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Abstract

This commentary discusses the Bauer and Curran (2002) investigation of growth

mixture modeling. Single-class modeling of non-normal outcomes is compared to

modeling with multiple latent trajectory classes. New statistical tests of multiple-class

models are discussed. Principles for substantive investigation of growth mixture model

results are presented and illustrated by an example of high school dropout predicted by

low mathematics achievement development in grades 7 - 10.
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Statistical and Substantive Checking In Growth Mixture Modeling

Introduction

The development of growth mixture modeling (Muthén & Shedden, 1999;

Muthén, 2001a, b; Muthén, Brown, Masyn, Jo, Khoo, Yang, Wang, Kellam, Carlin, &

Liao, J., 2002) met a long-standing substantive need for more

developmentally-meaningful analysis of longitudinal data. The Bauer and Curran

(2002) paper’s scrutiny of this technique is timely because it may help protect against

poor applications now that the technique has left the initial phase of ”toy

applications” aimed at methods illustrations and has entered the phase of serious

substantive applications. This commentary on the Bauer-Curran (BC from now on)

paper is intended to clarify some issues in BC and further help promote good uses of

growth mixture models (GMMs from now on).

BC points out that a researcher may presume that a GMM with multiple

latent trajectory classes generated the data when the data have in fact been generated

by a single-class growth model with non-normal outcomes. BC is concerned about

being able to distinguish between the two alternatives. In choosing between them, BC

correctly states ”The dilemma for the applied researcher is that the fit statistics most

commonly used to evaluate growth mixture models do not adequately discriminate

between these two possibilities.” Because of this, BC warns that ”researchers should be

cautious in the use and interpretation of growth mixture models, particularly when

evaluating predictors of class membership.” The issue of the two alternative

explanations is classic in finite mixture statistics (for a historical overview, see, e.g.
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McLachlan & Peel, 2002, pp. 14-17), but is perhaps little known in psychology. While

the statistical literature has focused on a univariate outcome, the BC paper makes a

contribution by investigating consequences for multivariate outcomes in a growth

modeling context.

This commentary focuses on three matters. First, if it is truly the case that a

researcher cannot distinguish statistically between the two alternatives, is that a

serious problem? Second, is it true that a researcher cannot distinguish statistically

between the two alternatives – what are the statistical options for attempting to

distinguish between the two alternatives? Third, what are the substantive options for

choosing between the two alternatives?

It will be shown that the strongly non-normal data considered by BC are not

well fitted by a GMM so that the faulty conclusions BC is concerned about would not

be made when using proper statistical testing. An example illustrates how the

flexibility of the GMM allows an elaboration of conventional modeling that can give

further insight into the data structure. It is argued that substantive considerations are

key in deciding whether the added flexibility of GMM gives meaningful and useful

results.

Equivalent Models

How serious is it if a researcher cannot distinguish statistically between two

model alternatives? It is well-known in statistical modeling that some models represent

a given data set equally well. This is particularly true for more exploratory models. A

classic example is exploratory factor analysis (EFA) where an orthogonal rotation such
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as Varimax and an oblique rotation such as Promax reproduce the same correlation

matrix for the outcomes. A researcher may be bothered by these two alternative

explanations of the data because one says that the factors are uncorrelated and the

other says that they are correlated. Factor (un)correlatedness cannot be proven by

EFA. Confirmatory factor analysis (CFA) may be able to address the issue, bringing in

further knowledge about measurement. Does this mean that EFA should be cautioned

against in favor of CFA? Although there may be good reasons to do CFA when more

knowledge is available, this does not invalidate EFA but simply means that the

Varimax solution defines the factors differently than Promax and both alternatives are

valid. For example, to solve a set of math and reading achievement items, a person

draws on math and reading skills. One can consider a factor that is connected with

good performance on the math items, recognizing that some degree of reading skills is

often involved in math items. Alternatively, one can define a math factor as what

requires purely mathematical ability, purging this factor of any reading content. In the

first case the math factor can be reasonably thought of as correlated with the reading

factor, while in the second case the factors are uncorrelated. In sum, Varimax and

Promax are just two alternative ways of viewing the same reality. The choice can be

based on which view is most useful for a certain practical purpose.

A similar situation arises in latent profile analysis, i.e. latent class analysis

with continuous outcomes. Bartholomew and Knott (1999, pp. 154-155), points out a

well-known psychometric fact that a covariance matrix generated by a latent profile

model can be perfectly fitted by a factor analysis model. A covariance matrix from a

k-class model can be fitted by a factor analysis model with k − 1 factors. Molenaar
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and von Eye (1994) show that a covariance matrix generated by a factor model can be

fitted by a latent class model. This should not be seen as a problem, but merely as two

ways of looking at the same reality. The factor analysis informs about underlying

dimensions and how they are measured by the items, while the latent profile analysis

sorts individuals into clusters of individuals who are homogeneous with respect to the

item responses. The two analyses are not competing, but are complementary.

Concluding from these two examples of equivalent models, one could argue

that BC does not demonstrate a problem with GMM as long as researchers are aware

that a single-class non-normal-outcomes model is an alternative view that may fit the

data equally well. But, do the alternatives really fit the data equally well? The next

section turns to this question.

Statistical Model Selection Procedures

The message in BC is to some extent confounded with limitations of commonly

used finite mixture model selection procedures such as the Bayesian Information

Criterion (BIC). It is true that a researcher cannot rely on BIC-type information to

distinguish between the two alternatives that BC is concerned with. However, is BIC

the best that we can do? This section briefly describes two new approaches and shows

that they to some extent alleviate BC’s concerns. A key notion is the need for checking

how well the mixture model fits the data, not merely basing a model choice on k

classes fitting better than k − 1 classes. It should be emphasized that there are many

possibilities for checking model fit against data in mixture settings and methodology

for this is likely to expand considerably in the future (see, e.g., the residual diagnostic
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approaches proposed in Wang & Brown, 2002).

New Mixture Tests

Lo, Mendell and Rubin (2001) proposed a likelihood-ratio based method for

testing k − 1 classes against k classes. The Lo-Mendell-Rubin likelihood ratio test

(LMR LRT from now on) avoids a classic problem of chi-square testing based on

likelihood ratios. This concerns models that are nested, but where the more restricted

model is obtained from the less restricted model by a parameter assuming a value on

the border of the admissible parameter space, in the present case a latent class

probability being zero. It is well-known that such likelihood ratios do not follow a

chi-square distribution. LMR considers the same likelihood ratio but derives its correct

distribution. A low p value indicates that the k − 1-class model has to be rejected in

favor of a model with at least k classes. The LMR LRT procedure was implemented in

Mplus (Muthén & Muthén, 1998-2002) in Version 2.12 of August 2002. This

implementation uses the usual Mplus mixture modeling assumption of within-class

conditional normality of the outcomes given the covariates. When non-normal

covariates are present, this allows a certain degree of within-class non-normality of the

outcomes. The LMR LRT procedure has been studied for GMMs by Monte Carlo

simulations (Masyn, 2002). More investigations of performance in practice are,

however, of interest and readers can easily conduct studies using the Mplus Monte

Carlo facility for mixtures.

The LMR LRT is a breakthrough for helping to select the best-fitting number

of classes. However, the test is unlikely to be suitable when the alternative is a
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single-class model with strongly non-normal outcomes because of the LMR LRT

assumption of within-class normality conditional on covariates. When testing 1 versus

2 GMM classes, the 1-class model specifies conditional normality, which with

sufficiently non-normal outcomes is likely to be rejected in favor of more classes.

Muthén and Asparouhov (2002) proposed a new approach for testing the fit of

a k class mixture model for continuous outcomes. As opposed to the LMR LRT, this

procedure concerns test of a specific model’s fit against data. The procedure relies on

testing if the multivariate skewness and kurtosis estimated by the model fits the

corresponding sample quantities. The sampling distributions of the skewness and

kurtosis (SK from now on) tests are assessed by computing these values over a number

of replications in data generated from the estimated mixture model. Obtaining low p

values for skewness and kurtosis indicates that the k-class model does not fit the data.

Univariate and bivariate test results are also provided for each variable and pair of

variables. These tests may provide a useful complement to the LMR LRT. The SK

tests were implemented in Mplus (Muthén & Muthén, 1998-2002) in Version 2.12 of

August 2002. Currently the SK tests are not available with missing data. Given the

inherent sensitivity to outliers, the SK testing should be preceeded by outlier

investigations. The SK procedure needs further investigation, but is offered here as an

example of the many possibilities of testing a mixture model against data (see also

Wang & Brown, 2002).



Statistical and Substantive 9

Mixtures And Non-Normal Outcomes

The theme of checking fit of a mixture model against data is now elaborated in

the context of non-normal outcomes. BC considers outcomes with a rather high degree

of nonnormality using two alternative univariate skew/kurtosis values of 1/1 and 1.5/6.

As is shown below, however, growth mixture models with normal components often do

not generate very high non-normality. This points to the promise of the SK tests.

True 2-Class Model With Close To Normal Outcomes.

The following univariate skew and kurtosis values were obtained in a sample of

n = 2000 generated by a 2-class linear GMM for six time points with within-class

multivariate normality for the outcomes and well-separated intercept growth factor

means that are 2 standard deviations apart,1

Skewness = ( 0.247 0.268 0.205 0.145 0.080 0.058 ) , (1)

Kurtosis = ( −0.188 −0.055 0.015 0.043 0.018 −0.028 ) . (2)

Such data would typically be considered close to normal from a practical point of view.

Using Monte Carlo simulations, it can be shown that the model parameters can be well

recovered at the sample sizes of n = 200 and n = 600 considered by BC. This is

important to emphasize because a reader of BC2 may get the mistaken impression that

GMM has difficulties with approximately normal data, with convergence mainly for

smaller samples due to capitalizing on chance.

The example above is not atypical in real data with clear trajectory classes.

For example, Muthén, Leuchter and Morgan (2002) studied depression development
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before and after treatment in a randomized clinical trial of 51 individuals receiving

either a placebo or medication. The analysis considered the development of a

responder class for which depression decreases rapidly and stays low throughout the 8

weeks of the trial. The responder trajectories are quite different from those of the non

responders. Nevertheless, the univariate skewness and kurtosis values are modest.

True Single-Class Model With Non-Normal Outcomes.

Although GMM often fits means, variances, and covariances well, GMM often

underestimates skewness and kurtosis when analyzing highly non-normal data. Table 1

shows univariate skew and kurtosis values for the cases without covariates considered

in BC. A 2-class linear GMM is fitted to data generated by a single-class model under

the two BC skew/kurtosis alternatives 1/1 and 1.5/6. The model parameter values

generating the data are exactly those used in BC. The columns labelled Mixed Skew

and Mixed Kurtosis are skew and kurtosis computed from the estimated 2-class

mixture and mixed over the two classes. They show that the 2-class GMM that BC

estimated gives a considerable underestimation of the univariate skew and kurtosis

values in the BC sample. The 2-class model does not fit the BC data so the two

alternatives are in fact not equivalent as BC implies.3 These observations motivated

the development of the SK tests. Results from SK testing are briefly considered next.

Skewness-Kurtosis Testing With Mixtures and Non-Mixtures

Muthén and Asparouhov (2002) applied the SK tests to the true 2-class model

of Section 3.2.1, demonstrating good type I error level (sample sizes of n = 50 to

n = 1000). This was the case both with class-invariant and class-varying growth factor
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variances. For the same model, the LMR LRT test of one versus two classes did not

reach an acceptable power level until n = 1000. Adding covariates to the model,

however, dramatically improved LMR LRT power.

Muthén and Asparouhov (2002) also studied the SK test performance on the

data considered in BC, that is, data generated by the true single-class model with

non-normal outcomes. A Monte Carlo study with 500 replications estimated the power

to reject the 2-class alternative at the two skewness/kurtosis settings of BC (1/1 and

1.5/6). For n = 600 the power was estimated as 1.00 for both the multivariate

skewness and kurtosis tests. For n = 200 the power was estimated as 0.67− 0.77 for

skewness and 0.082− 0.226 for kurtosis. This means that with a sample size of a little

more than n = 200, there is sufficient power for the skewness test to reject the 2-class

alternative. In conclusion, using this new test, BC would not have made the faulty

conclusions that they were concerned about.

Muthén and Asparouhov (2002) further studied the extent to which one can

avoid concluding a 2-class model when the true model is single-class with mild

skew/kurt of 0.1/0.5 (these values are similar to those seen in the LSAY data exampe

below). This showed that there was insufficient power to reject the 2-class model at

n = 600. With mild non-normality, the SK test does not help. On the other hand, in

such cases, Muthén and Asparouhov (2002) found that, unlike the case in BC, the

influence of the covariates in the 2-class solution was not distorted relative to the

1-class model that generated the data. Also, the LMR LRT might be helpful in such

situations.
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Substantive Theory and Auxiliary Information For Predicting and Understanding

Model Results

The BC section Implications for Applied Research discusses the role of

substantive theory in guiding the interpretation of the model. The BC paper missed

the opportunity to contribute a thorough discussion of how psychological theory can

guide GMM and move GMM from initial analyses of an exploratory nature towards

more confirmatory uses. As discussed in Muthén (2002a), GMM has even more

confirmatory potential than CFA. This is because people, not only parameters, can be

given fixed values – i.e. fixed class membership for individuals showing typical class

behavior or having known class membership from auxiliary information. To illustrate

how substantive ideas can be brought to bear on the analyses, an example concerning

mathematics achievement development in grades 7 - 10 is discussed in some detail,

following a brief discussion of general issues related to substantive evidence. Further

applications are discussed in Muthén (2001a, b) while Muthén (2002b) gives an

overview of the general latent variable framework in which the modeling fits.

Substantive Evidence in Favor of Mixtures

In addition to a statistical assessment of the model as discussed earlier, the

model can be investigated using substantively-based evidence. Auxiliary information

can be used to more fully understand model results even at an exploratory stage where

little theory exists. Once substantive theory has been formulated, it can be used to

predict an intervowen set of events that can then be tested.

Substantive theory building typically does not rely on only a single outcome
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measured repeatedly, accumulating evidence for a theory only by sorting into classes

observed trajectories on a single outcome variable. Instead, many different sources of

auxiliary information are used to check the theory’s plausibility. For example, in the

depression trial example considered earlier, the placebo responder effect has not only

been observed in many different studies, but has also been associated with changes in

brain function early in treatment (Leuchter, Cook, Witte, Morgan, and Abrams, 2002).

Mental health research may find that a pattern of a high level of deviant behavior at

ages where this is not typical is often accompanied with a variety of negative social

consequences so that there is a distinct subtype. A good education study of failure in

school also considers what else is happening in the student’s life, involving predictions

of accompanying problems of different, psychological nature. Gene-environment

interaction theories may predict emergence of problems as a response to adverse life

events at certain ages. These are the situations where GMM is particularly useful.

GMM can include the auxiliary information in the model and test if the classes formed

have the characteristics on the auxiliary variables that are predicted by theory.

Auxiliary information may take the form of antecedents, concurrent events, or

consequences. These are briefly discussed in turn below.

Antecedents.

Auxiliary information in the form of antecedents (covariates) of class

membership and growth factors should be included in the set of covariates to correctly

specify the model, find the proper number of classes, and correctly estimate class

proportions and class membership (Muthén, 2002a). The fact that the ”unconditional
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model” without covariates is not suitable for finding the number of classes has not

been fully appreciated.

An important part of GMM is the prediction of class membership probabilities

from covariates. This gives the profiles of the individuals in the classes. The estimated

prediction of class membership is a key feature in examining predictions of theory. If

classes are not statistically different with respect to covariates that according to theory

should distinguish classes, crucial support for the model is absent.

Class-variation in the influence of antecedents (covariates) on growth factors or

outcomes also provides a better understanding of the data. As a caveat one should

note that if a single-class model has generated the data with significant positive

influence of covariates on growth factors, GMM that incorrectly divides up the

trajectories in say low, medium, high classes may find that covariates have lower and

insignificant influence in the low class due to selection on the dependent variable. If a

GMM has generated the data, however, the selected subpopulation is the relevant one

to which to draw the inference. In either case, GMM provides considerably more

flexibility than what can be achieved with conventional growth modeling. As an

example, consider the Muthén and Curran (1997) analysis of a preventive intervention

with a strong treatment-baseline interaction. The intervention aimed at changing the

trajectory slope of aggressive-disruptive behavior of children in classrooms grades 1 - 7.

No main effect was found, but Muthén-Curran used multiple-group latent growth

curve modeling to show that the initially more aggressive children benefited from the

intervention in terms of lowering their trajectory slope. The Muthén-Curran technique
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is not, however, able to capture a non-monotonic intervention effect that exists for

children of medium-range aggression, but is absent for the most or least aggressive

children. In contrast, such a non-monotonic intervention effect can be handled using

GMM with the treatment/control dummy variable as a covariate having class-varying

slopes (see Muthén, Brown, Masyn, Jo, Khoo, Yang, Wang, Kellam, Carlin, & Liao,

2002). There are probably many cases where the effect of a covariate is not strong, or

even present, except in a limited range of the growth factor or outcome.

Concurrent Events and Consequences (Distal Outcomes).

Modeling with concurrent events and consequences speaks directly to standard

considerations of concurrent and predictive validity. In generalized GMM available in

Mplus, concurrent events can be handled as time-varying covariates that have

class-varying effects, as time-varying outcomes predicted by the latent classes, or as

parallel growth processes. Consequences can be handled as distal outcomes predicted

by the latent classes or as sequential growth processes. Examples of distal outcomes in

GMM include alcohol dependence predicted by heavy drinking trajectory classes

(Muthén & Shedden, 1999) and prostate cancer predicted by prostate-specific antigen

trajectory classes (Lin, Turnbull, McCullogh & Slate, 2002).

One may argue that being able to predict a distal outcome from trajectory

class membership does not necessarily constitute evidence of a GMM. For example, if

data have been generated by a conventional single-class growth model where increasing

growth factor intercept and slope values gives an increasing probability of the distal

outcome, a GMM might point to a 2-class solution with a high and a low class where
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the high class has a higher distal outcome probability. When statistical evidence is

lacking, substantive considerations are therefore key in the analysis.

A very useful feature of GMM even if a single-class non-normal growth model

cannot be rejected is that cutpoints for classification are provided. For instance,

individuals in the high class, giving the higher probability for the distal outcome, are

identified, while this information is not provided by the conventional single-class

growth analysis. It is true that this classification is done under a certain set of model

assumptions (e.g. within-class conditional normality of outcomes given covariates), but

even if the classification is not indisputable, it is nevertheless likely to be useful in

practice. In single-class analysis one may estimate individuals’ values on the growth

factors and attempt a classification but it can be very difficult to identify cutpoints

and the classification is inefficient. The added classification information in GMM

versus conventional single-class growth modeling is analogous to the earlier discussion

of latent class and latent profile analysis adding complementary information to factor

analysis. In addition, GMM classification is an important tool for early detection of

likely membership in a problematic class as will be discussed in the example below.

An Example

This section briefly reports on a growth mixture example studied in more

detail in Muthén (2002a). This example considers mathematics achievement data from

the Longitudinal Study of American Youth (LSAY), a national sample of students in

public schools in the US. Here, data from grades 7 - 10 are used. The interest is in

relating achievement development to dropping out of high school. Based on the
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educational literature the following covariates are included: female, hispanic, black,

mother’s education, home resources, student’s educational expectations measured in

7th grade (1 = HS only, 2 = Vocational training, 3 = some college, 4 = Bachelor’s, 5 =

Master’s, 6 = Dr, PhD), student’s thoughts of dropping out measured in 7th grade,

whether or not the student have ever been arrested measured in 7th grade, and

whether or not the student have ever been expelled. Corresponding to individuals with

complete data on the covariates, the analyses consider a subsample of n = 2757 of the

total of n = 3116 individuals. The overall dropout rate in the sample is 14.7%, or 458

individuals. Mplus Version 2.12 was used for the analyses.

Statistical Checking

The univariate skewness and kurtosis sample values in the LSAY data are as

follows,

Skewness = ( 0.168 0.030 0.063 −0.077 ) , (3)

Kurtosis = ( −0.551 −0.338 −0.602 −0.559 ) . (4)

In line with the earlier discussion of the LMR LRT, due to the low non normality in

the outcomes it is plausible that this tests is applicable in the LSAY analysis for

testing a 1-class model versus more than 1 class. In the LSAY analysis, this test points

to at least two classes with a strong rejection (p = 0.0000) of the 1-class model. The

SK tests carried out on the listwise present subsample of n = 1538 reject the 1-class

model (p values are 0.0000 for both multivariate skewness and multivariate kurtosis),

but do not reject 2 classes (p values are 0.4300 and 0.5800). The LMR LRT for 2

versus 3 or more classes obtained a high p value (0.6143) in support of 2 classes. Taken
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together, the statistical evidence points to at least 2 classes.4 Adding the distal

outcome of dropping out of high school to the model, however, the LMR LRT rejects

the 2-class model in favor of at least 3 classes (p = 0.0060). Because the interest is in

using the growth mixture model to predict high school dropout, the 3-class solution is

chosen. The 3-class solution produces a distinct low class of 19%, a middle class of

28%, and a high class of 52%.

The skewness and kurtosis tests find that already a 2-class GMM fits the data.

In such a situation the LMR LRT is useful for testing multi-class alternatives against

each other as was done in this application. The earlier discussion of mildly non-normal

data, however, suggests that the BC alternative of a single-class model with

non-normal outcomes is still possible. Substantive considerations need to guide the

analysis and interpretations and this will be considered next.

Substantive Checking

This section reports on analysis results using a conventional 1-class growth

model and GMM. Substantive meaningfulness based on educational theory, auxiliary

information, and practical usefulness is discussed.

Conventional 1-class Growth Modeling.

As a first step, the conventional 1-class growth model results are considered.

Briefly stated, a linear growth model fits reasonably well and has a positive growth

rate mean of about 1 standard deviation across the four grades. The covariates with

significant influence (sign in parenthesis) on the initial status are: female (+), hispanic
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(-), black (-), mother’s education (+), home resources (+), expectations (+), dropout

thoughts (-), arrest (-), and expelled (-). The covariates with significant influence (sign

in parenthesis) on the growth rate are: female (-), hispanic (-), home resources (+),

expectations (+), expelled (-).

3-class GMM Including a Distal Outcome.

For the 3-class model it is interesting to consider what characterizes the class

of poorly developing students apart from their problematic mathematics achievement.

The multinomial logistic regression for class membership indicates that relative to the

high class the odds of membership in the low class is significantly increased by being

male, black, having low home resources, having low 7th-grade educational expectations,

having had 7th-grade thoughts of dropping out, having been arrested, and having been

expelled. The low class appears to be a class of students with problems both in and out

of school. The profile of the low class is reminiscent of individuals at risk for dropping

out of high school (see, e.g. Rumberger & Larson, 1998 and references therein). Many

of these students are ”disengaged” to use language from high school dropout theories.

Interestingly, comparing the middle class to the high class, the disengagement

covariates of low educational expectations, 7th-grade dropout thoughts, having been

arrested, and expelled are no longer significant. This suggests that the low class is a

distinct class, more specifically characterized as disengaged and at risk for high school

dropout. The two higher classes may or may not make a substantively meaningful

distinction among students, but their presence helps to isolate the low class.

Further bolstering the notion that the low class is prone to high school
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dropout, the probability of dropping out as estimated from the 3-class model is

distinctly different in the low class. The probabilities are: 0.692 for the low class; 0.076

for the middle class; and 0.006 for the high class. In other words, more than 2/3 of the

students in the low class are likely to drop out. Other concurrent and distal outcomes

were also added to the 3-class model to further understand the context of the low class,

including responses to the 10-th grade question ”How many of your friends will drop

out before graduating from high school?” (1 = none, 2 = a few, 3 = some, 4 = most.)

Treating this as an ordered polytomous outcome influenced by class and the covariates

resulted in estimated probabilities for response in either of the three highest categories

(few, some, most): 0.259 for the low class; 0.117 for the middle class; and 0.030 for the

high class. Considerably more students in the low class have friends who are also

thinking of dropping out. In contrast, heavy alcohol involvement in grade 10 was not

distinctly different in the low class.

Practical Usefulness.

An educational researcher is likely to find it interesting that the analyses

suggest that dropout by grade 12 can be predicted already by end of grade 10 with the

help of information on problematic math achievement development. From the point of

view of intervention, it is valuable to explore the question of whether a dependable

classification into the low class can be achieved earlier than grade 10. GMM can help

answer this question. For example, by grade 7 the covariates and the first math

achievement outcome are available and given the estimated 3-class model, new

students can be classified based on the model and their grade 7 data. GMM allows the
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investigation of whether this information is sufficient or if math achievement trend

information provided by adding grade 8 information, or grade 8 and 9 information, is

needed before a useful classification can be made.

Have these analyses proven that there is a ”failing class” of low-performing

students who are likely to drop out of high school? No, other alternatives, including

that of a single-class model with mildly non-normal outcomes, are still possible. The

conventional single-class analysis reported on earlier showed that low initial status and

low growth was associated with low home resources, low expectations, dropout

thoughts, being arrested, and being expelled. These are the same factors that influence

low class membership in the 3-class GMM, so that in line with BC one can argue that

the GMM may merely be making an artificial division of the growth factors into a low,

medium, and high range. Contrary to the BC results, however, if a single-class model

generated the data in this case, the GMM does not fail to find significance of the

covariates in their class membership prediction. The two alternatives are not

contradictory, but GMM provides an elaboration. Whether or not the division into

classes is meaningful is largely a substantive question. An argument in favor of there

being a distinct ”failing class” is obtained from the distal outcome of high school

dropout. The fact that the dropout percentage is dramatically higher for the low class

than for the other two, 69% versus 8% and 1%, suggests that the three classes are not

merely gradations on an achievement development scale, but that the low class

represents a distinct group of students.

The mathematics achievement example illustrates that when put in a
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substantive research context drawing on existing theories and auxiliary information, a

GMM analysis can give substantively meaningful insights. Educational researchers can

look at the evidence and decide if they feel that the low class finding supports the

notion of a distinct subgroup of students. They can consider to which extent the low

class construction is useful for practical purposes such as prediction of the distal

outcome of high school dropout. The initial exploratory analyses can lead to designs

including further measures that can shed more light on the hypothesized low class,

leading towards more confirmatory analyses.

Conclusion

This commentary on BC has focused on new statistical tests combined with

substantive considerations in order to settle on a model that fits the data well and that

is useful. It was shown that the non-normal single-class data that BC generated was

not well fitted by a GMM so that the alternative 2-class interpretation that BC was

concerned about would not have been made on these data. In general, however, BC’s

point is well taken. There are presumably situations where it is very difficult to tell the

two alternatives apart. For example, the BC data may be well fitted by GMM that

allows within-class nonnormality of outcomes. In this connection, the large skew and

kurtosis values used in the BC data are perhaps more commonly seen in real data

when there are strong floor or ceiling effects, a situation not covered in BC.

Non-normal GMM taking into account floor and/or ceiling effects was considered in

Muthén (2001c).

The commentary argues that there are many examples of equivalent models in
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statistics and the equivalence does not necessarily cause a problem, but merely provides

different ways of looking at the same data. Substantive theory, auxiliary information,

and practical usefulness will continue to have to guide the statistical analysis. GMM

allows a very flexible way to look at data that is useful even in cases where the notion

of trajectory classes is not well established. Such exploratory GMM analyses can be

valuable for theory building, leading to more confirmatory GMM applications.
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Footnotes

1The parameter values are as follows. A linear growth model is considered with

time scores 0, 1, . . . , 5, class 1/class 2 intercept factor means of 0/2, slope factor means

of 0.25/0.25, intercept factor variances of 1/1, slope factor variances of 0.25/0.25,

intercept-slope covariances 0/0, R2 for the outcomes of 0.8, and class 1 probability of

0.7.

2See section Nonnormality and the Estimation and Fit of Latent Trajectory

Classes, which contains a discussion of doing GMM on multivariate normal data

3A 3-class model also strongly underestimated the sample skewness and

kurtosis in the BC data.

4AIC points to at least 3 classes, while BIC points to 2 classes. The 1-class log

likelihood, number of parameters, AIC, and BIC values are: −30, 021.955, 27,

60, 097.909, and 60, 257.791. The 2-class log likelihood, number of parameters, AIC,

BIC, and entropy values are: −29, 676.457, 63, 59, 478.914, 59, 851.971, and 0.552. The

3-class log likelihood, number of parameters, AIC, BIC, and entropy values are:

−29, 566.679, 99, 59, 331.359, 59, 917.591, and 0.620.
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Table 1

Sample and Model-Estimated Univariate Skewness and Kurtosis for a 2-class Growth

Mixture Model (Averages Across 10 Replications at n = 600)

Skewness 1, Kurtosis 1

Outcome Sample Skew Mixed Skew Sample Kurt Mixed Kurt

y1 0.951 0.429 0.878 0.161

y2 1.027 0.566 1.003 0.177

y3 1.006 0.552 0.873 0.122

y4 0.994 0.580 0.942 0.169

y5 1.018 0.534 0.997 0.148

Skewness 1.5, Kurtosis 6

Outcome Sample Skew Mixed Skew Sample Kurt Mixed Kurt

y1 1.567 0.893 5.798 1.873

y2 1.317 0.884 4.232 1.749

y3 1.219 0.922 3.402 1.803

y4 1.545 0.912 5.924 1.926

y5 1.604 0.845 6.187 1.836


