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Abstract
We highlight critical conceptual and statistical issues and how to resolve them in conducting
Satorra-Bentler (SB) scaled difference chi-square tests. Concerning the original (Satorra &
Bentler, 2001) and new (Satorra & Bentler, 2010) scaled difference tests, a fundamental
difference exists in how to compute properly a model’s scaling correction factor (¢), depending
on the particular SEM software used. Because of how LISREL defines the SB scaled chi-square,
LISREL users should compute ¢ for each model by dividing the model’s NTWLS chi-square by
its SB chi-square, to recover ¢ accurately with both tests. EQS and Mplus users, in contrast,
should divide the model’s ML chi-square by its SB chi-square to recover ¢. Because ML
estimation does not minimize the NTWLS chi-square, however, it can produce a negative
difference in nested NTWLS chi-square values. Thus, we recommend the standard practice of
testing the scaled difference in ML chi-square values for models M; and M (afier properly
recovering ¢ for each model), to avoid an inadmissible test-numerator. We illustrate the
difference in computations across software programs for the original and new scaled tests and
provide LISREL, EQS, and Mplus syntax in both single- and multiple-group form for specifying

the model A1y that is involved in the new test.
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Principles and Practice of Scaled Difference Chi-Square Testing
1. Introduction

The Scaled Chi-Square Statistic

Structural equation modeling (SEM) relies heavily on goodness-of-fit chi-square statistics
to assess the adequacy of hypothesized models as representations of observed relationships.
However, multivariate nonnormality is known to inflate overall goodness-of-fit test statistics
(Kaplan, 2000). Accordingly, Satorra and Bentler (1988, 1994) developed a set of corrected
normal-theory test statistics that adjust the goodness-of-fit chi-square for bias due to multivariate
nonnormality. Correcting the regular chi-square value for nonnormality requires the estimation
of a scaling correction factor (¢), which reflects the amount of average multivariate kurtosis
distorting the test statistic in the data being analyzed. One divides the goodness-of-fit chi-square
value for the model by the scaling correction factor to obtain the so-called Satorra-Bentler (SB)
scaled chi-square.,

The SB scaled chi-square has performed well in Monte Carlo simulation studies (e.g.,
Chou, Bentler & Satorra, 1991; Curran, West & Finch, 1996; TTu, Bentler & Kano, 1992) and has
become well accepted in the SEM literature. The SB chi-square is currently available in three of
the four software packages most often used to conduct SEM—EQS (Bentler, 1995), LISREL
(Joreskog & Soérbom, 1996a), and Mplus (Muthén & Muthén, 2007) report the SB chi-square,
whereas AMOS (Arbuckle, 2006, 2007) does not.
Testing Differences in Nested Chi-Square Values

Among the most versatile and commonly-used strategies for hypothesis-testing in SEM is
the likelihood-ratio test, also known as the difference chi-square test (Bollen, 1989), with which
researchers contrast the goodness-of-fit chi-square value of a less restrictive, baseline model (A4))

with the goodness-of-fit chi-square value of a more restrictive, nested comparison model (Mp).




Principles and practice 4

One typically obtains the more restrictive comparison model (M) by placing constraints, such as
fixed values, invariance restrictions, or equality constraints, on particular parameters in the
baseline model (M)). Because the difference in goodness-of-fit chi-square values for two nested
models is itself distributed as chi-square (see Neyman & Pearson, 1928; Steiger, Shapiro, &
Browne, 19835), researchers can subtract the chi-square value of the baseline model (M;) from the

chi-square value of the nested comparison model (M) and use the resulting difference in chi-

square values (with accompanying difference in degrees of freedom) to test the hypothesis that
the constraints imposed on the baseline model significantly worsen model fit.

If, on the one hand, this difference chi-square is statistically significant, then one rejects |
the null hypothesis and concludes that the baseline model fits the data better than the nested |
comparison model. If, on the other hand, the difference chi-square is nonsignificant, then one
fails to reject the null hypothesis and concludes that the nested comparison model fits the data
just as well as does the baseline model. As with the overall goodness-of-fit chi-square value
itself, however, the validity of statistical conclusions drawn from the difference in nested chi-
square values is suspect under conditions of multivariate nonnormality., 5

2. The Original Scaled Difference Chi-Square Test :

Whereas the traditional difference chi-square test allows researchers to compare directly
the fit of nested models when using standard goodness-of-fit chi-square values, this is not the
case when using SB scaled chi-square values. In particular, the difference in SB scated chi-
square values for nested models does not correspond to a chi-square distribution (Satorra, 2000).

For this reason, simply subtracting the SB chi-square value for the less restrictive, baseline

model (M;) from the SB chi-square value for the more restrictive, comparison model (Mp) yields

an invalid statistic for testing hypotheses about differences in model fit.
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To overcome this limitation, Satorra (2000) derived a formula for testing the difference in
nested SB chi-square values, to permit scaled difference chi-square testing. However, because
this formula uses statistical information not readily available in conventional SEM software, it is
an impractical approach for most applied researchers. Accordingly, Satorra and Bentler (2001)
developed a simpler, asymptotically equivalent procedure for scaled difference chi-square testing
that is easily implemented using the scaled and unscaled chi-square values and the degrees of
freedom for the two models contrasted.

This “original” scaled difference test (Satorra & Bentler, 2001) requires the user to
estimate the baseline model () and comparison model (M), in order to obtain the standard
goodness-of-fit chi-square value and SB chi-square value for each model. Because the SB chi-
square is defined as a standard goodness-of-fit chi-square value divided by a scaling correction
factor (Satorra & Bentler, 1988, 1994), dividing the standard goodness-of-fit chi-square by the
SB chi-square for a particular model allows the user to “recover” the scaling correction factor (¢)
for that model, for use in scaled difference testing. With the original scaled difference test, the
user computes the scaling factors fof models M| and M, by dividing the standard chi-square
value by the SB chi-square value for each model.

Nonequivalent Definitions of the SB Chi-Square across Software Programs

It is a little known fact, however, that not all SEM software packages use the same
goodness-of-fit chi-square to define the SB scaled chi-square. For this reason, the particular
“standard” goodness-of-fit chi-square that one should use to recover ecach model’s scaling
correction factor depends on the specific software that one uses. In particular, EQS 6 (Bentler,
1995, p. 218) and Mplus 6 (Muthén & Muthén, 2007, Appendix 4, pp. 357-358) base the SB chi-
square value on a rescaling of the maximum-likelihood (ML) minimum-fit function chi-square.

LISREL 8, in contrast, bases the SB chi-square value on a rescaling of the normal-theory

<
|
:
i
|
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weighted least-squares (NTWLS) chi-square (Joreskog, Sérbom, du Toit, & du Toit, 1999, |
Appendix A, pp. 191-202). For this reason, EQS and Mplus users must use the ML chi-square to
recover each model’s scaling factor, whereas LISREL users must use the NTWLS chi-square.
Because it does not estimate the Satorra-Bentler chi-square, AMOS does not permit users to
implement the scaled difference chi-square test (though this feature may be added in the future).
A Computational Error LISREL Users Commonly Make in Scaled Difference Testing

Because researchers traditionally conduct chi-square difference testing by contrasting the

ML chi-square values for models My and M), LISREL users might naturally assume that the
scaling correction factors for the models are also based on ML chi-square values. As noted
above, however, the proper chi-square to use to recover the scaling correction factor for each
model depends on how the particular software program has defined the SB scaled chi-square.

For present purposes, we delineate the following terms:

7'y = maximum-likelihood (ML) chi-square test statistic (which Joreskog et al., 1999,
called C1)

77 = normal theory weighted least-squares (NTWLS) chi-square test statistic (which
Joreskog et al., 1999, called C2) |

T3 = Satorra-Bentler (SB) scaled chi-square test statistic (which Joreskog et al., 1999,
called C3) -

m = (df for model My) — (df for model M;)

Then for LISREL (sec J6reskog et al., 1999, Appendix A, pp. 191-202), the scaling

correction factor for a given model is:

c=T 2/ T3
But for EQS (see Bentler, 1995, p. 218) and Mplus (Muthén & Muthén, 2007, Appendix 4, pp.

357-358), the scaling correction factor for a given model is:
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c=T/T;s
Mplus users have two options for obtaining ¢ for a given model—they can compute the ratio of
T1/T5, or they can take c straight from the Mplus output—both of which provide the same result.
For all three software programs, the scaling correction factor (i.¢., denominator) for the original
Satorra-Bentler scaled difference test (¢q) is then:

((df for model M) x (c for My) — (df for model M) x (¢ for My)Ym

Finally, to compute the original scaled difference chi-square test statistic (with df = m),
one divides the difference in chi-square values for models M, and M by this difference scaling
correction factor (cq). Because of how each software program defines the scaled chi-square, the
original scaled difference test for LISREL users is:

(T, for My) — (T for M) (cy)

Whereas the original scaled difference test for users of EQS or Mplus is:

(1 for My) — (T for M)/ (cq)

Because of the lack of formal documentation, however, LISREL users are likely to make
the mistake of using the ML chi-square values for models M; and My in both the numerator and
denominator of the formula for the original scaled difference test. For example, the website for
Mplus provides instructions for “Chi-Square Difference Testing Using the Satorra-Bentler
Scaled Chi-Square” in which users are told to divide a model’s “regular chi-square value” by its
SB chi-square value, in order to recover the scaling correction factor for the particular model (see

http://www.statmodel.com/chidiff.shtml). Here, as we noted above, the exact meaning of

“regular chi-square” depends on the particular SEM software program that one uses.
Prior work in LISREL using Satorra and Bentler’s (2001) original scaled difference chi-
square testing procedure has been incorrect if it has used minimum-fit function (ML) chi-square

values, rather than NTWLS chi-square values, to recover the scaling correction factor for models
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M, and M, in the test denominator. In addition, available macro programs that compute scaled
difference chi-square values using ML and SB chi-square values alone as input (e.g., Crawford

& Henry, 2004; see SBDIFF,EXE at http://www.abdn.ac.uk/~psy086/dept/psychom.htm, and

online calculator at hitp://www.uoguelph.ca/~scolwell/difftest.html) produce correct results for
EQS and Mplus users, but will produce incorrect scaling factors and test values when based on
the ML and SB chi-square values reported in the LISREL output.

Thus, researchers who have analyzed their data via LISREL and have used available
macro programs to conduct scaled difference testing based on LISREL results (e.g., McDonald,
Hartman, & Vrana, 2008; Schaffer, Vogel, & Wei, 2006; Warren, Cepeda-Benito, Gleaves,
Moreno, Rodriguez, Fernandez, Fingeret, & Pearson, 2007) have reported findings that are
technically inaccurate, although scaled difference testing might well lead to the same substantive
conclusions if computed accurately. We can speculate that the improper use of the ML chi-
square to recover the scaling correction factors for the models contrasted via LISREL explains
some of the reported instances of negative difference chi-square values when using the original
scaled difference test.

A Simple Method fpr LISREL Users to Compute a Scaled Maximum-Likelihood Goodness-
of-Fit Test Statistic

After LISREL users have recovered the scaling correction factor (¢) for a given model by
dividing the model’s NTWLS chi-square value (7%) by its SB chi-square value (73), they can
obtain a scaled ML chi-square test statistic for the particular model simply by dividing the
model's ML chi-square value (77) by ¢. This approach enables LISREL users to compute a
scaled ML test statistic for a single model that is equivalent to the scaled values produced by
EQS and Mplus, thereby obtaining a comparable form of Satorra-Bentler scaled chi-square

statistic across software packages. The LISREL scaled ML test statistic for a given model-—
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defined as the model’s ML chi-square value (7)) divided by a scaling factor (¢) recovered from
the model’s NTWLS chi-square value (7%/73)—thus enables a meaningful comparison of scaled
chi-square values across different SEM software programs. To facilitate an equivalent definition
of the SB chi-square across software programs, we recommend that LISREL users routinely
report SB chi-square values based on ML test statistics, just as EQS and Mplus users do.

'This scaled ML goodness-of-fit test statistic (73/¢) also enables LISREL users to obtain
accurate results when using available macro programs to compute scaled difference chi-square'
values. Specifically, if LISREL users input 7 as the “normal” chi-square value and Ti/c as the
SB chi-square value for models M) and M, then this macro program provides accurate results for
LISREL users.

A Potential Problem When Testing Scaled Differences in NTWLS Chi-Square Values

Scaling the minimum-fit function (ML) chi-square value also helps to avoid a potential
problem that arises when one scales the difference in NTWLS chi-square (73) values for the
models contrasted in difference testing. Because ML estimation does not minimize the NTWLS
chi-square (7>) the way it does the ML chi-square value (77), the value of T for the more
restrictive model A can actually be smaller than the value of T, for the less restrictive model M),
such that (7% for M) — (7> for M;) <0. As a consequence, it is possible that LISREL users who
correctly use 75 instead of 7' to recover the scaling correction factors for models M and My may
still obtain a negative scaling correction factor for the original scaled difference chi-square test,
when they contrast 75 for the two models in the numerator of the scaled difference test formula.
We note that using the NTWLS chi-square value is not a problem when evaluating the goodness-
of-fit of a single model. Rather, it is scaling the difference in NTWLS chi-square values for

models My and M, that can be problematic.
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A colleague (Mary Johnston of James Madison University) has shared with us an
empirical example that dramatically illustrates the potential pitfall of scaling differences in
NTWLS chi-square values (Johnston & Finney, 2010). This researcher used LISREL 8 to
. contrast all pairs of factor intercorrelations in a three-factor CFA model by conducting three

scaled difference tests, each of which produced a negative test fesult when using the original

formula (Satorra & Bentler, 2001), even when correctly defining each model’s scaling factor as :
T»/Ts. These inadmissible results occurred because the NTWLS chi-square value of model M,

was less than the NTWLS chi-square value of model M; for all three tests. For each of the three 3
model contrasts, on the other hand, dividing the difference in ML chi-square (7}) values for
models My and M, by ¢4 produced a proper positive scaled difference test result for LISREL.
Clearly, the best practice in SEM is to test scaled differences in M1, chi-square (77) values, rather
than scaled differences in NTWLS chi-square (73) values. (Note that the ML chi-square value of
the more restrictive model M, can sometimes be smaller than the ML chi-square of the less
restrictive model M when the ML chi-square values for the two models are equal but the
convergence criterion is too large—a “harmless” problem of numerical imprecision that can be
solved by specifying a more stringent convergence criterion; see

http://www.statmodel.com/discussion/messages/9/156.html?1271351726).

To reduce the likelihood of obtaining a negative value in scaled difference testing, we
recommend that LISREL users test and report differences in 7y (rather than differences in Tz_) for
models M, and M, just as EQS and Mplus users routinely do. To implement this modified ML
version of the original scaled difference test, LISREL users should employ the following steps:

1. Recover the scaling correction factor (¢) for each model by dividing its NTWLS chi-

square value by its SB chi-square value (7%/T3).

2. Multiply the scaling correction factor (¢) for each model by the model’s df.
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3. Subtract this product for model M, from the same product for model Mp.

4. Divide the result by m (i.e., the difference in df between models My and M), to obtain
the scaling factor for the difference test (¢g).

5. Finally, divide the difference in the ML chi-square (7)) values of models M, and M, by
the scaling factor for the difference test (cy), with df for the scaled difference test (m) =

(df for model M — df for model M)).

EQS and Mplus users should first recover ¢ by dividing each model’s ML chi-square by its SB
chi-square (7/73), or Mplus users can take ¢ directly from the model output, and should then

follow the remaining steps 2-5 as outlined above.

3. Illustrating the Original Scaled Difference Chi-Square Test

To clarify these steps, we now present a worked example of the computations involved in
scaled difference chi-square testing using Satorra and Bentler’s (2001) original formula—first
for LISREL users, and then for EQS and Mplus users. Data for these analyses consist of a
sample of 803 American undergraduates (647 females, 156 males) who completed the 12-item
revised version of the Life Orientation Test (LOT-R; Scheier, Carver, & Bridges, 1994), a
commonly-used self-report measure of dispositional optimism. The LOT-R consists of 4
positively-worded items, 4 negatively-worded items, and 4 unscored “filler” items with which
respondents indicate their extent of agreement on a 5-point scale (0 = strongly disagree, 1 =
disagree, 2 = neutral, 3 = agree, 4 = strongly agree). -

Previous researchers (e.g., Bryant & Cvengros, 2004; Chang, D’ Zurilla, & Maydeu-
Olivares, 1994) have found that a congeneric two-factor model—consisting of correlated
Optimism (positively-worded items) and Pessimism (negatively-worded items) factors—
provides an excellent fit to responses to the 8 scored LOT items and fits significantly better than

a one-factor model, which provides a poor fit to the data. With the present data, initial single-
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group CFA replicated these prior findings and indicated the oblique two-factor model provided a
good fit in terms of RMSEA, SRMR, CFI, and NNFI,

For present purposes, we tested the hypothesis that dispositional optimism has more to do
with positive future expectancies than with benefit-finding in the face of adversity. Specifically,
we employed single-group CFA to compare the loading of LOT item 5 (*I’m always optimistic
about my future) on the Optimism factor (unstandardized loading = .932) and the loading of
LOT item 11 (“I"m a believer in the idea that ‘every cloud has a silver lining’”") on the Optimism
factor (unstandardized loading = .526); and we used Satorra and Bentler’s (2001) original test to
assess the statistical significance of the difference in the size of these two factor loadings for the
pooled sample.

We analyzed covariance matrices specifying robust maximum-likelihood estimation.
Computation of the SB chi-square also requires estimation of the asymptotic covariance matrix.
For LISREL 8.80, we first used PRELIS 2.0 (Joreskog & Sérbom, 1996b, pp. 167-171) to
compute and storé the asymptotic covariance matrices for the 8 LOT items, for use as input files
along with raw data for CFA, specifying METHOD=ML on the OUTPUT line to obtain robust
ML estimation. For EQS 6.1, we analyzed raw data specifying METHOD=ML, ROBUST to
obtain robust ML estimation (Bentler, 1995, pp. 46-48). For Mplus 6.1, we set
ESTIMATOR=MLM on the ANALYSIS line to obtain robust estimation (Muthén & Muthén,
2007, p. 533).

Following established SEM procedures for testing differences in estimated parameters,
comparing the magnitude of the factor loadings involves contrasting the goodness-of-fit chi-
square values of two models: (a) a baseline model (model M) in which the two loadings being

compared are freely estimated; and (b} a nested comparison model (model Mp) in which the two
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loadings being compared are constrained to be equal. The difference in chi-square values
between these two models provides an inferential test regarding the difference in factor loadings.
Specifying Models M; and M,

For all three software programs, the single-group CFA syntax for model M; specified: (a)
eight measured variables and two latent variables; (b} a pattern of factor loadings in which the
loadings of the four positively-worded LOT items were declared free on the first (Optimism)
factor but were fixed at zero on the second (Pessimism) factor, and the loadings of the four
negatively-worded LOT items were declared free on the second (Pessimism) factor but were
fixed at zero on the ﬁrs‘é (Optimism) factor (and one loading was fixed at a value of 1.0 for ecach
factor to define the units of variance for the two latent variables); (¢} a pattern of factor variances
and covartance for the two latent variables in which all parameters were freely estimated; and (d)
independent unique error variances for each of the eight measured variables. For LISREL, EQS,
and Mplus the single-group CFA syntax for model M; was identical to the syntax for model M;,
except that it included an equality constraint that forced the estimated value of the two contrasted
loadings (for LOT items 5 and 11) to be equal in magnitude.

Computing the Original Scaled Difference Test

Table 1 illustrates the computations involved in conducting the original scaled difference
test (Satorra & Bentler, 2001) for users of LISREL, EQS, and Mplus (see table entries 1-8). For
LISREL users, we include two sets of computations—one for testing scaled differences in the
NTWLS (73) chi-square values of models M and M, (see table entry 9); the other, for testing
scaled differences in the ML (7)) chi-square values of models M, and M (see table entry 10).
We advocate using the latter ML-based approach to avoid obtaining an inadmissible negative
value for the numerator of the scaled difference test. For EQS and Mplus users, we include only

computations for scaled ML (77) difference chi-square testing (table entry 10),
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Inspecting the results displayed in Table 1 for the original scaled ML difference test, we
see that overall the general conclusions are the same across the three software programs,
although there is a noticeable difference between the results of the test when using Mplus (A ;{2 B
= 78.1766035) versus cither BQS (Az%ss = 65.3342186) or LISREL (Az%ss = 65.2382987).
Indeed, two discrepancies across software programs are evident in Table 1, namely differences in
the value of the scaling correction factor (¢) and differences in the value of the ML chi-square
(Th). We now comment and explain these two discrepancies in turn,

The discrepancy in the value of ¢ is not an issue of the difference test itself, but rather
stems from how the three software programs compute the scaling correction factor for the
goodness-of-fit test as originally presented by Satorra and Bentler (1988, 1994). The formula for
c involves a normal-theory (NT) weight-matrix (W), which in turn involves a consistent estimate
of the population covariance matrix (2). For ML estimation, EQS and LISREL base this
estimate of X on the fitted X, while for generalized least-squares (GLS) estimation EQS uses the
sample covariance matrix (S). Using our own software, we determined that Mplus uses S in
computing W, regardless of estimation method. Supporting this conclusion, when we changed
estimation method from ML to GLS and specified robust estimation, the scaling correction
factors produced by EQS and Mplus agree to several decimal digits. So, in summary, the
discrepancy in ¢ seen in Table 1 arises from the use of S (in Mplus) versus fitted 2'(in EQS and
LISREL) to compute the weight-matrix involved in the formula for the scaling correction factor.

Regarding the second discrepancy—that is, differences in the value of the ML chi-square
(T1)—our own computations lead us to conclude that whereas EQS and LISREL both report the
minimum of the ML fitting function (when requesting ML estimation) and the minimum of the

NT-GLS fitting function (when requesting GLS estimation), Mplus provides the value of the
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fitting function using the multiplier » instead of the multiplier n — 1 that is used in EQS and
LISREL. This discrepancy thus should vanish when sample size is large enough.

We note that, although the general conclusions of the scaled difference test converge
across software programs, the discrepancy in the final scaled difference test chi-square is
remarkable. This unexpected result demonstrates that alternative expressions that are equivalent
in abstract theoretical form can in actual practice produce surprising and puzzling discrepancies.
However, we anticipate that the formulae used by the alternative software programs will be
equivalent asymptotically. A classic example of this phenomenon is the choice between the
unbiased estimate of the population covariance matrix %, which is S divided by n — 1, versus the
ML estimate of X, which is § divided simply by #. Both estimates are valid and in fact converge
for large samples, but can yield striking discrepancies in small samples; and those discrepancies
will grow larger as sample size decreases. (In fact, in this issue while Mplus computes S
dividing by n, EQS and LISREL compute S dividing by n — 1. With our own software we
determined that, for the data set considered, the difference of using # versus # — 1 in computing
the matrix S in the Mplus calculations of the scaling correction has no noticeable effects on the
final value of the test statistic. This finding contrasts with the noticeable divergence we found in
the value of 77 as a result of the different software programs using #n versus n— 1.} The observed
discrepancy in the final scaled difference test chi-square convinces us of the need to explore and
better understand differences across the various SEM software programs that are available to
users in producing the same statistics.

4. The New Scaled Difference Chi-Square Test

Although Satorra and Bentler’s (2001) original scaled difference chi-square test has been

widely used, it sometimes produces a negative scaling correction factor that leads to a negative

difference in chi-square values, particularly in small samples or when the more restrictive model
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(My) is highly incorrect. For this reason, Satorra and Bentler (2010) recently propo-sed an
improved scaling correction procedure that precludes negative differences in chi-square values
and produces results identical to those obtained when using Satorra’s (2000) complex formula.

As with the original scaled difference test, the new scaled difference test (Satorra &
Bentler, 2010) requires the user to estimate and obtain goodness-of-fit statistics for the baseline
model (M) and comparison model (Mp). With the new scaled difference test, however, the user
must also estimate the baseline model with the number of iterations fixed at zero, using the final
parameter estimates from M as starting values (termed “model M;g”). As with the original
scaled difference test, the new test requires the user to compute the scaling correction factor (¢)
for model M, by dividing the proper chi-square value by the SB chi-square value for this model.
With the new scaled difference test, the user also computes ¢ for model A1y by dividing the
proper chi-square value for model M), by the SB chi-square value for model M, (i.e., T»/T5 for
LISREL users; 71/T3 for EQS and Mplus users). One then uses ¢ for model M), in place of ¢ for
model M, to compute the correction factor for the new scaled difference test (¢g).

To conduct the new scaled difference test, one follows the same computational steps as
with the original scaled difference test, except that one replaces the scaling correction factor (c)
for model M, in the denominator with the scaling correction factor for model Mo, The scaling
factor for the new Satorra-Bentler scaled difference test (¢g) is thus: ((df for model Mp) x (¢ for
My) — (df for model M) x (c for Myp))/m. As with the original scaled difference test, we
recommend that LISREL users compute the new scaled difference test based on differences in
ML (71) values in the numerator, to avoid situations in which (73 for My) — (77 for M;) <0,
Using this latter ML-based numerator in LISREL will also promote a single uniform scaled test

statistic that is comparable across SEM sofiware programs.
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Recall the empirical example we noted earlier in connection with the original scaled
difference test in which a colleague used LISREL 8 to contrast pairs of factor intercorrelations
by conducting three scaled difference tests, each of which produced a negative difference in
NTWLS chi-square values for models M; and M;. When applying the new scaled difference test,
the same inadmissible results occurred, since the numerator of the scaled difference test is
identical for both the original and new formulas, Although the new scaled difference test is
designed to avoid an inadmissible negative test statistic, it can only do so if the chi-square value
for model M, is less than or equal to the chi-square value for model M. Thus, we suggest that
all SEM users, regardless of software, test the scaled difference in ML chi-square (7)) values for
models M; and M, when using either the original or new scaled difference test.

Specifying Model My

To clarify how to set up model M, for the new scaled difference test, we now explain
how to specify this model in LISREL, EQS, and Mplus. Because the new scaled difference test
has not yet been widely disseminated, we also provide readers with examples of the LISREL,
EQS, and Mplus syntax required to set up model My in both single-group CFA (see Appendix
A) as well as multigroup CFA (see Appendix B). Applied users can find other descriptions of
the single-group syntax for specifying model Mg via: (a) EQS in the Appendix of the preprint
version of Satorra and Bentler (2010), which can be downloaded at

http://preprints.stat.ucla.edw/539/Satorra-Bentler%s20Manuscript.pdf; and (b) Mplus in Appendix

A of Asparouhov and Muthén (2010), which can be downloaded at

http://www.statmodel.com/examples/webnotes/webnote 12, pdf.

For LISREL, EQS, and Mplus, the single-group CFA syntax for model My is identical to
the syntax for model M, except for two modifications: (a) it includes a matrix of starting values

consisting of factor loadings, factor variances and covariances, and unique error variances taken
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directly from the final parameter estimates in the output for model Mp; and (b) the number of
iterations is frozen at zero. Although model M, has the same pattern of fixed and free elements
as model M, note that model My fixes the parameter values in model M to the final estimates
for model M, and model M}y should exclude the equality constraints added to model M.
LISREL users can export the final estimates in model My directly to separate external
ASCII files for each parameter matrix using the Output command (Jéreskog & Sorbom, 1996, p.
95), and they can then specify each external file as the source of starting values for each
parameter matrix in model Mo (Joreskog & Sorbom, 1996, p. 84), However, LISREL always
exports the matrix of final estimates for unique error variances (Theta Delta; TD) in a symmetric
form, even when the TD matrix for model M, is specified as diagonal (e.g., TD=DIL,FR). Asa
result, if model M specifies TD as diagonal, then LISREL users who import starting values for
model Mo from external files exported from model M) must change the syntax for model Mg to
specify TD as a symmetric matrix with free diagonal elements and fixed subdiagonal elements.
A second option for LISREL users in setting up model M), for single-group CFA is to
manually copy and paste the final estimates from the output file for model M, into the syntax file
for model Mg, and then specify these final estimates as starting values using MA commands for
the Lambda-x, Phi, and Theta-Delta matrices in the CFA model. If one uses this option, then one
should replace the dashed lines (i.e. “~ -”) that LISREL reports for fixed values of zero in the
parameter matrices of the output file for model M, with values of 0.0 in the matrix of starting
values in the syntax file for model Mjy. We chose this second option as our means of estimating
model M in LISREL. We fixed iterations at zero by specifying I'T=0 in the Output command.
For single-group EQS, we obtained the starting values for model Mg by specifying a
“retest” file (i.e., RETEST=newfile) in the PRINT section of the syntax file for model A,

thereby storing the final parameter estimates of model M in a separate outfile (Bentler, 1995, p.
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257). We then manually copied and pasted these fina] estimates for model M into the syntax file
for model M. We fixed iterations at zero by specifying ITER=0 in the Technical section of the
syntax file for model My,

TQ conduct the new scaled difference test, Mplus 6 includes the option QUTPUT:
SVALUES that facilitates the creation of the syntax file for model M, by generating syntax in
the output file for model M that sets starting values equal to the fitted values for model M.
Mplus users can copy and use this syntax as the syntax file for model A}o. However, note that
because model My should exclude the invariance constraints added to model My, Mplus users
must delete the numbers in parentheses included in the SVALUES output for model My, which
indicate the equality-constrained parameters added to model Af;. Although Mplus does not allow
users to specify ITERATIONS=0, Mplus users can freeze iterations to estimate model M by
specifying a very large convergence criterion (e.g., CONVERGENCE=100000000). Specifying
the TECHS option on the OUTPUT command prints the iteration history, thereby enabling users
to inspect the Mplus output for model M, to verify whether they have set the convergence
criterion large enough to prevent iterations, or whether they must increase it to halt iterations.
Using a large convergence criterion successfully freezes iterations at zero for LISREL (when
omitting IT=0), but does not stop iterations for EQS (for which only ITER=0 freezes iterations).
To help SEM users conduct the new scaled difference test, Appendix A provides the single-
group LISREL, EQS, and Mplus syntax we used to estimate model M.

A Technical Anomaly in LISREL 8

In applying the new scaled difference chi-square test, we have discovered a technical
problem that occurs when using LISREL 8.80 (Jéreskog & Sorbom, 1996) to estimate model
Myy. Specifically, when contrasting two divergent parameter estimates, LISREL produces values

for the SB chi-square (73) that are too small and values for the scaling correction factor (¢) that
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are too large, when freezing iterations at zero to estimate model Mig; but when contrasting two
parameter estimates that are highly similar in magnitude, LISREL produces values for 73 and ¢
that are accurate. Thus, we have found that LISREL can produce a negative scaling correction
factor for the new difference test when contrasting two parameters that are very different in
value. (We have informed the distributors of LISREL about this anomaly, which they have
acknowledged and will undoubtedly resolve in a future software release.)
Computing the New Scaled Difference Test

Table 1 also illustrates the computations involved in the new scaled difference test
(Satorra & Bentler, 2010) for users of LISREL, EQS, and Mplus (see table entries 11-13).
Because we do not advocate NTWLS (73) difference chi-square testing, we have included only
computati;)ns for scaled ML (71) difference chi-square testing (table entry 13) using the new
scaled test. In computing the new scaled difference test, we have omitted the results for LISREL
8.80 because of the program’s technical anomaly mentioned above in the case of model M. We
have also omitted the value of 7, for model My because the NTWLS chi-square value is only
relevant for scaled difference testing via LISREL in recovering the value of ¢ for model Mj,.

Inspecting the results displayed in Table 1 for the new scaled ML difference test, we see
that the overall conclusions are the same across software programs, although there is a noticeable
discrepancy between the results of the new test (see table entry 14) when using Mplus (A ZZSB =
60.1363734) versus EQS (Ax’ss = 53.7247488). As with the original scaled difference test, this
discrepancy across software programs arises from differences in the value of the scaling
correction factor (¢) and differences in the value of the ML chi-square (7). As noted earlier, in
computing the weight-matrix involved in the formulae for the scaling correction factor and the
fitting function, Mplus uses S (the sample covariance matrix) whereas EQS uses 2’ (the fitted

estimate of the population covariance matrix)—a computational difference that is asymptotically
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equivalent, but produces a somewhat smaller ¢ and larger 71 for the same model using Mplus
versus EQS, when the null hypothesis is false and sample size decreases,
5. Conclusion

This paper makes several contributions that we feel are of importance for the practice of
SEM. We have clarified how the specific methods of scaled difference testing differ
fundamentally in LISREL, versus EQS or Mplus, and we have iltustrated the correct procedures
for recovering the scaling correction factors and implementing the original (Satorra & Bentler,
2001} and new (Satorra & Bentler, 2010) tests for both groups of software users. We have
identified a mistake LISREL users are prone to make in computing the scaling correction factor
for a particular model. We have highlighted specific situations in which LISREL can produce
inadmissible results for either the original or new scaled difference test. And we have presented
evidence supporting a uniform ML approach to scaled difference chi-square testing.

The primary purpose of this paper is to help SEM analysts implement scaled difference
chi-square testing properly. Toward this goal, we have highlighted three potential pitfalls and
how to avoid them, in using LISREL to implement scaled difference chi-square testing. First,
because LISREL obtains the SB chi-square by scaling the NTWLS chi-square (whereas EQS and
Mplus scale the ML chi-square), LISREL users who base a model’s scaling correction factor on
its ML chi-square value will obtain inaccurate results for both the original and new scaled
difference tests. When computing the original or new scaled difference test, LISREL users can
avoid this problem by using the NTWLS chi-square value rather than the ML chi-square to
recover each model’s scaling correction factor (i.e., ¢ = T%/T3, not T1/T3). For users of EQS and
Mplus, on the other hand, ¢ = T1/73 not T»/T5.

Contrasting NTWLS chi-squares in scaled difference testing creates another potential

problem. Because maximum-likelihood estimation minimizes the ML chi-square but not
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necessarily the NTWLS chi-square, it is possible for the NTWLS chi-square value of the less
restrictive model () to be smaller than the NTWLS chi-square value of the more restrictive
model (Mp), especially when the contrasted parameter values are highly similar and sample size
is small. This circumstance will produce an inadmissible negative difference in model chi-
square values (i.e., test numerator) when computing the original or new scaled difference test.
This potential problem exists whenever contrasting the values of nested NTWLS chi-squares.

To reduce the likelihood of obtaining inadmissible negative values in scaled difference
testing, we recommend that LISREL users test differences in ML chi-square values (instead of
differences in NTWLS chi-square values), by dividing the difference in M1, chi-square (71)
values for models My and M; by the correction factor for the scaled difference test (cq), after first
recovering each model’s scaling correction factor, ¢, by To/T5. Given that EQS and Mplus users
routinely test scaled differences in ML chi-square (7}) values, using this standard ML-approach
in LISREL also offers the advantage of making the type of scaled chi-square statistic that
researchers report comparable across SEM software packages.

We have also highlighted a third, temporary pitfall—only relevant until the distributors
correct the software in a future release—that LISREL users face in implementing the new scaled
difference test (Satorra & Bentler, 2010). Our results reveal that for certain set-ups LISREL 8.80
produces an inflated scaling correction factor for the analysis of Mg, which in turn can lead to an
improper negative scaling correction factor for the new scaled difference test. We suggest that
LISREL distributors also consider changing the program’s definition of the SB chi-square from
T5/¢ to Ti/c (as both EQS and Mplus define it), to facilitate a single, standard ML-based scaled
chi-square statistic and a uniform ML approach to scaled difference chi-square testing in SEM.

The question naturally arises as to when users should employ the new versus original

scaled difference test. Asparouhov and Muthén (2010) have suggested that users adopt the new
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test when the original test produces a negative statistic or when the original correction factor is
very small. Given that the new test requires evaluating only one more model than the original
test, our recommendation is that users routinely employ the new difference test, to be sure of
avoiding a negative scaling correction factor.

A final point concerns situations in which it may be difficult or impossible to specify
model Mjo. Specifying model Mjg should be relatively simple for the standard forms of
difference testing we have described, where model M; represents baseline model M| with some
restrictions added to the parameters of M), A technical assumption implicit in difference testing
(though rarely recognized, and even difficult to assess in applications) is that the rank of the
Jacobian matrix associated with model M is regular (constant rank) at any point of model A,
This assumption, which Satorra and Bentler (2010) made explicit, is required for difference
testing in general, even with normally distributed data where scaling corrections are unnecessary.

This assumption may fail, however, when M, sets parameters of M at the boundary of
their permissible values (e.g., if M, is a two-factor CFA model, and M fixes the variance of a
factor to zero), thereby producing difficulties in computing the new scaling correction via Mo,
Indeed, practitioners using either the original or new correction formula—or not using scaling
corrections at all—may fail to note a rank deficiency problem in the particular difference testing
considered, and may thus compute a difference test statistic that looks proper but is incorrect
because it is not actually a chi-square statistic. (See Hayashi, Bentler & Yuan, 2007, for an

example of a non-standard set-up that does in fact distort difference testing.) In most typical

applications, such as setting regression coefficients to zero, equating loading coefficients across
groups, or constraining factor covariances to be equal, this constant rank assumption holds true,
and in fact it is implicitly assumed. Although comparing scaled statistics in non-standard settings

is beyond the scope of the present paper, we intend to pursue this issue in further research.
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Appendix A: Single-group LISREL, EQS, and Mplus syntax for estimating model My,
LISREL syntax

!Two-factor CFA model for 8 scored LOT items: Model M10 for POQLED SAMPLE
ITesting the difference in the size of two factor loadings [for LOT items 5
tand 11 on Optimism Factor 1] using the new scaled difference test].
!Using final estimates from Model M0 as starting values with IT=0.

'Note that this model includes no eguality constraint {(EQ command).

DA NG=1 NI=8 NO=803 MA=CM

RA=LOT8.POOQOLED.PSF

ACM FI=LOT8.POOLED.ACM

SE

LOT1 LOT4 LOTS LOT11

LOT3 1LOT8 LOTS LOTl2 /

MO N¥X=8 NK=2 LX=FU, FR PH=8Y,¥FR TD=DI,FR

PA LX

OO O O
OO OOoO o0

01
!The following parameter values for the IX, PH, and TD matrices have been
Imanually copied and pasted from the final estimates for model M0, after

lreplacing “~ - in the output for LX estimates with a value of “0.0” below.
MA LX

0.640 0.0

1.000 2.0

0.724 0.0

0,724 0.0

0.0 0.847

0.0 1.000

0.0 0.952

0.0 0.932

MA PH

0.740

-0.338 0.690

MA TD

0.889 0.242 C€.541 0.622 0.54C 0.299 0.303 0.399
LK

OPTIMSM PESSIMSM
00 SC ME=ML ND=3 IT=0

EQS syntax

/TITLE

Two—factor CFA model for 8 scored LOT items: Model M10 for POOLED SAMPLE
ITesting the difference in the size of two facter loadings [fer LOT items 5
land 11 on Optimism Factor 1] using the new scaled difference test],

!Using the final estimates from Model MO as starting values with ITER=(.
!Note that this model incliludes no eguality censtraint,

/SPECIFICATIONS

DATA=LOTS8.POOLED.ESS;

34
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VARIABLES=8; CASES=803; GROUPS=1;

METHOD=ML, ROBUST; ANALYSIS=COVARIANCE; MATRIX=RAW;
/LABELS

V1=LOT1; V2=LOT4; V3=LOT5; VA=LOT1ll; V5=LOT3;
V6=LOT8; V7=LOT9; V8=LOT12;

|

! FOLLOWING LISTS ARE GENERATED FROM RETEST

|

/EQUATIONS

vVl = .641*F1 + 1.000 El1 ;
V2 = 1.000 F1 + 1.000 E2 ;
v3 = ,723*F1 + 1.000 E3 ;
vd = .723%¥F1 + 1.000 E4 ;
Vv = .848*F2 + 1.000 E5 ;
Ve = 1.000 F2 + 1.000 E6 :
V7 = .962*F2 + 1.000 E7 H
V8 = .933*F2 + 1.000 EB H
/VARIANCES
Fl= .740* ;
F2= .690* ;
El= .888* ;
E2= ,242%* ;
E3= .H42* ;
Ed= .621* ;
E5= ,540* ;
E6= .299*% ;
E7= ,303*% ;
E8= ,399*% ;
/COVARIANCES
F2,F1l = -.338* ;
/PRINT
FIT=ALL;
TABLE=EQUATION;
/TECHNICAL
ITER=0;
/END
Mplus syntax
TITLE: Two-factor CFA model for 8 scored LOT items: Model M10 for POOLED

SAMPLE, testing the difference in the size of two factor loadings
[for LOT items 5 & 11 on Optimism Factor 1] using the new scaled
difference test —-- using the final estimates from Model MO as
starting values with convergence=100000000. Note that this model
includes no equality constraint.

DATA: FILE=LOTS8.POOLED. DAT; )

VARIABLE: NAMES=LOT1 LOT4 LOT5 LOT1i LOT3 LOT8 LOTY9 LOT12;

ANALYSTIS: ESTIMATOR=MLM;
convergence=100000000;

MODEL: Cptimism BY LOT4 LOTIL;
Pessimsm BY LOT8 LOT3 LOTY9 LOT12;

!The following lines, taken direcily from the cutput for model MO when
lgpecifying the SVALUES option, fix the starting values of factor loadings.
!However, note that because model M10 should exclude the egquality constraints
- ladded to model M0, we have deleted the equality constraint {i.e., the number
in parentheses (1) that was originally in the output for model MO}, which

;
;
;
:
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lindicated the loadings for LOT items 5 & 11 had been constrained to be equal
lin model MO,

Optimism BY lot4@1l;

Optimism BY lotl*0.640;

Optimism BY lot5*0.724;

Optimism BY lotll1*0.724;

Pessimsm BY lot8@3%;

Pessimsm BY lot3*0.847;

Pessimsm BY lot9*0,951;

Pegsimsm BY 1ot12*0.932;

!The following line, taken directly from the output for model MO when
!specifying the SVALUES option, fixes the factor covariance:
Optimism WITH Pessimsm*-0.338;

!The following lines, delimited by brackets and taken directly from the
loutput for model MO when specifying the SVALUES option, fix item
lintercepts:

loetl#*2.157 };

lotd*2.534 1;

lot5*2.684 };

lotil*2.523 1;

lot3*1.900 };

lot8%1.685 1;

lot9*1.471 };

lotl2*1.352 ];

e P e e e e

!The following lines, taken directly from the output for model MO when
!specifying the SVALUES option, fix item unique-error variances:

lotl1*0.888;

lotd*0.241;

lot5*0.540;

lotl11*0.621;

lot3*0.539;

lot8*0.299;

lot9*0.303;

lotl2*0.399;

!The following lines, taken directly from the output for model MO when
Ispecifying the SVALUES option, fix f[actor variances:

Optimism*0.739;

Pessimsm*0.689;

INote that specifying the TECHS option in the following OUTPUT cemmand prints
lthe iteration history, thereby allowing users to check to make sure they
lhave set the convergence criterion high encugh to halt iterations at zero.
OQUTPUT: sampstat standardized techl techb;
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Appendix B: Applying the New Scaled Difference Test (Satorra & Bentler, 2010) in
Multigroup CFA

Does optimism have the same meaning for men and women? As a multigroup example,
we illustrate how to estimate model M in using the new scaled difference test to evaluate
between-group factorial invariance.. We use the same LOT-R data from the single-group
example, first dividing respondents into separate groups of females (N = 647) and males (N =
156) for analysis via LISREL, EQS, and Mplus. Model M freely estimates the loadings of the
two-factor model of optimism for each gender, whereas model M; forces the factor loadings to
be invariant with respect to gender. The difference in chi-square values between baseline model
M, and nested model My provides a test of the null hypothesis of gender invariance in factor
loadings.

In conducting the new scaled difference test in a multigroup context, one sets up models
M, and M, just as with the original scaled difference test. Model M freely estimates the
loadings of the baseline model for each group, whereas comparison model M forces the factor
loadings to be invariant with respect to gender, The difference in chi-square values between
baseline model M| and nested model My provides a test of the null hypothesis of gender
invariance in factor loadings.

For LISREL, EQS, and Mplus, the multi-group CFA syntax for model M is identical to
the multigroup syntax for model M, except for two modifications: (a) it includes a matrix of
starting values for each group consisting of factor loadings, factor variances and covariance, and
unique errors variances taken directly from the final parameter estimates in the output for model
My for each group; and (b) the number of iterations is frozen at zero,

Although the final estimates for each LISREL parameter matrix in model M, can be

output to external files using the OQutput command in multigroup LISREL, the program stacks
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matrix estimates for each group together, requiriﬁg users to split the parameter estimates from
each group into separate external files. Also, as with single-group CFA, multigroup LISREL
always exports the matrix of final estimates for unique error variances (Theta Delta) in a
symmetric form, requiring users who specify the matrix of unique error variances as diagonal in
model M, to respecify Theta Delta as a symmetric matrix with free diagonal elements and fixed
subdiagonal elements for model M.

For these reasons, we recommend copying and pasting the final estimates from the output
file for model M, for each group into the syntax file for model My, and then specifying these
final estimates as starting values using MA commands for the Lambda-x, Phi, and Theta-Delta
matrices in the multigroup CFA model. In addition, one must replaced the dashed lines (i.e. “- -
) reported for fixed values of zero in the L.ambda-x matrix of the LISREL output for model M,
with values of 0.0 in the matrix of starting values for Lambda-x in the syntax file for model M.
As with single-group CFA, LISREL users can fix iterations at zero for multigroup model M;, by
specifying IT=0 on the Output command line for each group. Below we present multigroup
LISREL syntax for model M.

For multigroup EQS, users can obtain the starting values for model Mg by specifying a
“retest” file (i.e., RETEST=newfile) in the PRINT section of the syntax file for model M,,
thereby storing for both groups the final parameter estimates of model M, in a separate outfile.
EQS users can then copy and paste these final estimates for model M, directly from the retest file
into the syntax for model M, for each group. EQS users can fix iterations at zero for multigroup
model Mg by specifying ITER=0 in the Technical section of the syntax file for each group.
Below we also present multigroup EQS syntax for model M.

Mplus users can set up multigroup model Mo by using the option OUTPUT: SVALUES

in the syntax file for model M, to generate syntax in the output file for model M, that copies each
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group’s final parameter estimates as starting values for Mjo. However, note that because model
M should exclude the invariance constraints added to model My, Mplus users must delete the
numbers in parentheses included in the SVALUES output for model M, which indicate the
equality-constrained parameters added to model Mp. Mplus users can freeze iterations at zero by
specifying a sufficiently large convergence criterion (e.g., CONVERGENCE=100000000).
Specifying the TECHS option on the OUTPUT command prints the iteration history, thereby

enabling users to inspect the Mplus output for model Mg to verify whether they have set the

convergence criterion large enough to prevent iterations, or whether they must increase it to halt

iterations,

Multigroup LISREL and EQS Syntax for Estimating Model My,
LISREL Syntax

!Two-factor CFA model for 8 scored LOT items: Model M10 for FEMALES (GROUP 1)
!Testing the gender-invariance of factor loadings using the new scaled
'difference test. Using final estimates from Model M0 as starting values with
'TT=0. Note that this model includes no invariance constraints,

DA NG=2 NI=8 NO=647 MA=CM

CM FI=LOTS.FEMALE.cCm

ACM FI=LOT8.FEMALE,acm

SE

LOT1 LOT4 LOTS LOTI1L

LOT3 LOT8 LOT9 LOT12 / f
MC NX=8 NK=2 LX=FU,FR PH=S5Y,FR TD=DI,FR : |
PA LX

o C O R O
PO PO OO0O0O

01
!Tn each group, the following parameter values for the LX, PH, and TD
!matrices have been manually copled and pasted from the final estimates for

'model MO, after replacing “- - in the output for LX estimates with a value
lof “0.0” below.

MA LX

0.¢640 0.0

1.000 0.0

0.932 0.0

0.537 0.0

0.0 0.849

0.0 1.000
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0.0 0.944

0.0 0.935

MA PH

0.726

-0.317 0.662

MA TD

0.895 0.251 0.444 0.605 0.513 0.294 0.286 0,373
LK

OPT PESS

QU SC ME=MIL, ND=3 IT=0

!Two-factor CFA model for 8 scored LOT items: Model M10 for MALES (GROUP 2).
!Using final estimates from Model MO0 as starting values with IT=0.

INote that this model includes no invariance constraints.

DA NI=8 NO=156 MA=CM

CM FI=LOTE8.MALE.cm RE

ACM FI=LOT8.MALE.acm RE

SE

LOT1 LOT4 LOTS LOT11

- LOT3 LOT8 LOTS LOT12 /

MO N¥=8 NEK=2 LX=FU, ¥R PH=SY,FR TD=DI,FR
PA LX

10

00

10

10

01

00

01

01

MA LX

0.640C 0.0
1.000 0.0
0.932 0.0
0.537 6.0

0.0 0.849
0.0 1.000
0.0 G.244
0.0 0.235
MA PH

0.718

-0.419 0.81%
MA TD

0.854 0.285 0.484 0©.702 0.653 0.320 0.389 0.477
LK

OPTIMSM PESSIMSM
OU SC ME=ML ND=3 IT=0

EQS Syntax 2

JTITLE

Two-facteor CFA model for 8 scored LOT items: Model M10 for FEMALES (GRCUP 1)
ITesting the gender-invariance of factor loadings using the new scaled
ldifference test. Using the final estimates from Model MO as starting values
lwith ITER=0. Note that this model includes no invariance constraints.
/SPECIFICATIONS

DATA=LOT8.FEMALE ., ESS;

VARIABLES=8; CASES=647; GROUPS=2:




METHOD:ML,ROBUST;

/LABELS
V1=LOT1
Vo=LOT8

/EQUATI
!

;v
HERYA
ONS

Z2=L0OT4;
7=LOT9;

! FCLLOWING LISTS

!
/EQUATT

I SECTION FOR GROUP

! SECTION FCR GROUP

ANALYSIS=COVARIANCE; MATRIX=RAW;

V3=LOT5;
V8=LOT12;

ARE GENERATED FROM RETEST

.000
. 000
. 000
.000
. 000

¢

El
E2
E3
B4
E5
13)
E7
E8

V4=LOT11;

1

1

ONS
V1 L6A0*FL +
V2 = 1.000 F1 +
V3 = .932*F1
Va4 = 537*F1 +
V5 = L849*%F2 +
V6 = 1.000 F2 +
V7 = .944*F2 +
V8 = .935*F2 +
/VARIANCES
Fl= .725* ;
F2= .662*% ;
El= .895%* ;
E2= .251* ;
E3= .444% ;
Ed= .605* ;
ES= ,B513* ;
EG= .204* ;
E7= .286* ;
E8= .373* ;
/COVARIANCES | SECTION FOR GROUP 1
F2,F1 = -.317*
/END
/TITLE

Two-Factor CFA model for 8 scored LOT items:

Principles and practice

Model MO MALES (GROUP 2)

!Using final estimates from Model MO as starting wvalues with ITER=0,
INote that this model includes no invariance constraints.
JSPECTFICATIONS
DATA=LOT8 .MALE.ess;

VARIABLES=8;

METHOD=MI,, ROBUST ;

/LABELS
V1=LOT1

V6=L0OT8
!

;v
Vv

2=L0OT4;
T=L0T9;

! POLLOWING LISTS

!

/EQUATT
vl
V2
V3
V4
V5
Vo
v
V8

ONS

Il

1

i

/VARIANCES

Fl=
F2=

V3=LOT5; V4=LOT11;

CASES=156;
ANALYSIS=COVARIANCE; MATRIX=RAW;

V8=L0T12;

ARE GENERATED FROM RETEST

! SECTION FOR GROUP 2

.640*F1
1.000 F1
L932*%F1
L537*F1
L840%F2
1.000 F2
.944%p2
.935*F2

| SECTION FOR GROUP

LT
.B815*

r

r

+

+ 4+ + + + +

-+

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

E1l
E2
E3
ud
E5
E6
E7
E8

]
r

-

w4 e e

2
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El= .854* ;
E2= ,285%* ;
E3= .484%* ;
BE4= .702* ;
ES5= .653* ;
E6= .320% ;
E7= .389* ;
E8= . 477* ;
JCOVARIANCES ! SECTICON FOR GROUP 2
F2,FL = —.419* ;
/TECHANTCAL
ITER=0;
/PRINT
FIT=ALL;
TABLE=EQUATION;
/END
Mplus Syntax
TITLE: Two-factor CFA model for 8 scored LOT items: Model MO for
FEMALES & MALES. Testing the gender-invariance of factor
loadings using the new scaled difference test.
DATA: FILE=LOTS .POOLEDwWithGENDER.dat;
VARTABLE: NAMES=LOT1l LOT4 LOTS5 LOT11 LOT3 LOT8 LOTY LOT12 GENDER;
GROUPING=GENDER {(0=FEMALE 1=MALE):;
ANALYSTS: ESTIMATOR=MLM;
convergence=10000C0000;
MODEL: optimism BY lct4;

optimism BY lotl;
optimism BY lot5;
optimism BY leotll;
pessimsm BY lot8;
pessimsm BY lot3;
pessimsm BY 1ot9;
pessimsm BY lotiZ;

MODEL FEMALE:

!The following lines, taken directly from the output for model MO when
!specifying the SVALUES opticn, specify the starting values of factor
!loadings for females. However, note that because model M10 should exclude
'the invariance constraints added to model MO, we have deleted the equality
lconstraints [i.e., the numbers in parentheses that were originally in the
loutput for model MO], which indicated that the non-fixed loadings for males
land females had been constrained tc be invariant in model MO.

optimism BY lot4@1;

optimism BY lotl*0.640;

optimism BY lot5*0.932;

optimism BY lotl1l1*0.537;

pessimsm BY lotB8@1;

pessimsm BY lot3*0.849;

pessimsm BY lot9*0,945;

pessimsm BY lotl2*0,935;

'"The following line, taken directly from the cutput for model MO when
lspecifying the SVALUES option, specifies the factor covariance for females:
optimism WITH pessimsm*-0,316;

42
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!The following lines, delimited by brackets and taken directly from the
loutput for model MO when specifying the SVALUES option, specify item
lintercepts for females:
[ loti*2.1C7 1;
lot4*2.515 1;
lotb*2.649 1;
lot1l*2.549 ];
Llot3*1.917 1;
lot8*1.685 1;
lot9*1.479 1;
lotl2*1.325 1;
optimism@Q ];
pessimsm@0 ) ;

——— — e e

I'The following lines, taken directly from the output for model MO when
Ispecifying the SVALUES option, specify item unique-error variances for
| females:

lotl1+*0.894;

lotd*0,250;

lotb*0,443;

lotl1*0.604;

1ot3*0.513;

lot8+*0.,294;

1ot9*0.285;

lotl2*0,372;

!The following lines, taken directly from the cutput for model MO when
!specifying the SVALUES option, specify factor variances for females:
optimism*Q.725;
pessimsn*0.661;

MODEL MALE:

IThe following lines, taken directly from the output for model MO when
!'specifying the SVALUES option, specify the starting values of factor
!loadings for males. However, note that because model M10 should exclude the
linvariance constraint, we have deleted the equality constraints [i.e., the
Inumbers in parentheses that were originally in the cutput for model MO},
Iwhich indicated that the non-fixed loadings for males and Temales had been
lconstrained to be invariant in model MO,

optimism BY lotd@l;

optimism BY lotl*0.640;

optimism BY lot5%0.932;

cptimism BY lotll*0.537;

pessimsm BY lot8@1;

pessimsm BY lot3*0.849;

pessimsm BY lot9+%0.945;

pessimsm BY lotl2+*0,935;

!The following line, taken directly from the output for model MO when
Ispecifying the SVALUES option, specifies the factor covariance for males:
optimism WITH pessimsm*-0.417;

!The following lines, delimited by brackets and taken directly from the
loutput for model MO when specifying the SVALUES coption, specify item
lintercepts for males:

:
:
|
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lotl*2.365 1;
lot4*2.609 ];
lot5*2.827 1;
lotll*2.417 1,
lot3+1.833 ];
lot8*1.686 ];
lot9*1.436 ];
lot12*1.468 ];
optimism@0 ];
pessimsmB0 7;

—_— e —— e e

!The following lines, taken directly from the output for model M0 when
lepecifying the SVALUES option, specify item unique-error variances for
Imales;

lotl*0.848;

lot4+0.283;

lot5*0.481;

lotll*0.697;

lot3*0.648;

lot8+%0.318;

lot9*0.387;

lotl2*0.474;

IThe following lines, taken directly from the output for model MO when
Ispecifying the SVALUES option, specify factor wvariances for males:
optimism*0.713;
pessimsm*).809;

INote that specifying the TECH5 option in the following OUTPUT command prints
lthe iteration history, thereby allowing users to check to make sure they
thave set the convergence criterion high encugh to halt iterations at =zero.
OQUTPUT: sampstat standardized techl tech5;

i
:
i
;
.

i
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