the 
estimated number of parameters as in DIC.

Consider the following simulated example that illustrates the advantage of DIC over BIC for 
BSEM residual covariance analysis. We generate data according to a factor analysis model with 
one factor and 10 indicators. All factor loadings and residual variances are set to 1, and the 
means are set to 0. For the data generation model, we also include a residual correlation of 0.5 
for two of the indicators. The sample size for this simulation example is 200. We analyze the data 
with the one-factor CFA model and the corresponding BSEM model with d = 200. Table 1 con-
tains the results of this simulation. Using BIC for model selection yields the incorrect conclusion 
to prefer the CFA model with no residual correlations in the model. Using DIC for model selec-
tion yields the correct conclusion to prefer the BSEM model including one large residual correla-
tion. In this example, PPP also agrees with DIC and the CFA model is rejected by PPP, while the 
BSEM model is not. In this example, it is interesting to note that the complexity penalty for the 
BIC uses k = 75 true parameters, while for the DIC, the estimated number of parameters is pD = 
40. The DIC recognizes that most of the extra residual covariance parameters are nothing more 
than parameters nearly fixed to zero, and it is not penalizing for those parameters.

The BIC is asymptotically guaranteed to select the correct model (Schwarz, 1978). In the 
above example, it is key that the sample size is small (n = 200). In this case, the deviance 
gains of the BSEM analysis are overpowered by the inflated penalty of BIC, and that leads to 
the incorrect conclusion when using BIC. If the sample size is larger, both BIC and DIC 
would pick the BSEM model because the deviance component of the information criteria 
becomes dominant. Note, however, that for any sample size, we can construct a model with 
a sufficiently large number of indicators where the BIC will fail. This is because the inflation 
of the penalty in BIC will be larger for examples with more indicators, and thus one can 
expect such problems to occur even with larger sample sizes. Thus we recommend using DIC 
for comparing BSEM models with other BSEM or CFA models. Comparing CFA models 
estimated by Bayes, BIC may still be preferable.

Application to Stromeyer et al. Example

This section applies the BSEM method with residual covariances to the five-factor model 
for the 19 items analyzed by Stromeyer et al. (2015). The resulting BSEM model is compared 
to the BSEM model with cross-loadings of Stromeyer et al. The two CFA models suggested 

Table 1

DIC Versus BIC Comparison for BSEM

Model BIC DIC

CFA 6267 6172
BSEM 6460 6144

Note: DIC = discrepancy information criterion; BIC = Bayesian information criterion; BSEM = Bayesian structural 
equation modeling; CFA = confirmatory factor analysis.
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by the BSEM models are compared as well. Data from both of the randomly drawn Samples 
1 and 2 are considered (n = 500 in both samples). Sample 1 data are analyzed first, using 
Sample 2 for comparison and cross-validation.

As a first step, the IW(dD, d) residual covariance prior was chosen with D as the residual 
variances of the Bayes five-factor CFA model shown in Table 2 of Stromeyer et al. (2015) 
and d set to 100. This BSEM model maintains the cross-loadings used in Stromeyer et al.’s 
Table 3, choosing prior variances of 0.01 in line with Muthén and Asparouhov (2012). 
(Stromeyer et al. used prior variances of 0.02.) Because this BSEM analysis gives a PPP 
much greater than 0.05, the next step increases d to 200, resulting in PPP = 0.129. Given that 
this PPP value is reasonably close to the stipulated threshold of 0.05, no further increase of d 
is made. An interesting finding from this BSEM analysis is that the two factors Plan and 
Marshal are as highly correlated as 0.95 (the Sample 2 correlation is 0.93). This suggests 
combining the Plan and Marshal factors, resulting in a four-factor model for which the same 
BSEM priors are applied.2

Table 2 shows the factor loading and factor correlation estimates from the four-factor 
BSEM model using Sample 1 data. It is seen that two cross-loadings are significant and larger 
than 0.2, the indicator S3 loading on Plan-Marshal and the indicator P3 loading on Implement 
Finance. Only two residual correlations (not shown) are significant and greater than 0.2, S3 
with P1 and P2 with P3. The Mplus input for this BSEM analysis is shown in Appendix B.

The top of Table 3 shows fit statistics for the Stromeyer et al. (2015) BSEM model (labeled 
SMSD five-factor, using the last name initials of the four authors) and our five-factor and 
four-factor models (labeled AMM five-factor/four-factor). These models are compared using 
DIC as proposed in the previous section. Table 3 shows that the AMM five-factor model has 
a better DIC value than the SMSD five-factor model. This advantage also holds for Sample 
2. The AMM four-factor model has a slightly higher (worse) DIC value than the AMM five-
factor model but is preferable due to avoiding the high factor correlation. The AMM four-
factor model maintains a PPP value greater than 0.05.

The bottom part of Table 3 shows fit results for the CFA models suggested by the BSEM 
analyses, referred to as BSEM-based CFA. The SMSD five-factor CFA model is that of Table 
4 in Stromeyer et al. (2015), where three cross-loadings have been added. The AMM four-
factor CFA model adds the two cross-loadings and two residual covariances discussed in 
connection with Table 2. Note that for these models, only diffuse priors are used; that is, 
BSEM-type informative priors are not used. Because of this, the comparison between models 
is carried out using BIC, a more common criterion for CFA models. BIC favors the AMM 
four-factor model for both Sample 1 and Sample 2. The same conclusion is reached when 
using maximum-likelihood estimation.

Table 7 of Stromeyer et al. (2015) shows the results of cross-validation comparing model 
estimates for Sample 1 and Sample 2. The strictest invariance across the samples is the 
“strong” case (scalar invariance) where factor indicator intercepts and loadings are held 
equal across samples while the factor means, factor variances, factor covariances, and indica-
tor residual variances are allowed to vary. Here we also add the more relevant full invariance 
case where all parameters are held equal across samples. BIC is again considered given that 
BSEM analysis is not used. The BIC values for the SMSD five-factor model are for the 
strong case and the full invariance case 41453 and 41275, respectively. These BIC values are 
higher (worse) than those of the corresponding AMM four-factor values, 41355 and 41189, 
respectively.
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In conclusion, our four-factor model performs better than the proposed five-factor model 
of Stromeyer et al. (2015) in both its BSEM version and its CFA version, and it also cross-
validates better. Our four-factor model would not be entertained unless a residual covariance 
BSEM model is analyzed. The high correlation between the Plan and Marshal factors is not 
seen in the cross-loading BSEM analysis of Stromeyer et al. An interesting aside is that the 
high factor correlation is also not seen in EFA. EFA with five factors shows the CFA loading 
pattern that is hypothesized, and no high factor correlations are obtained. EFA is, however, 
limited in that it does not allow residual covariances. Both the five- and four-factor EFA BIC 
values are worse than those of our four-factor model. All in all, this implies that BSEM analy-
sis with residual covariances is uniquely positioned to uncover a model alternative that would 
otherwise be overlooked. It enables “thinking outside the box” of regular EFA and CFA as 
well as cross-loading BSEM. Our four-factor model alternative performs better in statistical 
terms than the five-factor model preferred by Stromeyer et al. Whether or not this four-factor 
alternative is palatable from a subject matter point of view is a different matter, but it is a 
useful discovery nevertheless. If the researcher’s theories strongly suggest a five-factor 

Table 2

Estimates From Four-Factor BSEM With Cross-Loading Prior Variance 0.01 and 
Residual Covariance Priors With d = 200 (Sample 1)

Indicator Search Plan-Marshal Implement People Implement Finance

S1 .93† −.04 −.04 −.02
S2 .98† −.07 .02 −.00
S3 .42† .30 .07 .02
P1 .37 .45† .01 .00
P2 .02 .64† −.05 .15
P3 −.05 .65† −.09 .24
P4 −.06 .83† −.09 −.02
M1 −.02 .89† .02 −.12
M2 −.08 .75† .09 −.09
M3 −.02 .70† .11 −.05
IP1 −.04 −.07 .95† .01
IP2 −.09 .06 .85† .02
IP3 −.06 −.06 .93† .00
IP4 .11 .01 .70† .05
IP5 .05 .06 .76† −.06
IP6 .03 −.05 .76† −.01
IF1 .01 −.03 .05 .91†
IF2 .02 −.02 −.02 .99†
IF3 −.04 .04 .03 .79†
Latent variable correlation matrix  
 Search —  
 Plan-marshal .65 † —  
 Implement people .46 † .64† —  
 Implement finance .29 † .55† .44† —

Note: Factor loadings in bold were freely estimated using diffuse priors. Daggers indicate 95% credibility interval 
does not contain zero. This measurement scale is developed by McGee, Peterson, Mueller, and Sequeira (2009).
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model, efforts should be made to investigate other item formulations in the instrument devel-
opment so that the four-factor alternative is not competitive.

Conclusion

This paper has shown that the BSEM technique is a valuable tool for a thorough factor 
analysis of a measurement instrument. The technique provides unique insights not obtained 
by other types of factor analysis. The paper counters the criticism leveled against BSEM by 
Stromeyer et al. (2015). A reanalysis of the example used by the authors uses BSEM with 
residual covariances to reveal a superior model overlooked by the authors. We hope that the 
guidelines we have presented will stimulate more use of BSEM.

Appendix A

Bayesian Structural Equation Modeling (BSEM) Analysis Steps

This appendix summarizes BSEM analysis steps (for details, see Muthén & Asparouhov, 
2012).

1. Choose a uniform metric for the variables, for example, by standardizing the variables when 
the model is scale free (no parameter equalities across variables), so that scale issues do not 
interfere with prior settings (see Muthén & Asparouhov, 2012).

2. Specify cross-loadings with a prior variance that is small enough that the Mplus output 95% 
confidence interval for the difference between the observed and the replicated chi-square  

Table 3

BSEM and BSEM-Based CFA Fit Statistics

Model Sample PPP No. Par. No. Est. Par. DIC BIC

BSEM  
 SMSD five-factor cross-loading BSEM 1 0.00 143 113 20371 21032

2 0.00 143 113 20346 21006
 AMM five-factor cross-loading, residual 

covariance BSEM
1 0.13 314 156 20157 21792
2 0.15 314 160 20179 21806

 AMM four-factor cross-loading, residual 
covariance BSEM

1 0.12 291 161 20163 21648
2 0.09 291 161 20185 21671

BSEM-based CFA  
 SMSD five-factor 1 0.00 70 71 20449 20742

2 0.00 70 71 20536 20828
 AMM four-factor 1 0.00 68 67 20424 20712

2 0.00 68 67 20492 20779

Note: BSEM = Bayesian structural equation modeling; CFA = confirmatory factor analysis; SMSD = BSEM model 
estimated by Stromeyer, Miller, Sriramachandramurthy, and DeMartino (2015; labeled using the last name initials 
of the authors); AMM = BSEM model estimated in this study (labeled using the last name initials of the authors); 
PPP = posterior predictive p value; No. Par. = number of free parameters; No. Est. Par. = estimated number of 
parameters; BIC = Bayesian information criterion; DIC = discrepancy information criterion.
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values is the same as for the original confirmatory factor analysis (CFA) model without cross-
loadings (with variable on a scale with variance 1, a prior variance of 0.001 may be suitable).

3. Increase the cross-loadings prior variance by a factor of 10 and then in smaller steps, such as 
5. Multiple runs should be done, at least five. Then monitor:

a. Speed of convergence (number of iterations); a too-large prior variance leads to 
nonconvergence due to nonidentification.

b. Ninety-five percent confidence interval for the difference between the observed and 
the replicated chi-square values.

4. From the runs in Step 3, make a subjective selection based on Criteria a and b, where for

a. the number of iterations to convergence will increase as prior variance increases.
b. the confidence interval limits will decrease as prior variance increases, with dimin-

ishing returns when stabilizing.

Subjectively select a prior variance for the cross-loadings that gets the majority of the 
decrease in Criterion b without sacrificing much on Criterion a.

5. Compute D of the residual covariance inverse Wishart prior using the residual variance esti-
mates from the CFA model or the cross-loading model.

6. Conduct a sensitivity analysis described in the manuscript in the Residual Covariances 
section.

7. Conclude on the model: Possible model modifications and decision on a BSEM-based CFA 
model versus the BSEM model as the final model.

Appendix B

Mplus Bayesian Structural Equation Modeling (BSEM) Input

This appendix gives the Mplus input for the BSEM model with cross-loadings and resid-
ual covariances presented in Table 2.

TITLE: BSEM with cross loadings and residual covariances;
DATA: FILE = ESE_Ordered_Text.txt;
VARIABLE: NAMES = rank group rand id s1 s2 s3 p1 p2 p3 p4
 m1 m2 m3 ip1 ip2 ip3 ip4 ip5 ip6 if1 if2 if3;
 USEVARIABLES = s1 s2 s3 p1 p2 p3 p4
 m1 m2 m3 ip1 ip2 ip3 ip4 ip5 ip6 if1 if2 if3;
 USEOBSERVATION = (group EQ 1);
DEFINE: STANDARDIZE s1 s2 s3 p1 p2 p3 p4
 m1 m2 m3 ip1 ip2 ip3 ip4 ip5 ip6 if1 if2 if3;
ANALYSIS: ESTIMATOR = BAYES;
 !Activates the Bayesian estimator
 CHAINS = 2;
 !Specifies using two Markov Chains for conducting the analysis
 PROCESSORS = 2;
 !For use in multi-core systems, assigns two processors with one per chain
 FBITERATIONS = 15000;
 !Specifying that the minimum number of Markov Chain iterations is 15000

 (continued)
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Notes
1. In principle, in the computation of Bayesian information criterion (BIC), the deviance should be evaluated at 

the maximum-likelihood parameter estimates rather than the posterior mean; however, asymptotically the two are 
the same and we use the above computation as an approximation for the actual BIC value. The exact BIC value can-
not be estimated naturally within the Markov chain Monte Carlo estimation.

2. An interesting aside is the relationship between prior choices and size of factor correlations in the five-factor 
BSEM analysis. Holding the inverse Wishart prior constant and varying the prior variances for the cross-loadings 

MODEL: search BY s1* s2 s3
 p1 p2 p3 p4 m1 m2 m3 ip1 ip2 ip3 ip4 ip5 ip6 if1 if2 if3 (xload1-xload16);
 plan BY p1* p2 p3 p4 m1 m2 m3
 s1 s2 s3 ip1 ip2 ip3 ip4 ip5 ip6 if1 if2 if3 (xload17-xload28);
 imp_ppl BY ip1* ip2 ip3 ip4 ip5 ip6
 s1 s2 s3 p1 p2 p3 p4 m1 m2 m3 if1 if2 if3 (xload48-xload60);
 imp_fn BY if1* if2 if3
 s1 s2 s3 p1 p2 p3 p4 m1 m2 m3 ip1 ip2 ip3 ip4 ip5 ip6 (xload61-xload76);
 search WITH plan imp_ppl imp_fn;
 plan WITH imp_ppl imp_fn;
 imp_ppl WITH imp_fn;
 serch@1;
 plan@1;
 imp_ppl@1;
 imp_fn@1;
 s1-if3 (pload1-pload19);
 s1-if3 WITH s1-if3 (cload1-cload171);
MODEL PRIORS: xload1-xload76∼N(0,0.01);
 pload1∼ IW(43.2,200);
 pload2∼IW(22.8,200);
 pload3∼IW(114.8,200);
 pload4∼IW(98.4,200);
 pload5∼IW(78.6,200);
 pload6∼IW(85.0,200);
 pload7∼IW(101.2,200);
 pload8∼IW(56.0,200);
 pload9∼IW(92,200);
 pload10∼IW(79.2,200);
 pload11∼IW(45.6,200);
 pload12∼IW(57,200);
 pload13∼IW(56,200);
 pload14∼IW(80,200);
 pload15∼IW(76,200);
 pload16∼IW(92.6,200);
 pload17∼IW(33.6,200);
 pload18∼IW(14.8,200);
 pload19∼IW(67.4,200);
 cload1-cload171∼IW(0,200);
OUTPUT: STAND(STDYX);
 RESIDUAL TECH1 TECH8 STDY;
PLOT: TYPE = PLOT2;

Appendix B (continued)
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as 0.005, 0.01, and 0.02, the Plan-Marshal factor correlation is 0.99, 0.95, and 0.78 (Sample 2 values are 0.99, 0.93, 
and 0.81). A similar degree of variation in factor correlations does not appear when using only cross-loadings and 
not residual covariances. A conjecture is that with stricter cross-loading priors, the use of residual covariances gives 
decreased cross-loadings, and that increases the factor correlation because more indicator correlations have to go 
through the factors.
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