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TEACHER'S CORNER

Latent Variable Centering of Predictors and Mediators
in Multilevel and Time-Series Models

Tihomir Asparouhov and Bengt Muthén
Mplus, Los Angeles, CA

INTRODUCTION

In hierarchical linear regression models the question regarding
the proper way to construct covariates has long been the focus of
attention. The main issue is whether or not the covariates should
be group mean centered, grand mean centered, uncentered or
latent mean centered. Group mean centering has been recom-
mended in Raudenbush and Bryk (2002) and Enders and
Tofighi (2007) for example. Grand mean centering has al so
been recommended for particular situations in Enders and
Tofighi (2007), while the uncentered method has been consid-
ered in Hamaker and Grasman (2015) in special applications in
the time-series context. Latent mean centering has been used in
Lüdtke et al. (2008), Asparouhov and Muthén (2006a) and
Preacher, Zyphur, and Zhang (2010). The latent mean centering
has also been the main modeling approach in multilevel struc-
tural equation models, see Muthén (1994). In the time-series
context, the latent mean centering has been used in Asparouhov,
Hamaker, andMuthén (2018) as a way to resolve Nickell’s bias,
see Nickell (1981). The latent mean centering has also been used
in Preacher, Zhang, and Zyphur (2016) in the context of multi-
level moderation models. In the context of three level modeling,
the latent mean centering has been utilized in Marsh, Kuyper,
Morin, Parker, and Seaton (2014). A hybrid centering method,
which is based on a combination of the latent mean centering
and the uncentered method, has been used in multilevel media-
tion models with random slopes, see Preacher et al. (2010).

Despite the long and well established history of multi-
level modeling, the covariate centering issue remains
unsettled. There are three aspects that generally drive
the consideration of centering: interpretability, quality of

the statistical methodology in terms of bias and MSE
(mean squared error) of the estimation, as well as soft-
ware availability. In addition to that there are three other
aspects that play an important role in the discussion: the
presence of missing data in the covariate, whether or not
the slope in front of the covariate is random and whether
or not the dependent and the predictor variables are
categorical or continuous. The purpose of this note is to
further explain the case for the latent mean centering as
the most accurate, most easily interpretable and most
widely applicable method. Despite the fact that the latent
centering method has been successfully utilized in the
past to resolve a variety of estimation problems, the
method has not been easily accessible in the most general
multilevel model, for example, for models with random
slopes. Enders and Tofighi (2007) discuss centering for
multilevel models with random slopes, however, the latent
centering method is not considered at all. In Preacher
et al. (2010), mediation models with random slopes use
the uncentered estimation method which is subsequently
reparameterized so that implications can be made for the
centered model.

In this article, we focus on the centering options for a
predictor with a random slope. In Mplus Version 8.1, the
latent centering method has been extended for the general
multilevel model with random slopes using Bayesian esti-
mation. Because of that the latent centering can now be
used in many situations where previously no estimation
method was easily available. We can now also conduct
simulation studies that reveal the disadvantages of the
more traditional methods of observed group mean center-
ing, grand mean centering, the uncentered and the hybrid
methods. Several such simulation studies are described
below.

The maximum-likelihood estimation of the latent cen-
tering model with a random slope is in principle possible,
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using numerical integration, but is impractical and limited.
The log-likelihood for this model does not allow for a
closed form expression because it includes the product/
interactions of between level random effects. Within the
Mplus ML framework all the random effects will need to
be numerically integrated and thus such an estimation is
limited by the number of variables, covariates and random
effects. With more than three or four random effects the
ML estimation based on numerical integration will be
slow, less precise and quite likely to lead to convergence
problems. On the other hand, the observed group mean
centering, the grand mean centering and the uncentered
method all have closed form likelihood expressions, are
generally easy to estimate and are not limited to the
number of variables, covariates and random effects.
Because of that the Mplus default for estimating multi-
level models with random slopes has been to use the
uncentered approach, but the group mean and grand
mean centering are easily accessible as well. With the
new development in the Bayesian estimation algorithms
in Mplus Version 8.1, the playing field for the different
centering methods is finally leveled and we can now
easily estimate and compare these centering options.

If a covariate in the multilevel model with random slope
has missing values there are three implications. First, the ML
estimation method within Mplus will again require numerical
integration due to the multiplication of latent variables. That
in turn will limit the scope of the model in terms of the
dimensions of numerical integration and to a large extent
the ML estimation becomes impractical even when we use
the three traditional centering methods: group mean center-
ing, grand mean centering or the uncentered method. In
Mplus Version 8 it is possible, however, to estimate the
model with the observed group mean centering method
using Bayesian estimation even in the presence of missing
data. The second implication concerns specifically the
observed group mean centering. This centering amounts to
subtracting the average covariate value in a particular cluster
from the covariate values in that cluster. The problem that
arises in the presence of missing data is that unless the
missing data is missing completely at random (MCAR) the
sample mean is not the actual mean for the covariate.
Therefore, we should not expect good estimation perfor-
mance when using observed group mean centering in the
presence of missing data, even if a fast and accurate estima-
tion method exists. The fault in the approach occurs before
the estimation begins, i.e., in the centering of the data with
the wrong means. The third aspect of having missing data in
the covariate is that the group mean centering is no longer
equivalent to the latent mean centering for applications with
large cluster. It is well known that if the cluster sizes in the
data are greater than 100, the group mean centering method is
practically equivalent to the latent mean centering. That is
because the error in the sample mean estimate of the true
cluster mean decreases as the cluster sample size increases.

Cluster sizes of 100 or more are sufficient in most cases to
expect little difference between the methods. This argument,
however, breaks down in the presence of missing data, again,
because the cluster sample mean is not necessarily consistent
estimate of the true mean if the missing data is not MCAR.

THE DIFFERENT CENTERING OPTIONS

We illustrate the different centering options using a simple
two-level regression model. Let Yij be a dependent variable
for individual i in cluster j and let Xij be the corresponding
covariate. The standard two-level regression formulation, see
Raudenbush and Bryk (2002), is usually given as follows:

Yij ¼ αj þ β1jðXij � X :jÞ þ εw;ij (1)

αj ¼ αþ β2X :j þ εb;j (2)

β1j ¼ β1 þ �j: (3)

Themodel has two random effects: the random intercept αj and
the random slope β1j. Typically, the covariate in equation (1) is

centered by its cluster specific mean X :j which is then used in
(2) as a cluster level predictor for the random intercept.

The above model allows the effect of the covariate on the
within level to be different from the effect of the covariate on the
between level. This is important as these effects are often not
equal. If we estimate just one effect using the uncentered model,

Yij ¼ αj þ β0jXij þ εw;ij (4)

αj ¼ αþ εb;j (5)

β0j ¼ β0 þ �j: (6)

the average effect β0 becomes an “uninterpretable blend” of
the within and the between effects β1 and β2. The blend is
approximately

β0 �
w1β1 þ w2β2
w1 þ w2

; (7)

where the weights are w1 ¼ 1=Varðβ̂1Þ, w2 ¼ 1=Varðβ̂2Þ,
see Raudenbush and Bryk (2002).

The model in equations (1–3) can also be described in
terms of the following two-level decomposition. The two
variables Yij and Xij can be decomposed as within and
between components as follows:

Yij ¼ Yw;ij þ Yb;j (8)

Xij ¼ Xw;ij þ Xb;j (9)
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Here Yb;j and Xb;j are the cluster specific contributions to
these variables while Yw;ij and Xw;ij are the individual spe-
cific contributions. We can also interpret Yw;ij and Xw;ij as the
zero-mean residuals in the random intercept two-level
regressions. The variables Yb;j and Xb;j can be interpreted
as the cluster specific means, i.e.,

Yb;j ¼ EðYijjjÞ (10)

Xb;j ¼ EðXijjjÞ: (11)

The relationship between the variables Y and X can be
expressed as a two-level linear regression model as follows:

Yw;ij ¼ β1jXw;ij þ εw;ij (12)

Yb;j ¼ αj ¼ αþ β2Xb;j þ εb;j (13)

β1j ¼ β1 þ �j: (14)

In the above model α, β1 and β2 are non-random parameters.
The random effect β1j is the random slope on the within level
and can be identified as a cluster specific effect because we have
multiple individuals in cluster j. This random slope could also be
estimated as a non-random fixed coefficient which is invariant
across all the cluster but such an assumption is generally not
needed and in most situation is overly restrictive. Note also that
the within level model does not have a regression intercept.
Such an intercept would not be identified and because the within
level components are assumed to have zero mean that coeffi-
cient is assumed zero. In the above model we treat the covariate
X as a predictor variable both on the within and the between
level. The residual variable εw;ij is assumed normally distributed
with Nð0; σwÞ distribution, while the between level residual εb;j
and �j are assumed to have bivariate normal zero mean distribu-
tion with variance covariance matrix Σ.

The above model has a clear separation of the effects as
cluster level effects and as within cluster effects. It is the most
basic two-level linear regression model that can be constructed
using two variables. The one fundamental question that arises
immediately is how to obtain or how to treat Yb;j and Xb;j. In
standardmultilevel regressionmodels such as those described in
Raudenbush and Bryk (2002) the two variables are generally
treated differently. The variable Yb;j is treated as unknown and as
a random effect, while Xb;j is usually treated differently. While
the treatment of Yb;j as a random effect is largely agreed upon,
the treatment of Xb;j remains unsettled and is referred to as the
centering issue. In the following sections we describe the five
different treatments of Xb;j : the observed group mean centering,
the latent mean centering, the observed grand mean centering,
the uncentered method and the hybrid method.

The observed group mean centering

This approach replaces the cluster mean Xb;j with the cluster
sample mean X :j, i.e., with the average of all observations in
cluster j. The model simplifies substantially as Xw;ij and Xb;j are
treated as observed and known quantities. This approach, how-
ever, suffers from the fact that the sample mean X :j is not the
true mean Xb;j, and the error in that estimate is not accounted for.

More explicitly, the observed group mean centering
approach estimates the following model:

Yij ¼ Yw;ij þ Yb;j (15)

Yw;ij ¼ β1jðXij � X :jÞ þ εw;ij (16)

Yb;j ¼ αþ β2X :j þ εb;j (17)

β1j ¼ β1 þ �j: (18)

or if we combine the first three equations the model can be
expressed as follows:

Yij ¼ αþ β2X :j þ β1jðXij � X :jÞ þ εb;j þ εw;ij: (19)

The model is identical to the model given in equations (1–3).

The latent mean centering

The latent mean centering approach treats Xb;j as an unknown
quantity that has to be estimated and thus properly accounts for
the measurement error. The model can be expressed as follows:

Yij ¼ Yw;ij þ Yb;j (20)

Xij ¼ Xw;ij þ Xb;j (21)

Yw;ij ¼ β1jXw;ij þ εw;ij (22)

Yb;j ¼ αþ β2Xb;j þ εb;j (23)

εw;ij ,Nð0; σ1Þ;Xw;ij ,Nð0; σw;xÞ (24)

β1j ,Nðβ1; σ2Þ; εb;j ,Nð0; σ3Þ;Xb;j ,Nðμx; σb;xÞ: (25)

Note that in this model we estimate three random effects: β1j,
Yb;j and Xb;j, while in the observed group mean centering
approach there are only two random effects β1j and Yb;j. The
latent mean centering is also sometimes referred to as the
latent covariate approach because the covariates in equations
(22–23) are both latent variables. If the cluster size is suffi-
ciently large, i.e., greater than 100, and there is no missing
data in the covariate Xij the error in the sample mean estimate

X :j would be negligible in most applications and thus we can
expect that the latent mean centering and the observed group
mean centering methods would yield similar results.

LATENT VARIABLE CENTERING OF PREDICTORS AND MEDIATORS IN MULTILEVEL AND TIME-SERIES MODELS 3



It is worth noting here that in certain applications the
observed group mean centering might be more appropriate
than the latent mean centering. For example, if all the units
within the cluster, for example, geographical cluster, are
sampled then the sample mean really represents the actual
mean, i.e., it does not have an error. In that case, the latent
mean centering approach would be considered inferior
because it assumes that the cluster means are unknown
quantities measured with error. The latent centering
approach generally assumes that the cluster sizes are large
(or infinite) and a small part of the clusters are actually
sampled. In principle it is safe to assume that if less than
5% of the cluster population is sampled, the latent variable
assumption is satisfied. If, however, the cluster sizes are
finite and the proportion of sampled units are between 5%
and 100% neither the latent variable centering nor the
observed group centering assumptions are appropriate and
both would be approximations. Complex survey methodol-
ogy dealing with finite population sampling may provide the
most realistic approach in such situations, see Asparouhov
and Muthén (2006b). In many common applications, how-
ever, particularly in the social sciences, the clusters units
themselves are sampled from a large population. Even if
data is subsequently collected from all the members of the
cluster, the cluster sample mean should not be treated as the
actual mean. The actual mean is the mean of the large
population where the cluster units were sampled from. The
cluster sample mean represents the mean for the members
selected in the cluster and it does not represent the mean of
the units in the large population that could have been
selected in the cluster. In such situations, the latent mean
centering would clearly be more appropriate than the
observed mean centering as it accounts for the sampling
error in the mean estimate.

Uncentered method

The uncentered approach is the third centering option. With
this method we estimate the model,

Yij ¼ αþ β2X :j þ β1jXij þ εb;j þ εw;ij (26)

β1j ¼ β1 þ �j (27)

i.e., the random slope multiplies the full covariate value
instead of the within only part. Note that this model can
be re-written as:

Yij ¼ αþ ðβ2 þ β1jÞX :j þ β1jðXij � X :jÞ þ εb;j
þ εw;ij (28)

i.e., this model is similar to the group mean centering
approach with the exception that the coefficient in front of
X :j is now β2 þ β1j. The model can also be written as:

Yij ¼ Yw;ij þ Yb;j (29)

Yw;ij ¼ β1jðXij � X :jÞ þ εw;ij (30)

Yb;j ¼ αþ ðβ2 þ β1jÞX :j þ εb;j (31)

β1j ¼ β1 þ �j: (32)

If Varð�jÞ ¼ 0, then the random slope is a fixed slope and the
uncentered model is simply a reparameterization of the group
mean centered model. If both models are estimated with theML
estimator the log-likelihood values will be identical. If, however,
Varð�jÞ>0 the uncentered model is not a reparameterization of
the group mean centering model. In fact, we can see that the
uncentered model would be a poor approximation for the
observed or latent centering models. This is because in equation
(31) there is a random effect term β1j that should not be there.
This random effect is predominately determined by the within
level model, and is designed to help the within level model find
the best fitting linear regression for each cluster. Confounding
the random effect with the between level regression slope as this
model shows would prevent the between level part of the model
to find the most optimal linear regression equation. In equation
(31), we see that in an artificial way the interaction term β1jX :j

becomes a predictor of Yb;j. Not only is this interaction term
added but it is added with a constant regression coefficient of 1.
The standard method for adding an interaction terms in regres-
sion analysis would be to include a regression coefficient that is
to be estimated, for example, the interaction term could be added
as a β3β1jX :j where the β3 coefficient is free to be estimated and
if the interaction term is not needed the coefficient will be
estimated to zero. Instead the above model fixes that interaction
effect coefficient to 1, which is an unreasonable assumption.
Note also that in general the residual variables εb;j and �j can be
correlated and such a correlation can be estimated. Alternatively,
instead of estimating such a correlation the variable β1j can be
used as a predictor forYb;j. Thus, the abovemodelwould include
as predictors for Yb;j the variables X :j, β1j and the interaction

term β1jX :j and the coefficients in front of X :j and β1j would be
estimated based on the information in the data while the coeffi-
cient in front of the interaction termwill be forced to be 1without
allowing the data to determine that coefficient. Preacher et al.
(2016), see footnote 2, also argue that the interaction term β1jX :j

“may be difficult to justify”. Thus in general we can expect to see
problems when the uncentered model is used as an approxima-
tion for the latent or the observed group mean centering models.

The grand mean centering

The grand mean centering is the fourth centering alter-
native for the above model. It simply amounts to sub-
tracting the total sample average from the covariate
instead of the cluster sample average. Since this amounts
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to nothing more but a scale shift in the covariate, the
model will essentially be equivalent to the uncentered
model in most situations. In fact, if the grand mean
centered model and the uncentered model are estimated
with the ML estimator the log-likelihood value for the
two models will be identical. Because of that we will not
include the grand mean centering in most of the simula-
tion studies, however, it is safe to assume that any con-
clusions we make about the uncentered model also apply
to the grand mean centering model. For completeness we
provide the full model,

Yij ¼ αþ β2X :j þ β1jðXij � X ::Þ þ εb;j þ εw;ij (33)

β1j ¼ β1 þ �j: (34)

The hybrid method

The fifth centering option that we discuss here is the hybrid
method. This approach is similar to the uncentered method,
however, on the between level instead of using the cluster
sample mean we use the true/latent mean obtained from the
proper decomposition. Themodel can be expressed as follows:

Xij ¼ Xw;ij þ Xb;j (35)

Yij ¼ αþ β2Xb;j þ β1jXij þ εb;j þ εw;ij (36)

β1j ¼ β1 þ �j (37)

where Xw;ij, εb;j and εw;ij are assumed to be zero mean normally
distributed residuals and Xb;j is a normally distribute random
effect. This approach has an advantage over the uncentered
method because it accounts for the measurement error inXb;j. It
also has a computational advantage over the latent centering
method as it does not involve the product of the two latent
variables β1j and Xw;ij, see equation (22), and, thus, can be
estimated with the ML estimator. The method has traditionally
been used with the Mplus software prior to the introduction of
the latent centering method in Mplus version 8.1. Note also
that if the random slope is replaced by a fixed slope, this model
becomes an equivalent reparameterization of the latent center-
ing model. However, this model has the same problems as the
uncentered model. The model does not separate the within and
between effects clearly and lets the random part of the within
level slope also be used on the between level. Note also that
when the cluster sample size increases, the hybrid model will
become identical to the uncentered model (not just a repara-
meterization but actually identical) because the difference
between Xb;j and X :j will be negligible.

Further discussion

Note that when the covariate Xij is an exogenous variable,
i.e., it is not really caused by or formed by the clustering,
the latent centering decomposition still provides the most
meaningful separation of group level effects and cluster
specific effects. Consider, for example, the exogenous vari-
able of employee’s gender where employees are nested
within companies. The interpretation of Xb;j as a predictor
would be the percentage of female employees in the com-
pany, while the interpretation of Xw;ij would be as usual, i.e.,
it will be a binary variable centered at a particular point.
Using the latent centering model given in equations (20–25)
would separate the group level and the individual level
dynamics. In the case of categorical predictor, however,
the latent centering can be implemented on the underlying
latent scale. We discuss this in more details in Section 4.4.

Note also that if the covariate Xij has a very small intra-
class correlation

ICC ¼ VarðXb;jÞ
VarðXw;ijÞ þ VarðXb;jÞ (38)

all the centering options become equivalent. Suppose that
VarðXb;jÞ ¼ 0. In that case the coefficient β2 is not identified
and has to be removed from the model. This also means that
both cluster centering options, the observed and the latent,
amount to subtracting a constant from the covariate, i.e., are
equivalent to the grand mean centering, which in turn is
equivalent to the uncentered and hybrid models. Because of
that, the most appropriate and straight forward approach is
to simply use the uncentered covariate. Thus, the compar-
ison between the different centering options only applies
when the ICC is not zero. It is generally accepted that if the
ICC is not statistically significant from 0 the covariate can
be treated as uncentered and the effect of Xb;j would be
marginal can be removed from the model. Note, however,
that the statistical significance of the ICC is based on eval-
uating the hypothesis v ¼ VarðXb;jÞ ¼ 0, which is a bound-
ary hypothesis testing and, thus, is somewhat challenging.
For example, with the Bayesian estimation the 95% cred-
ibility interval of a variance parameter by default never
contains the zero value. An approximate way to do this
testing is to use maximum likelihood style t-test using the
standard errors reported from the Bayesian estimator. The
logic behind this approach is justified by the fact that
asymptotically as the number of clusters increases the
Bayes estimates and their standard errors are equivalent to
the ML estimates and, thus, using a simple t-value approach
is not unfounded especially when the number of clusters is
large. One can evaluate t ¼ v=seðvÞ and consider that sig-
nificant if it is greater than 1.96. This is not a precise test for
the variance, however, and should still be considered a
rough approximation. A more advanced approach for testing
variance significance has been described in Verhagen and
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Fox (2012) based on Bayes factor methodology. This
method is also implemented in Mplus.

An alternative method for evaluating whether or not a
variable can remain uncentered and its cluster level contri-
bution be considered insignificant is to evaluate its design
effect, see Muthén and Satorra (1995).

DEFF ¼ 1þ ðc� 1ÞICC (39)

where c is the average cluster size. In fact, a commonly used
rule of thumb is that a design effect smaller than 2 can be
used as a justification for not accounting for the cluster effect.
This rule of thumb, however, has recently been shown to be
improper in certain situations, see Lai and Kwok (2015).

Note also that another disadvantage of using the latent cen-
tering method for a covariate with small ICC is that the model
becomes less parsimonious, the estimated coefficients would
have wider confidence intervals and the convergence of the
estimation will be slower. If the sample size is large, however,
this disadvantage would be marginal and, thus, it would still be
meaningful to pursue the latent covariate approach even if the
ICC is small.

Next, we briefly summarize the availability of estimation
methods in Mplus for the various centering options. The
Bayesian estimation can be used with all five centering option,
with the exception of the hybrid method for a predictor with
random slope when the predictor is categorical or it has miss-
ing data. The ML estimation can be used with the observed
centering, grand mean centering, the uncentered method and
the hybrid centering. However, if the predictor has missing
data and a random slope the estimation requires numerical
integration and becomes impractical for larger models. The
ML estimation is also not available for the hybrid method
when the predictor is a categorical variable. The ML estima-
tion can be used with the latent centering if the predictor has a
non-random slope, however, if the predictor has a random
slope the estimation requires a special setup and numerical
integration which makes it impractical for larger models. This
special setup is described in details in Preacher et al. (2016) in
the context of moderation modeling. Note also that the
Bayesian estimation in Mplus currently cannot be used for
moderation modeling with latent centering and, thus, the ML
estimation described in Preacher et al. (2016) is the only
available approach. The WLS estimation method can be used
with all centering options, except for the hybrid method, when
the predictor has a non-random slope.

The Bayesian estimation of the latent centering model is
similar to the Bayesian estimation of the two-level SEM
model described in Asparouhov and Muthén (2010). The
only modification that is needed is as follows. In the stan-
dard two-level SEM estimation all between level random
effects are updated in one block and the posterior distribu-
tion for these random effects is a multivariate normal dis-
tribution. In the latent centering model estimation, we split

the between level random effects in two blocks. All random
effects used for latent centering, such as Yb;j and Xb;j in
equations (20) and (21), are updated in one block, while
all other random effects such as β1j in equation (22) are
updated in a separate block. This way we avoid the product
of latent variables that causes difficulties in the ML estima-
tion. The posterior distribution for each of the two blocks is
again a multivariate normal distributions because it is con-
ditioned on the other block. No further modifications are
needed in the MCMC estimation.

Throughout this article the priors used with the
Bayesian estimation are the Mplus default priors. These
priors are uninformative or weakly informative and can
be found in Asparouhov and Muthén (2010).

The simulation studies presented here are based on the
assumption that the observations in the sample belonging to
the same cluster represent a small random sample from that
cluster. When we generate data from a hypothesized model,
we always use the true cluster mean Xb;j in the model
instead of the sample mean X :j. If X :j is used to generate
the data for Yij we would create an illogical loop where the
population distribution is affected by the random sample
selected from that population. The sampling scheme should
not have an effect on the target population model. In a
logical simulation study a large target population is gener-
ated first which is then sampled from and this is incompa-
tible with using X :j in the model. If X :j is used in the model
instead of Xb;j, we first have to generate the target popula-
tion for covariate Xij only, then sample from the covariate

target population, then form X :j and then use that to gen-
erate the dependent variable Yij in the target population. This
of course creates the illogical loop where the value of one
member of the cluster depends on which other observations
were sampled from that cluster, i.e., the sampling scheme
becomes an integral part of the model and the generation of
the target population. This would be very difficult to justify.
Because we always use the true mean for the data genera-
tion purposes rather than the sample mean, what appears as
a favoritism on our part toward the latent centering metho-
dology is actually not so at all. It is rather driven by funda-
mental statistical principles.

In the next sections, we illustrate the advantages of the latent
centering model through simulations studies. All Mplus inputs
and outputs for these simulation studies can be found at statmo-
del.com.

THE TWO-LEVEL REGRESSION MODEL

Let Yij and Xij be the dependent and the predictor variables.
Consider the following two-level regression model.

Xij ¼ Xw;ij þ Xb;j (40)

Yij ¼ αj þ βjXw;ij þ εij (41)
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εij ,Nð0; σÞ;Xw;ij ,Nð0;ψÞ (42)

Xb;j

αj
βj

0
@

1
A,Nð

μ1
μ2
μ3

0
@

1
A;

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

0
@

1
AÞ (43)

We generate 100 samples according to the above model using
1000 clusters of size 15. We use a large number of clusters in
this simulation so that any biases in the parameter estimates
can be seen clearly. The data is analyzed with the latent
centering method using Bayesian estimation, the observed
group mean centering method using ML estimation, the
uncentered method using ML estimation and the hybrid
method using ML estimation.

The results are reported in Table 1, which also contains the
true parameter values used for the data generation. In these
data the ICC for the covariate Xij is 0.5 while for the dependent
variable Yij is 0.3. The latent centering method yields consis-
tent estimates with confidence interval coverage near the nom-
inal levels. The observed group mean centering method yields
consistent estimates for the means of the random effects but
some of the variance covariance parameters are biased and the
coverage drops below the nominal levels. These biases could
result in structural biases if we are to estimate structural or
regression models on the between level involving these ran-
dom effects such as for example the regression model in
equation (13). The uncentered method yields poor results.
This is mostly due to the fact that the model has to be repar-
ameterized before it can be used to make implications for the
generating model (44–43). Such reparameterizations are fairly
simple when it comes to the μi parameters but will become
increasingly difficult for random effects variance covariance
parameters. The reparameterization would also become
increasingly difficult when the model’s complexity increases,
for example, when having two predictor variables. Consider
for example the parameter μ2 ¼ EðαjÞ. Because the model is
uncentered the proper reparameterization implies that the

random intercept in this model is not just αj but it is αj þ
βjX :j with expected value μ2 þ μ3μ1 þ σ13. The average esti-
mates in our simulations using the uncentered method are
μ2 ¼ :46; μ1 ¼ μ3 ¼ 1; σ13 ¼ 0:54. Thus, if we compute the
expected value for the random intercept in this case we get
0:46þ 1þ 0:54 ¼ 2 which is the true value. Because the
uncentered method does not seem to have any benefits, how-
ever, it is difficult to recommend it. The observed group mean
centering method’s bias is fairly small and will be negligible
when the cluster sizes increase to 100 or larger. When the
cluster sample sizes are smaller, however, the latent centering
method clearly has the advantage. The hybrid uncentered
method also does not perform well. As expected the method
produced estimates close to the uncentered method. It elim-
inates the biases of the uncentered method for the two para-
meters σ11 and σ. However, as for the uncentered method, a
complex model transformation is needed to obtain the results
in the original latent centered metric.

Next we consider a two-level regression model with
multiple covariates. Let Yij be the dependent variable and
Xijk be the k � th predictor variable, k ¼ 1; :::;K. Consider
the following regression model:

Xijk ¼ Xw;ijk þ Xb;jk (44)

Yij ¼ αj þ
XK
k¼1

βjkXw;ijk þ εij (45)

εij ,Nð0; σÞ;Xw;ijk ,Nð0;ψkÞ: (46)

The model has 2K þ 1 between level random effects: αj, βjk
and Xb;jk are assumed to have a multivariate normal distribu-
tion. We conduct a simulation study with K ¼ 4 covariates.
The cluster size is set to 15 as in the previous simulation
study. The number of clusters in each sample is set to either
N ¼ 100, N ¼ 300 or N ¼ 500. Note that the case with 100
clusters should be viewed as small sample size estimation.
The within level model for Yij has 5 cluster specific para-
meters to be estimated with 15 observations in the cluster.
The ratio of the number of observations to the number of
parameters on the within level is thus 3. On the between
level, if we estimate only the means and the variance covar-
iance of the intercept and slope random effects of Yij, that
ration would be 5. If we estimate the means and the variance
covariance of all 9 random effects the ratio is approximately
2. A simple rule of thumb is that when this ratio is smaller
than 5, asymptotic theory cannot be relied upon and special
small sample size considerations apply. The parameters used
for the data generation are as follows: σ ¼ ψk ¼ 1 and the
correlation between the covariates on the within level Xw;ijk is
set to 0.3. The mean of the random intercept αj is set to 0, the
mean of the random slopes βjk is set to 1 and the means of the
random intercepts for the covariates Xb;jk is set to 0. The
variance covariance matrix for the 9 random effects on the

TABLE 1
The Two-Level Regression Model: Absolute Bias(Coverage)

Parameter
True
Value Latent Observed Uncentered Hybrid

μ1 1 0.00 (0.93) 0.00 (0.95) 0.00 (0.95) 0.00 (0.95)
μ2 2 0.00 (0.93) 0.00 (0.96) 1.46 (0.00) 1.46 (0.00)
μ3 1 0.00 (0.95) 0.00 (0.95) 0.00 (0.96) 0.00 (.96)
σ11 1 0.01 (0.93) 0.07 (0.73) 0.07 (0.73) 0.00 (0.94)
σ22 1 0.01 (0.91) 0.13 (0.32) 1.75 (0.00) 1.75 (0.00)
σ33 1 0.01 (0.93) 0.00 (0.93) 0.10 (0.39) 0.10 (0.39)
σ12 0.5 0.00 (0.93) 0.06 (0.63) 1.45 (0.00) 1.45 (0.00)
σ13 0.5 0.01 (0.94) 0.00 (0.96) 0.04 (0.78) 0.04 (0.78)
σ23 0.5 0.01 (0.91) 0.00 (0.93) 1.38 (0.00) 1.38 (0.00)
σ 1 0.00 (0.96) 0.00 (0.97) 1.00 (0.00) 0.01 (0.94)
ψ 1 0.00 (0.96) 0.07 (0.00) 0.01 (0.94) 0.00 (0.97)
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between level is set to the matrix with 1 on the main diagonal
and 0.5 for all off diagonal entries.

There are two ways to estimate the above model with
respect to how the covariates are treated: the covariates can
be treated as exogenous or as endogenous variables. If the
covariates are treated as exogenous variables the focus is on
estimating the conditional distribution of ½Y jX � and in this
case the covariance between Xw;ijk and the covariances
between Xb;jk and the other random effects are not included
in the model. If the covariates are treated as endogenous
variables these covariances are all included. The exogenous
treatment has the advantage that it yields a more parsimo-
nious model which can be very beneficial in small sample
size situations. The endogenous model has the advantage
that it provides a more comprehensive model which repre-
sents the data better and can be more accurate for large
samples due to including more data in the model estimation
(e.g., using the between level means for the covariates as
covariates for the random effects). We consider again the
latent centering approach based on the Bayesian estimation.
We also consider the observed centering approach using the
ML and the Bayesian estimation. Because of the small
sample size we can expect some difference between the
two estimators. The quality of the estimation will be eval-
uated by considering the estimation results for the variance
of the random intercept parameter which was among the
most problematic parameter in Table 1.

The results of this simulation study based on 100 replica-
tions are presented in Table 2. The latent centering method
outperforms the observed centering substantially in all cases.
The latent centering with exogenous covariates outperformed
the latent centering with endogenous covariates when N ¼
100 and, thus, we see the exogeneity benefit of parsimony
exists with small samples in these circumstances. For the larger
samples, however, the endogenous treatment of the covariates
performs equally well and in fact outperformed the exogenous
treatment for other model parameters, not presented here.
Thus, for larger samples, the endogenous treatment should be
preferred. The results in Table 2 also show that the problems
with the observed centering exist regardless of the estimator.
We can also see that the ML estimator is not affected by the
model choice for the covariates. That is due to the fact that the
log-likelihood of the model with observed centering can be

represented as the sum of two independent log-likelihood
terms: one for ½Y jX � and one for ½X �, i.e., the inclusion of X
in themodel does not affect the estimation of ½Y jX � in any way.
This does not seem to be the case when using the Bayes
estimator and the covariate treatment affects the results.

LÜDTKE’S BIAS

In multilevel models the contextual effect occurs when the
aggregate predictor X :j affects the outcome, even after con-
trolling for the individual level predictor Xij, see
Raudenbush and Bryk (2002). In the presence of contextual
effects, Lüdtke et al. (2008) shows that the observed mean
centering method yields biased results, while the latent
mean centering method is unbiased. In the following sec-
tions, we illustrate Lüdtke’s bias in the case of non-random/
fixed slope and then we extend that to the case of multilevel
regression with random slope.

Fixed slope

Consider the following two-level regression model,

Xij ¼ Xw;ij þ Xb;j (47)

Yij ¼ αj þ β1Xw;ij þ εw;ij (48)

αj ¼ αþ β2Xb;j þ εb;j (49)

εw;ij ,Nð0; σwÞ; εb;j ,Nð0; σbÞ;Xw;ij ,Nð0;ψwÞ;Xb;j ,Nðμ;ψbÞ:
(50)

There are no random slopes in this model. The within and
the between part of the the covariate X affects the dependent
variable Y but the effect for each of these two components
are different. The contextual effect is defined as β2 � β1.
This model has been studied extensively in Asparouhov and
Muthén (2006a) and Lüdtke et al. (2008) in the context of
comparing the latent mean centering and the observed group
mean centering methods. It was found that the observed
group mean centering method yields a bias in the key

TABLE 2
The Two-Level Regression Model with Multiple Covariates: Absolute bias/coverage/MSE for VarðαjÞ

Centering Estimator Covariates N ¼ 500 N ¼ 300 N ¼ 100

Latent Bayes Endogenous 0.09/0.88/0.02 0.14/0.87/0.04 0.40/0.72/0.25
Latent Bayes Exogenous 0.07/0.83/0.02 0.10/0.86/0.03 0.23/0.85/0.12
Observed ML Endogenous 0.90/0.00/0.84 0.91/0.00/0.87 0.89/0.06/0.91
Observed ML Exogenous 0.90/0.00/0.84 0.91/0.00/0.87 0.89/0.06/0.91
Observed Bayes Endogenous 0.97/0.00/0.98 1.05/0.00/1.15 1.35/0.00/2.00
Observed Bayes Exogenous 0.96/0.00/0.96 0.97/0.00/0.99 1.18/0.01/1.54
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coefficient β2. This bias can be computed explicitly in terms
of the model parameters and is approximately equal to

ðβ1 � β2Þψw=n

ψb þ ψw=n
; (51)

where n is the size of the clusters. We refer to this bias as
Lüdtke’s bias. The bias can also be expressed in terms of the
reliability of the sample cluster mean for Xij

R ¼ VarðXb;jÞ
VarðX :jÞ

¼ ψb

ψb þ ψw=n
¼ n � ICC

ðn� 1Þ � ICC þ 1
(52)

where ICC is the intra-class correlation given in (38). Thus,
an equivalent expression for Lüdtke’s bias is

ðβ1 � β2Þ
ð1� ICCÞ=n

ICC þ ð1� ICCÞ=n ¼ ðβ1 � β2Þð1� RÞ: (53)

Next we illustrate this bias with the following simulation
study. We generate 100 samples with 500 clusters of size 15
and analyze the data using the observed and the latent
centering methods. Because there are no random slopes in
this model both models can be estimated with the ML
estimator. The results are presented in Table 3, as well as
the true parameter values used for the data generation. Note
that we used regression coefficients that are in opposite
direction. This is known as the big fish small pond (BFSP)
effect and is common in education studies, see Marsh et al.
(2009) and Marsh et al. (2012). The simulation results show
that the bias in the observed group mean centering method
is not limited to the parameter β2 but can be seen in several
other parameters, including variance parameters. If the
model is expanded further to include structural equations
for the random effects these additional biases can lead to
biases in structural parameters. Notably, however, the within
level regression parameter β1 is unbiased. The latent center-
ing method provides unbiased estimates and coverage near
the nominal level and, thus, should be preferred to the
observed group mean centering method. As the cluster
sample sizes are increased to larger values the difference
between the latent and the observed group mean centering

method will become negligible. However, if the ICC of the
covariate decreases, Lüdtke’s bias increases. Note also that
in the above model the uncentered method is equivalent to
the observed group mean centered method.

Random slope

In this section, we conduct a simulation study for the case
when the regression coefficient on the within level is a ran-
dom effect. This is a natural extension of the model described
in the previous section as the effect of the covariate can be
expected to vary across clusters. Consider the model

Xij ¼ Xw;ij þ Xb;j (54)

Yij ¼ αj þ β1;jXw;ij þ εw;ij (55)

αj ¼ αþ β2Xb;j þ εb;j (56)

β1;j ¼ β1 þ β3Xb;j þ �b;j (57)

εb;j
�b;j

� �
,Nð 0

0

� �
;

σ11 σ12
σ12 σ22

� �
Þ (58)

εw;ij ,Nð0; σwÞ;Xw;ij ,Nð0;ψwÞ;Xb;j ,Nðμ;ψbÞ: (59)

In this model the between part of the covariate Xb;j is used as a
predictor not just for the random intercept αj but also for the
random slope β1;j. We generate 100 samples with 500 clusters
of size 15 using the above model and we analyze the data using
the latent and observed group mean centering. The latent
centering model can be estimated only with the Bayesian
estimator. We estimate the observed group mean centering
model with the ML estimator. The results of the simulation
are presented in Table 4. The latent centering method appears
to workwell, while the observed groupmean centeringmethod
shows bias not just for the β2 coefficient but also, for example,
for the within level effect β1;j. Both coefficients in equation
(57) have biased estimates.

TABLE 3
Lüdtke’s Bias: Absolute Bias(Coverage)

Parameter True Value Latent Centering Observed Centering

α 2 0.01 (0.95) 0.15 (0.46)
β1 −1 0.00 (0.96) 0.00 (0.96)
β2 1 0.00 (0.98) 0.14 (0.17)
σw 1 0.00 (0.95) 0.00 (0.95)
σb 0.9 0.01 (0.94) 0.24 (0.10)
μ 1 0.00 (0.91) 0.00 (0.91)
ψw 1 0.00 (0.95) 0.06 (0.01)
ψb 0.9 0.01 (0.97) 0.06 (0.90)

TABLE 4
Lüdtke’s Bias with Random Slope: Absolute Bias(Coverage)

Parameter True Value Latent Centering Observed Centering

α 2 0.00 (0.95) 0.06 (0.85)
β1 −1 0.01 (0.89) 0.06 (0.84)
β2 1 0.00 (0.96) 0.06 (0.71)
β3 1 0.00 (0.97) 0.06 (0.73)
σw 1 0.00 (0.97) 0.00 (0.98)
σ11 0.9 0.02 (0.94) 0.20 (0.21)
σ12 0.5 0.01 (0.96) 0.06 (0.87)
σ22 1 0.01 (0.96) 0.06 (0.95)
μ 1 0.01 (0.97) 0.01 (0.98)
ψw 1 0.00 (0.98) 0.06 (0.01)
ψb 0.9 0.01 (0.94) 0.07 (0.84)
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Let us also consider the grand mean centering method as
well as the uncentered method for the above model. These
two methods are equivalent and a reparameterization of each
other, however, unlike the case with a non-random slope,
these two methods are not equivalent to the observed group
mean centering method. In fact, if all three methods are
estimated as conditional models where all covariates are
conditioned on and not included in the likelihood, we can
use the BIC criterion to compare the models. Table 5 shows
the BIC results for the three models. As expected the uncen-
tered model and the observed grand mean centering yield
identical results. In addition the results indicate that
observed group mean centering model is the better fitting
model. The BIC is smaller for the observed group centering
in this simulation, not just on average, but for each indivi-
dual replication. This is as expected because the observed
group centering model is closer to the true model. The latent
centering model cannot be compared with an information
criterion to the models in Table 5 not just because it is based
on the Bayesian estimator, which produces the DIC criterion
instead of the BIC criterion, but also because the model
treats the Xij as a dependent variable. Thus, the likelihood
for that model is the joint likelihood for Yij and Xij rather
than the conditional likelihood ½YijjXij�:

One final aspect that we can consider in this simulation is
the precision of the estimates in terms of MSE (mean
squared error) or the SMSE (square root of the mean
squared error) for the five different centering options.
Table 6 contains the results for the β2 parameter as well as
the reparameterization formulas that are needed with the
grand mean centering, the uncentered and the hybrid meth-
ods. While the grand mean method and the uncentered
method yield equivalent models the reparameterization for-
mulas are different. Because of that and the fact that the
uncentered method uses a non-linear expression, the stan-
dard errors for these two methods are different even though
the point estimates are the same. This is the result of using

the delta method with the ML estimator. If we estimate the
models with the Bayesian estimator the standard errors
would be the same for the two equivalent models. The
bias for the group-mean centering, the grand mean centering
and the uncentered method is about the same, however, the
MSE is not, and the observed group mean centering method
is much more accurate than the grand mean centering
method and the uncentered method. At the same time the
latent centering method is more accurate than the observed
group mean centering method. The hybrid method appears
to have improved the bias and the coverage. However, in
terms of MSE it is not any better than the uncentered
method. The MSE differences are so large that we can
expect to see this effect for other similar models and that
this is a general phenomenon. Note here that when the
random slope β1;j is not random the MSE for the latent
centering method is also much smaller that that of the
observed group-mean centering, but the observed group-
mean centering has the same MSE as the uncentered and
the grand-mean centering. We can generally expect that this
dramatic increase in MSE for the grand-mean centering and
the uncentered method would diminish as the variance of
the random slope is closer to 0. Similarly, the hybrid method
is equivalent to the latent centering method for non-random
slopes. That means that the MSE increase associated with
the hybrid method also depends on the size of the variance
of the random slope and would diminish as the random
slope variance approaches 0.

Multilevel probit regressions

In this section, we illustrate with simulation studies Lüdtke’s
bias in multilevel probit regressions with or without random
slopes. As in the linear regression case, the bias can be
observed when the cluster sizes are small and there is a con-
textual effect. Here, we discuss the multilevel probit regres-
sion, however, the conclusions also apply to multilevel logistic
regression. In the simulation studies we use a binary dependent
variable Yij but the results are similar for a categorical variable
with more than two categories. First, we consider the multi-
level probit regressions without a random slope.

Xij ¼ Xw;ij þ Xb;j (60)

TABLE 5
Lüdtke’s Bias with Random Slope: Average BIC

Centering Observed-Group Observed-Grand Uncentered

BIC 23,965 24,578 24,578

TABLE 6
Lüdtke’s Bias with Random Slope: Results for β2 ¼ 1

Centering Latent Observed Group Observed Grand Uncentered Hybrid

Reparameterization β2 β2 β1 þ β2 β1 þ β2 þ 2μβ3 β1 þ β2 þ 2μβ3
Estimate 1.00 0.94 0.95 0.95 1.02
Standard error 0.054 0.049 0.093 0.122 0.128
Coverage 096 0.71 0.87 0.94 0.96
SMSE 0.054 0.082 0.123 0.123 0.121

10 ASPAROUHOVAND MUTHÉN



PðYij ¼ 1Þ ¼ Φðαj þ β1Xw;ijÞ (61)

Yb;j ¼ αj ¼ αþ β2Xb;j þ εb;j (62)

εb;j ,Nð0; σbÞ;Xw;ij ,Nð0;ψwÞ;Xb;j ,Nðμ;ψbÞ: (63)

The contextual effect here again exists when β1 and β2 are
not identical. We conduct three simulation studies with 100
data sets, 500 clusters of size L. For simulations 1 and 2 we
use L ¼ 15 and for simulation 3 we use L ¼ 50 to evaluate
the effect of cluster size on the bias. The parameters used for
data generation purposes are as follows α ¼ 0:5,
ψb ¼ σb ¼ 0:9, μ ¼ 0:4, β2 ¼ 1 and ψw ¼ 1. We vary the
value of β1 across the three simulation studies to evaluate
the effect of the contextual effect on the bias. In simulations
1 and 3, the value of β1 is −1, which creates a contextual
effect, while in simulation 2 it is 1, i.e., no contextual effect.
The quality of the estimation will be evaluated using a
single parameter r ¼ CorðYb;j;Xb;jÞ. This parameter is not
a model parameter but is derived from the estimated model
parameters as follows:

r ¼ β2ψbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψbðσb þ β22ψbÞ

q : (64)

We analyze the data using the latent centering method with the
Bayes estimator and the observed centering method with the
ML estimator. In this situation, the estimator choice does not
matter. The Bayes and the ML estimators are asymptotically
identical and because the number of clusters is 500 in all three
simulations the choice of the estimator is irrelevant. Both the
observed and the latent centering can be used with either
estimator. The ML estimation with the observed centering
uses a one dimensional numerical integration. The results of
the simulation are presented in Table 7. The latent centering
approach performs well while the observed centering shows
poor results in the presence of contextual effect. The bias in the
observed centering method decreases as the cluster size
increases. In addition, formula (53) predicts the bias of the
contextual effect in the multilevel probit regressions as well.

Consider now a multilevel probit regression with random
slope. Equations (60), (62) and (63) remain the same while
equation (61) is replaced by

PðYij ¼ 1Þ ¼ Φðαj þ β1jXw;ijÞ: (65)

where β1j ,Nðβ1; vÞ is a cluster specific random effect. We
generate data using the same parameter values as in the
previous simulation and the value of v is set to 0.5. We
analyze the data using observed centering with the ML
estimator based on a two dimensional numerical integration
and with the latent centering method using the Bayes esti-
mation which was introduced in Mplus V8.1. The ML
estimation cannot be used to estimate the model with latent
centering directly but an approximation model can be esti-
mated with an additional dimension of integration. We do
not consider this further, however, as such an estimation is
computationally intensive. The results of the simulation
studies are presented in Table 8. The latent centering
approach works very well in this context as well, while
the observed centering approach shows similar problems
to the problems observed for the multilevel probit regression
without random slopes.

Multilevel regression with a categorical predictor or
mediator

In the previous section we considered the multilevel model
where a categorical variable is predicted by a continuous
variable. In this section, we reverse the roles of the two
variables, i.e., the continuous variable is predicted by a
categorical variable. For simplicity, we use a binary catego-
rical variable but the discussion applies to ordered catego-
rical variables with more than two categories. Denote the
binary variable by Xij and the continuous dependent variable
by Yij. The most common modeling approach in this situa-
tion consists of not centering the binary predictor at all. This
approach, however, does not allow us to estimate a contex-
tual effect. Enders and Tofighi (2007) proposed to treat the
binary variable as continuous and use the observed group
centering. In this section, we compare the latent centering
approach to the observed centering approach. We show that
Lüdtke’s bias occurs in this situation as well when using
observed centering and that this bias can be resolved with
latent centering. Consider the following two-level model:

Yij ¼ Yw;ij þ Yb;j (66)

X �
ij ¼ X �

w;ij þ X �
b;j (67)

TABLE 7
Lüdtke’s Bias in Multilevel Probit Regression: Absolute Bias

(Coverage) for r

Cluster Size Contextual Effect Latent Centering Observed Centering

15 Yes 0.00 (0.95) 0.09 (0.08)
15 No 0.00 (0.92) 0.01 (0.95)
50 Yes 0.00 (0.93) 0.03 (0.81)

TABLE 8
Lüdtke’s Bias in Multilevel Probit Regression with Random Slope:

Absolute Bias(Coverage) for r

Cluster Size Contextual Effect Latent Centering Observed Centering

15 Yes 0.01 (0.93) 0.09 (0.09)
15 No 0.00 (0.96) 0.00 (0.96)
50 Yes 0.00 (0.94) 0.03 (0.84)
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Yw;ij ¼ β1X
�
w;ij þ εw;ij (68)

Yb;j ¼ αj ¼ αþ β2X
�
b;j þ εb;j (69)

Xij ¼ 0 ( X �
ij < τ (70)

PðXij ¼ 0jjÞ ¼ Φðτ � X �
b;jÞ (71)

εb;j ,Nð0; σbÞ; εw;ij ,Nð0; σwÞ;X �
w;ij ,Nð0; 1Þ;X �

b;j ,Nð0;ψbÞ:
(72)

This model represents a standard two-level model where the
structural relationships occur on the underlying latent scale
between the continuous and the categorical variable, i.e., it
is based on estimating a polyserial correlation between the
variables rather than the Pearson type correlation on the
observed scale. The variable X �

ij represents the underlying
continuous variable that is being categorized to obtain the
observed binary variable. This variable is further decom-
posed as a within-between and the two components are
denoted by X �

w;ij and X �
b;j. The variable X �

b;j represents the

cluster specific deviation of the threshold parameter τ while
the within component is the centered zero mean effect. As
usual the variance of X �

w;ij is fixed to 1, similarly to how this

is done in a standard two-level probit regression. The vari-
able X �

b;j also represents the mean of X �
ij in cluster j and,

therefore, the regression on the within level (68) represents
the latent centered regression.

We generate data according to the above model and analyze
the data by estimating the same model using the Bayes esti-
mator. Because the binary variable is modeled explicitly, miss-
ing at random data can be accommodated. The missing data is
imputed within the Bayesian estimation from the above multi-
level polyserial correlation model conditional on the observed
data. In addition, the binary variable can be further regressed
on another variable resulting in a two-level probit regression as
in the previous section. Therefore, we can easily extend the
above model to a two-level mediation model with a binary
mediator. Both of these features are not possible with the
observed centering. In Mplus the above two-level model can
also be estimated with theWLS family of estimators, however,
such estimation does not accommodate MAR missing data as
well as random slopes in the within level regression (68). We
also estimate the above model using observed centering as
suggested by Enders and Tofighi (2007). Because the depen-
dent variable is continuous such estimation can be done with
theML estimator without numerical integration. Note here that
with the observed centering, the regression on the within and
the between level is done on the observed scale. To be able to
properly evaluate the ability of the methods to estimate well
the contextual effect we will compute the between level corre-
lation r ¼ CorðYb;j;Xb;jÞ as was done in the previous section.
This will eliminate the scale differences between the models
while focusing on the strength of the relationship of the

variables on the between level. To generate the data we use
the following parameters α ¼ 0:4, β2 ¼ 1, τ ¼ �0:5, σw ¼ 1,
σb ¼ ψb ¼ 0:9. The parameter β1 will take two values 1 or −1.
The value of −1 creates a contextual effect while the value of 1
does not. We generate 100 data sets with 500 clusters and
cluster sizes 15, 50 and 100 with and without contextual effect.

The results are presented in Table 9. Lüdtke’s bias can be
seen here as well when the model is estimated with the
observed centering in the presence of contextual effect. The
latent centering method produces no bias and the coverage is
near the nominal levels. We can also see in Table 9 that the bias
in the observed centering estimation does not disappear com-
pletely when the data is generated without the contextual effect
or when the cluster size increases. This suggests that there is an
additional measurement error that has not been observed pre-
viously. The observed centering uses on the between level the
variable pj ¼ EðXijjjÞ ¼ ΦðX �

b;j � τÞ instead of X �
b;j. There are

two problems with that. First, the function Φ is not a linear
function and this will distort the estimate of the correlation r.
Second, the transformation Φ essentially truncates the distri-
bution of X �

b;j at 0 and 1. It is well known that truncation

attenuates correlation parameters, see Muthén (1990). This
additional bias depends mainly on the ICC of the binary
variable. The bigger the ICC is, the bigger the range in the
probability values pj across clusters. The bigger that range is,
the bigger the discrepancy between Φ and a linear function is
within that range and, therefore, the bigger the bias. The ICC
for the categorical predictor in the above simulation studies is
0.47. For ICC of 0.25 or lower, however, we can expect that
this additional bias will be negligible. In summary, we see that
using the observed centering for a categorical predictor causes
an additional bias in the contextual effect due to the non-
linearity of the link function Φ.

There is bigger problem, however, with the observed center-
ing for categorical predictors. When using the observed center-
ing, the within level correlation estimate is substantially biased,
while the latent centering yields unbiased estimates. In the above
simulations the observed centering produces (by absolute value)
a within level correlation of approximately 0.46 while the true
value is 0.71. This discrepancy is identical across all simulation
settings, i.e., with and without contextual effect, and with small
or large cluster sizes. Note that this level of attenuation is sub-
stantially larger than what is typically observed when the

TABLE 9
Lüdtke’s Bias in Multilevel Regression with Binary Predictor: Absolute

Bias(Coverage) for r

Cluster Size Contextual Effect Latent Centering Observed Centering

15 Yes 0.00 (0.94) 0.12 (0.01)
50 Yes 0.00 (0.95) 0.06 (0.35)
100 Yes 0.00 (0.93) 0.04 (0.63)
15 No 0.00 (0.91) 0.03 (0.79)
50 No 0.00 (0.95) 0.03 (0.87)
100 No 0.00 (0.93) 0.03 (0.80)
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Pearson correlation is used instead of the polyserial correlation.
One plausible explanation for this is that there are further model
violations. One such model violation is the fact that the variance
of the observed centered within part of the categorical variable is
not constant across clusters. That variance is pjð1� pjÞ, i.e., not
only it is not constant but it is directly determined by the between
part of the variable that we are using for the centering. This
exposes another severe model violation. The within and the
between parts of the categorical variable are not independent
variables. The between part of the variable determines comple-
tely the variance of the within part and also its range. For
example, when the between part is 0.3, the possible range for
the within part are only the two values −0.3 and 0.7. This
dependence between the within and the between level compo-
nents of the binary variable severely undermines the concept of
contextual effect. We are no longer able to estimate the effect of
the cluster component as a separate effect. Some of the cluster
level effect will still be channeled through the within level
regression. Yet another model violation is the normality assump-
tions for the within and the between components. In fact, the
binary distribution on the within level can be severely skewed.
Without any doubt, however, the biggest contributor to the bias
on the within level is the fact that the observed values used with
the observed centering are simply measurements of the under-
lying continuous concept. These measurements have a substan-
tial measurement error that is not accounted for.

Let us summarize our findings. The observed centering
for the binary variable is difficult to recommend because
of the numerous problems we described above. The real
question is when we should use the above latent centering
model instead of using the uncentered method with the
binary predictor used on the observed 0/1 scale. No doubt
the estimation of the uncentered model is simpler and this
is definitely a reason to prefer the uncentered model. In
fact that has been the main reason such models have been
preferred in the past. With the advances in the Bayesian
methodology, however, this is no longer a compelling
reason. Enders and Tofighi (2007) argue that the uncen-
tered approach may actually be the right approach to
address a particular substantive question. Another argu-
ment that often is invoked against the latent centering
model is the fact that it uses an underlying concept. In
certain situations, such a concept is indeed questionable.
For example, if the binary predictor is gender, it is diffi-
cult to argue that there is an underlying construct that is
dichotomized to yield the observed values. We agree that
this is indeed the case for certain situations, however,
here we will list several reasons for preferring the latent
centering approach. If the distribution of the binary pre-
dictor is not the same across the clusters, the variable is
no longer a pure predictor as it is affected by another
variable, i.e., the clustering. It is better to model that
cluster specific distribution as in the latent centering
approach through a multilevel probit model. Failing to
do so can result in model misspecifications. Failing to

establish a cluster invariant distribution for the binary
predictor can result in model misspecifications. If the
ICC of the binary predictor is substantively and statisti-
cally significant, the distribution of the variable is cluster
specific and should be modeled as such. In addition, there
may indeed be a contextual effect and that is best mod-
eled through the latent centering approach as it resolves
Lüdtke’s bias. Also, suppose that the binary predictor is
not just a predictor but is also a mediator variable that
itself is regressed on another covariate. This situation is
best handled through the latent centering approach and
the multilevel probit regression with a random intercept
and possibly a random slope for the additional covariate.
Another reason to prefer the latent centering approach is
the case when there is missing data on the binary pre-
dictor. Proper handling of the missing data requires mod-
eling the joint distribution of ½Y ;X � instead of the
conditional distribution of ½Y jX �. Thus, the two-level pro-
bit regression with random intercept for X and the latent
centering is needed here as well. In single level settings,
Mplus implements a special methodology using the
ANALYSIS option PREDICTOR = OBSERVED, see
Section 7 in Asparouhov and Muthén (2010). This meth-
odology allows us to model ½Y ;X � where the regression
of Y on X is performed on the observed scale even when
there is missing data on X . That methodology, however,
is currently not available in two-level settings and the
best approach remains the latent centering model where
X � is used as the predictor for Y. Further discussion of
categorical mediators can be found in section 8.4 in
Muthén, Muthén, and Asparouhov (2017).

Next we consider the situation where the multilevel regres-
sion of Y on X has a random slope. In Mplus 8.1 it is possible
to estimate this model using the latent centering approach with
the Bayes estimator. The model is the same as in equations
(66–72), where equation (68) is now replaced by:

Yw;ij ¼ β1jX
�
w;ij þ εw;ij (73)

β1j ,Nðβ1; vÞ: (74)

In this simulation, we generate data according to the above
model and we analyze the data using latent and observed

TABLE 10
Lüdtke’s Bias in Multilevel Regression with Binary Predictor and

Random Slope: Absolute Bias(Coverage) for r

Cluster Size Contextual Effect Latent Centering Observed Centering

15 Yes 0.01 (0.99) 0.07 (0.65)
50 Yes 0.00 (0.96) 0.05 (0.94)
15 No 0.01 (1.00) 0.01 (0.98)
50 No 0.00 (0.96) 0.00 (0.93)
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centering. To generate the data we use the following para-
meters α ¼ 0:4, β2 ¼ 1, τ ¼ 0, σw ¼ 1, σb ¼ 0:9, ψb ¼ 0:4
and v ¼ 0:5. The parameter β1 will take two values 1 or −1
to evaluate the impact of contextual effect on the estimation.
We generate 100 data sets with 100 clusters and cluster sizes
15 and 50, with and without contextual effect. The results
are presented in Table 10. We can see from these results that
Lüdtke’s bias can be seen here as well for the observed
centering approach in the presence of contextual effect. We
can also see that the latent centering approach resolves that
bias. Because we used a lower value for the ICC of the
categorical predictor, the bias due to the non-linearity of the
link function is not present in this simulation study.

Note that the above model allows us to estimate cluster
specific polyserial correlations through the random slopes.
Thus, the polyserial correlation is essentially modeled itself as
a random effect. This is a unique feature of the models discussed
in this and the previous section. The latent centering methodol-
ogy also extends to the case where both variables, the predictor
and the dependent variable, are categorical. Lüdtke’s bias can be
found in that case as well and can be resolved again with the
latent centering.

LATENT CENTERING IN TIME-SERIES MODELS

In time-series models there are two separate centering issues.
First, we have the contemporaneous centering where we center
a predictor from the same time period. This as usual is subject
to Lüdtke’s bias if the observed centering is used. However,
additional biases can occur with the observed centering when
the autocorrelation is ignored. Second, we have the lag center-
ing, i.e., the centering of the lag copy of the dependent variable
used as a predictor in an autoregressive model. This situation is
subject to Nickell’s bias if the observed centering is used. The
bias occurs in the mean of the random autocorrelation. It is
shown in Asparouhov et al. (2018) that latent centering can be
used to resolve Nickell’s bias. In this section we focus on the
biases that occur with the contemporaneous observed center-
ing due to the autocorrelation in the data and on the lag
centering in the context of categorical variables and the ran-
dom tetrachoric autocorrelation. We show how the latent cen-
tering can be used to resolve the bias in both of these situations.

Contemporaneous centering: Lüdtke’s bias with
autocorrelation

Let Yit and Xit be the dependent variable and the covariate
for individual i at time t. The two-level time-series regres-
sion model is described as follows:

Xit ¼ Xb;i þ Xw;it (75)

Yit ¼ αi þ β1Xw;it þ εit (76)

αi ¼ αþ β2Xb;i þ εi (77)

εit ¼ ry εi;t�1 þ δit (78)

Xw;it ¼ rxXw;i;t�1 þ �it (79)

δit ,Nð0; σ1Þ; �it ,Nð0;ψ1Þ; εi ,Nð0; σ2Þ;Xb;i ,Nðμ;ψ2Þ:
(80)

The above model can be estimated in Mplus 8.1 using latent
centering within the residual dynamic structural equation mod-
eling (RDSEM) framework, see Asparouhov et al. (2018) and
Asparouhov and Muthén (2018). The difference between this
model and the standard two-level regression model (47–49) is
described in equations (78–79), where we now allow the vari-
ables to be autocorrelated across time through their within level
residuals via an autoregressive lag 1model, also referred to as an
AR(1) model. Because of equation (79) which allows for auto-
correlationmodeling for the predictor, thismodel is also different
from the time-series models described in Chapter 6 in
Raudenbush and Bryk (2002). Such time-series models are
typically estimated with the observed centering and the REML
estimator, see Bolger and Laurenceau (2013). In the econo-
metrics literature, such models are used for pooled time-series
and cross-sectional data, see Mundlak (1978) and Wooldridge
(2008).

We generate data according to the above model with
N ¼ 200 individuals and varying number of time points
T . The residual variance parameters are set to 1 and the
intercept and mean parameters are set to 0. The para-
meter β1 is set to 1, while the between level parameter
β2 takes values of −1, to create contextual effect, and 1
to generate data without contextual effect. The values of
rx and ry are set to 0.7 or 0 to evaluate the autocorrela-
tion effect on the estimation. With each set of parameters
we generate 100 samples. The data will be analyzed with
four different methods. The first method is based on the
latent centering where the autocorrelations are taken into
account, based on the RDSEM framework. The second
method is using latent centering under the multilevel
SEM framework where the autocorrelations are not mod-
eled. The third method is based on the observed center-
ing under the multilevel framework where the
autocorrelations are not modeled. The fourth method
uses the REML approach where the observed centering
is used, the autocorrelation ry is modeled and the auto-
correlation rx is ignored. This model will be estimated
also within the RDSEM framework, using Bayesian
estimation. It is well-known that both Bayesian estima-
tion and REML estimation are asymptotically equivalent
to ML estimation and therefore to each other. We ver-
ified that within individual replications the REML
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results obtained from SAS, HLM and SPSS software
packages are nearly identical to the RDSEM estimation
for the fourth method. The simulation results are easier
to obtain using the Mplus RDSEM estimation so here
we report those results. For each set of parameters we
generate 100 samples and analyze them with the four
methods. The results for β1 are reported in Table 11 and
the results for β2 are reported in Table 12.

The results in Table 11 show that all four estimation
methods produce no bias in the parameter estimates for
β1. However, the observed and the latent centering meth-
ods based on the two-level SEM estimation, ignoring the
autocorrelation, produce bias in the standard errors. This
bias results in the lower coverage for β1. The bias can be
resolved by the REML method or by the latent centering
method with autocorrelation modeling. This bias occurs
when both ry>0 and rx>0 and disappears when either of
the two autocorrelations are zero. The bias exists even
with large samples, when there is a large number of time
points, and with or without contextual effect. The size of
this bias will depend on the size of the autocorrelations.
The bias occurs due to overestimation of the number of
independent observations on the within level when the
autocorrelations are ignored. It is interesting to note here
that the REML method which ignores the rx autocorrela-
tion is still able to resolve the bias in the standard error
for β1.

The results in Table 12 are more dramatic and show
large parameter estimate bias for β2 when rx>0 and there
is a contextual effect. The bias occurs for the observed
and the latent centering methods without the autocorre-
lations, but also occurs for the REML estimation
method, which includes ry. This bias also results in
lower coverage for the β2 parameter. The size of the
bias is affected by three components: the autocorrelation
rx, the size of the contextual effect and the number of
time points T . The bias increases as rx or the contextual
effect increase and decreases as the number of time
points increases. We can conclude from these results
that the bias will disappear if rx is small, the contextual
effect is small or the number of time points is large. It
appears, however, that a much larger number of time
points maybe needed in time-series context (much larger
than 100) to resolve this bias as compared to the size of
the clusters needed to resolve Lüdtke’s bias in regular
multilevel regression. This is because the size of the bias
is larger. The last row in Table 12 shows that Lüdtke’s
bias is 0.07 in the case when T ¼ 30, while the bias of
β2 in the first row in the presence of the autocorrelations
is 0.50, i.e., 7 times larger. It is interesting to note here
that the bias due to the observed centering (Lüdtke’s
bias) is in the same direction as the bias due to ignoring
rx and so it adds up. The bias of the observed centering
ignoring the autocorrelation and the bias in the REML

TABLE 11
Absolute Bias(Coverage) for β1

Time
Points

Contextual
Effect ry/rx

Latent Centering with
autocorrelation

Latent Centering without
autocorrelation

Observed
Centering

REML Observed Centering
with ry

30 Yes 0.7/0.7 0.00 (0.93) 0.00 (0.69) 0.00 (0.69) 0.00 (0.95)
60 Yes 0.7/0.7 0.00 (0.94) 0.00 (0.82) 0.00 (0.82) 0.00 (0.96)
100 Yes 0.7/0.7 0.00 (0.90) 0.00 (0.70) 0.00 (0.70) 0.00 (0.90)
30 No 0.7/0.7 0.00 (0.95) 0.00 (0.69) 0.00 (0.69) 0.00 (0.96)
100 No 0.7/0.7 0.00 (0.91) 0.00 (0.70) 0.00 (0.70) 0.00 (0.90)
30 Yes 0.7/0.0 0.00 (0.93) 0.00 (0.97) 0.00 (0.97) 0.00 (0.92)
30 Yes 0.0/0.7 0.00 (0.89) 0.00 (0.90) 0.00 (0.90) 0.00 (0.89)
30 Yes 0.0/0.0 0.00 (0.94) 0.00 (0.95) 0.00 (0.95) 0.00 (0.95)

TABLE 12
Absolute Bias (Coverage) for β2

Time
Points

Contextual
Effect ry/rx

Latent Centering with
autocorrelation

Latent Centering without
autocorrelation

Observed
Centering

REML Observed
Centering with ry

Analytically Derived
Observed Centering Bias

30 Yes 0.7/0.7 0.14(0.83) 0.44(0.01) 0.50(0.00) 0.51(0.00) 0.51
60 Yes 0.7/0.7 0.02(0.92) 0.26(0.18) 0.31(0.03) 0.30(0.05) 0.31
100 Yes 0.7/0.7 0.02(0.93) 0.16(0.54) 0.19(0.36) 0.18(0.37) 0.20
30 No 0.7/0.7 0.01(0.96) 0.00(0.98) 0.00(0.96) 0.00(0.96) 0.00
100 No 0.7/0.7 0.00(0.96) 0.00(0.95) .00(0.95) 0.00(0.95) 0.00
30 Yes 0.7/0.0 0.00(0.93) 0.00(0.97) 0.07(0.89) 0.07(0.88) 0.13
30 Yes 0.0/0.7 0.16(0.85) 0.44(0.00) 0.50(0.00) 0.50(0.00) 0.51
30 Yes 0.0/0.0 0.01(0.98) 0.01(0.97) 0.07(0.84) 0.07(0.87) 0.13
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method is essentially the sum of the bias of the latent
centering method ignoring the autocorrelation rx and
Lüdtke’s bias. Thus, both the REML method and the
two-level method with observed centering show the lar-
gest bias for β2. It is also interesting to note that based
on the results in the last row in Table 12, we can see that
the REML method is unable to resolve Lüdtke’s bias as
well.

The source of the bias for β2 for time-series model is the
same as that for Lüdtke’s bias, i.e., the bias is due to not
properly accounting for the measurement error in the mean
of the covariate, which is used as a predictor on the between
level. That measurement error is somewhat more complex in
time-series settings as it depends not only on the number of
time points T but also on the autocorrelation rx. The results
in Table 12 also point out that it is a common misconception
to focus on modeling the autocorrelation for the dependent
variable Y but to ignore the autocorrelation of the covariate
X . Clearly, the value of rx has a much larger impact on the
estimation method than ry. Ignoring ry has consequences for
the standard errors only, while ignoring rx has larger con-
sequences for the parameters estimates. This is important in
light of the popularity of the REML method and its wide-
spread use and availability in many statistical packages.
This simulation shows that latent centering with autocorre-
lation modeling is the best method for time-series
regressions.

Using the same approach as in Lüdtke et al. (2008), we
can estimate the bias in the parameter estimates of β2 for the
estimation methods based on the observed centering in the
context of time-series models. The analytic estimate for this
bias is:

ðβ1 � β2Þ
ð1� ICCÞ=T�

ICC þ ð1� ICCÞ=T� (81)

where

T� ¼ T
1� rx

ð1þ rxÞð1� 2rx=ðTð1� r2xÞÞÞ
; (82)

ICC is the intra-class correlation of X and T is the number
of time points, see Appendix A. Thus, the bias in the time-
series context can be computed the same way as Lüdtke’s
bias in the two-level context but now the cluster size T is
reduced due to the autocorrelation rx. The last column in
Table 12 shows that the bias estimate is fairly accurate and
that it matches the results obtained in the simulation study.

The bias in the parameter estimates of β2 given in for-
mula (81) can also be viewed as the bias of the contextual
effect β2 � β1. Therefore, the relative bias for the contextual
effect (with negative sign) is simply

ð1� ICCÞ=T�

ICC þ ð1� ICCÞ=T� : (83)

Note that this relative bias is independent of the size of the
contextual effect. It only depends on the quantities T , rx and
ICC. Note also that the relative bias of the contextual effect
is always between 0 and 1 and, thus, can be interpreted as
the percentage of underestimation of the contextual effect.
Figure 1 shows the relative bias as a function of ICC when
rx ¼ 0:5 and T ¼ 30. Figure 2 shows the relative bias as a
function rx when ICC ¼ 1=3 and T ¼ 30. Figure 3 shows
the relative bias as a function T when ICC ¼ 1=3 and
rx ¼ 0:5. These figures indicate that small ICC values
have the biggest impact on the relative bias, followed by
large rx values, followed by small T values.

Lagged centering: Nickell’s bias

Let Yit be the observed variable for individual i at time t.
Consider the following two-level autoregressive model:

FIGURE 1 Relative contextual bias as a function of ICC, rx ¼ 0:5, T ¼ 30.
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Yit � μi ¼ ϕiðYi;t�1 � μiÞ þ �it (84)

μi ¼ μþ εi1 (85)

ϕi ¼ ϕþ εi2 (86)

�it ,Nð0; σÞ; εi1 ,Nð0; θ1Þ; εi2 ,Nð0; θ2Þ: (87)

If we use the observed centering for the covariate Yi;t�1 and
we estimate the resulting two-level random slope regression
with the ML estimator, the estimate of ϕ is biased. This bias
is know as Nickell’s bias and is approximately

� 1þ ϕ
T � 1

; (88)

where T is the number of observations in the time-series for
each individual. The bias can be eliminated by using the
latent centering for the covariate and estimating the model
with the Bayes estimator in Mplus. Simulation results for
the above model are presented in Asparouhov et al. (2018).

Lagged centering of categorical variables and the
random tetrachoric autocorrelations

Let us consider now the corresponding autoregressive
model for a categorical variable. For simplicity we will
use a binary variable. The autoregressive model is expressed
in terms of the underlying continuous variable Y �

it

Y �
it � μi ¼ ϕiðY �

i;t�1 � μiÞ þ �it (89)

FIGURE 2 Relative contextual bias as a function of rx, ICC ¼ 1=3, T ¼ 30.

FIGURE 3 Relative contextual bias as a function of T , ICC ¼ 1=3, rx ¼ 0:5.
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μi ¼ μþ ε1i (90)

ϕi ¼ ϕþ ε2i (91)

PðYit ¼ 1Þ ¼ PðY �
it > 0Þ (92)

�it ,Nð0; 1Þ; εi1 ,Nð0; θ1Þ; εi2 ,Nð0; θ2Þ: (93)

The above model is essentially a multilevel time-series model
for an observed binary variable. Such a model is a powerful
alternative to Markov chain modeling as it can be incorporated
within a general multilevel model and it allows for cluster
specific transition probabilities through the random tetrachoric
autocorrelation ϕi. The model easily extends to ordered cate-
gorical variables as well as models with covariates and latent
variables. In addition, the model can accommodate lagged
relationships for lags greater than 1. Markov chain models by
definition do not allow lagged relations beyond lag 1.
Furthermore, the above model can easily accommodate multi-
variate time-series modeling with categorical variables which
is a valuable alternative to the latent Markov chain modeling,
see Asparouhov, Hamaker, and Muthén (2017).

Note that this model is substantially different than the
categorical time-series models discussed in Asparouhov
et al. (2018). The difference is in the fact that the autocor-
relation in the above model is used directly for the under-
lying Y �

it rather than a latent variable measured by Y �
it . This

difference is important and results in a substantially faster
estimation algorithm and can be used with much shorter
time-series data, i.e., the model can be estimated with as few
as 20 observations per person.

In this section, we explore the possible alternatives and
approximations to the above model. Our goal is to deter-
mine if Nickell’s bias can be observed in these settings as
well. We generate data according to the above model using
the following parameter values μ ¼ 0, ϕ ¼ 0:3, θ1 ¼ 0:6
and θ2 ¼ 0:01. To evaluate the bias we generate a single
data set with 5000 clusters. Such a data set represents a large
sample that can be used to determine the bias of the esti-
mates. This approach can be used as an alternative to the
usual approach of using multiple smaller data sets. In the
simulation, we need to standardize the random effects in
each cluster separately and this is easily done in Mplus with
one large data set rather than multiple smaller data sets. We
generate the data using cluster size 20, 50 and 200.

In the continuous case, when the observed centering is
used and there is no missing data, the time-series model is
reduced to a standard two-level regression. There are no such
easy simplifications for the model in (89–93). We analyze the
data using five different methods. The first method is the
latent centering option where we estimate (89–93) using the
Bayes estimator in Mplus. The second method is based on
the observed centering for the predictor using the observed
scale as suggested by Enders and Tofighi (2007). We used
that observed centering approach in the previous section as
well. The third method is using the uncentered observed
predictor. In the continuous case the uncentered method
performed well, see Hamaker and Grasman (2015), and,
therefore, it is worthwhile to explore this method as well
for the categorical case. The fourth and the fifth methods
are both using the predictor on the latent scale. These meth-
ods simplify the model by assuming that the predictor is a
separate variable rather than the lagged copy of the dependent
variable. Such simplification is often used in the continuous
case and it has been used to estimate multivariate time-series
models from variance covariance matrices of the dependent
variables and its lagged variables, see Zhang, Hamaker, and
Nesselroade (2008). Using this approach we can estimate the
above model by estimating a bivariate multilevel probit
model. The fourth method uses latent centering for the cov-
ariate while the fifth method does not, but are both based on
this bivariate probit modeling. Note, however, that this bivari-
ate modeling simplification does not lead to substantial sim-
plifications in the estimation of the models. Both methods can
be estimated only in Mplus 8.1.

With all five estimation methods, we standardize the
within level regression coefficient within each cluster so
that it represents a correlation parameter and we average
that across the clusters. This is accomplished in Mplus with
the option OUTPUT: STAND(CLUSTER). The results of
the simulation study are presented in Table 13. Clearly the

TABLE 13
Nickell’s Bias for the Random Tetrachoric Autocorrelation, ϕ ¼ 0:3

Cluster Size Latent Centering Observed Centering Uncentered Bivariate Centered Bivariate Uncentered

20 0.01 −0.16 −0.05 −0.08 0.04
50 0.00 −0.12 −0.06 −0.03 0.03
200 0.00 −0.09 −0.05 0.01 0.03

TABLE 14
Bias and Coverage for the Mean of the Random Tetrachoric

Autocorrelation, ϕ ¼ 0:3

Cluster Size Latent Centering

20 0.01 (0.98)
50 0.01 (0.90)
200 0.00 (0.98)
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latent centering is the only acceptable alternative. The esti-
mates are unbiased even with small cluster sizes. Among the
rest of the methods the bivariate centered method appears to
be the only one that could be of interest because the bias
disappears as the cluster size increases. That method, how-
ever, does not provide proper standard error estimation. It is
also clear from these results that Nickell’s bias is far more
complex in the categorical case and clearly the bias does not
disappear for large cluster sizes.

We conduct one additional simulation study to evaluate
the quality of the latent centering estimation over multiple
replications. Using the same settings as above, we generate
100 samples with 100 clusters each and analyze the data
using the latent centering. The results are presented in
Table 14. The latent centering shows no bias and the cover-
age is near the nominal levels.

TWO-LEVEL MEDIATION

In this section, we consider the impact of centering in multi-
level mediation modeling with random slopes. We use the
2-1-1 case for illustration purposes, see Preacher et al.
(2010). Suppose that the dependent variable is Yij, the
mediator variable is Mij and the between level predictor
variable is Xj. Than, the mediation model is as follows:

Yij ¼ Yw;ij þ Yb;j (94)

Mij ¼ Mw;ij þMb;j (95)

Yw;ij ¼ β1;jMw;ij þ εw;ij (96)

Yb;j ¼ α1 þ β2Mb;j þ β3Xj þ εb;j: (97)

Mb;j ¼ α2 þ β4Xj þ �b;j (98)

εw;ij ,Nð0; σwÞ;Mw;ij ,Nð0;ψwÞ (99)

εb;j ,Nð0; σbÞ; β1;j ,Nðβ1; θÞ; �b;j ,Nð0;ψbÞ: (100)

If we estimate the above model using the latent or the
observed group mean centering methods for the mediator
Mij, the indirect effect from X to Y can be computed as
β2β4. In Preacher et al. (2010), Appendix F, the hybrid
method is used to estimate the model and in that case the
indirect effect is computed as ðβ1 þ β2Þβ4. McNeish (2017)
considers this model without the random slope and used the
observed group mean centering method. We conduct a
simulation study to compare these three centering methods.
We generate 100 samples with C clusters of size L using the
above model with the following parameters: σw ¼ 1,
ψw ¼ 1, σb ¼ :9, ψb ¼ :9, θ ¼ 1, β2 ¼ 1, β3 ¼ 0:5,
β4 ¼ 1, α1 ¼ 2 and α2 ¼ 1. The between level covariate Xj

is generated from a standard normal distribution. The para-
meter β1 takes two possible values in the simulations: −0.5
and 1. The first value corresponds to non-zero contextual
effect, while the second value corresponds to zero contex-
tual effect. We use three values for C : 500, 20 and 15. The
first corresponds to a large number of clusters and the
second and third to a small number of clusters. We also
use three values for L : 50, 20 and 15.

The results are presented in Table 15. The hybrid method
appears to be unbiased when the number of clusters is large
but it seems to lose that advantage when the number of
clusters is small. Regardless of that, however, the hybrid
method has a substantially larger MSE as compared to the
latent centering method and thus it can not be recom-
mended. The observed group mean centering method
works well when the contextual effect is small or when
the size of the clusters is large. For smaller cluster sizes
when the contextual effect is not 0, the indirect effect
estimate is biased and the coverage drops below the nominal
level. The latent centering method appears to work well in
all cases, however, when the contextual effect is 0 and the
number of clusters is small, the observed group mean cen-
tering method appears to have a slight MSE advantage.
McNeish (2017) appears to have reached a similar conclu-
sion for the two-level mediation model without random
slopes, but fails to notice that this advantage clearly applies
only to the case of no contextual effect. Table 17 shows that
in the presence of a contextual effect and a small number of

TABLE 15
Indirect Effect: Absolute bias/coverage/SMSE

Number of Clusters Cluster Size Contextual effect Latent Observed Hybrid

500 50 No 0.00/0.94/0.064 0.00/0.92/0.063 0.01/0.93/0.122
500 50 Yes 0.00/0.93/0.066 0.03/0.90/0.071 0.01/0.92/0.122
500 20 No 0.01/0.93/0.058 0.01/0.94/0.057 0.00/0.98/0.106
500 20 Yes 0.01/0.95/0.062 0.09/0.77/0.104 0.00/0.97/0.106
20 20 No 0.06/0.89/0.376 0.03/0.88/0.357 0.05/0.88/0.559
20 20 Yes 0.07/0.93/0.393 0.56/0.65/0.856 0.52/0.71/0.637
15 15 No 0.03/0.98/0.528 0.01/0.91/0.423 0.04/.90/.746
15 15 Yes 0.08/0.97/0.486 0.58/0.68/0.901 0.49/.67/.692
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clusters, the observed group mean centering is dramatically
worse than both the latent centering and the hybrid method.
While in the above simulation, we did not vary the size of
the contextual effect, the size actually matters and the bigger
the contextual effect the bigger its impact is on the bias of
the observed and the hybrid method.

The main argument in McNeish (2017) against using
latent centering with small number of clusters is the fact
that the standard errors for the indirect effects are biased.
Using partial information we obtained from the author
regarding this finding we replicated the simulation study
and found no such bias. The results we obtained are
reported in Table 16 and clearly contradict the results in
Table 3 of McNeish (2017), under ML-SEM-Delta
method. The results in Table 16 show coverage near the
nominal level, while the results in Table 3 of McNeish
(2017) show coverage values as low as 0.63. In this
simulation study, we used 500 replications and varying
number of clusters. The cluster sizes are set to 10 to
generate data with small clusters and to 100 to generate
data with large clusters. As in McNeish (2017), we used a
non-random slope on the within level, i.e., the variance θ
of β1;j is set to 0 and β1;j is identical to the non-random
slope β1. The data is generated without contextual effect
and β1 ¼ β2 ¼ 0:5. To generate data with small effect size
we set β3 ¼ 0:3 and β4 ¼ 0:2. To generate data with
medium effect size we set β3 ¼ 0:6 and β4 ¼ 0:4. The
remaining parameters in model (94–100) are set as fol-
lows: α1 ¼ α2 ¼ 0, σw ¼ ψw ¼ 1, σb ¼ ψb ¼ :25 and
Xj,Nð0; :25Þ. The results in Table 16 are obtained using
the delta method for computing the standard errors of the
indirect effect which is the Mplus default option.

We summarize our findings as follows. We do not recom-
mend using the hybrid method at all. That is in contrast to

Appendix F in Preacher et al. (2010). Better methods are now
available for estimating multilevel mediation models with ran-
dom slopes. When the size of the clusters is 100 or more, the
latent centering method and the observed group mean centering
method are essentially equivalent and their performance would
be the same in terms of MSE, bias and coverage. In that case
preference should be given to convenience, for example, if the
ML estimator is desired, the observed group mean centering
should be used because the latent centering is not available with
the ML estimator. When the cluster sizes are smaller than 100,
we recommend the latent centering method, except possibly
when the number of clusters is smaller than 20 and the contextual
effect is small as well. In that special case, the observed group
mean centering method has an advantage in terms of MSE.
However, since that advantage is somewhat minor and is condi-
tional on the absence of contextual effect, which can be evalu-
ated only after the estimation is completed, it is difficult to make
a general recommendation for this method. The latent centering
method can be considered the most universally applicable
method.

Next we turn our attention to a slight modification of the
above model that has somewhat surprising consequences for
the hybrid and the uncentered method. Given that the hybrid
method has been used in Preacher et al. (2010), it is worth to
point out these complications. Consider the situation when
the random slope is correlated with the between level com-
ponent of the mediator variable.

β1;j
�b;j

� �
,N

β1
0

� �
;

θ ρ
ρ ψb

� �� �
: (101)

Thus, we have added the parameter ρ to the model (94–
100). It turns out that under these circumstances the formula
ðβ1 þ β2Þβ4 is no longer a valid way to compute the indirect
effect. Using the methodology described in Muthén and
Asparouhov (2015) and chapters 4 and 8 in Muthén et al.
(2017), we compute the indirect effect as:

ðβ1 þ β2 þ α2ρ=ψbÞβ4; (102)

see Appendix B, which clearly differs from the formula
used in Appendix F in Preacher et al. (2010).

We now conduct a simulation study to verify that this
new formula (120) is a more accurate way for computing

TABLE 16
Replicating MCNEISH (2017), TABLE 3: Indirect Effect Coverage for the Latent Centering ML-SEM Method

Number of Clusters Small Clusters Small effect Large Clusters Small effect Small Clusters Medium effect Large Clusters Medium effect

10 0.98 0.96 0.95 0.88
15 0.97 0.93 0.93 0.87
25 0.95 0.93 0.92 0.90
50 0.93 0.95 0.93 0.94
100 0.93 0.95 0.94 0.94

TABLE 17
Indirect Effect for Correlated Random Slope and Between Mediator

Centering Latent
Hybrid-Appendix F Preacher

et al. (2010) Hybrid

Formula β2β4 ðβ1 þ β2Þβ4 ðβ1 þ β2 þ α2ρ=ψbÞβ4
Bias 0.00 −0.77 0.00
Coverage 0.93 0.00 0.90
SMSE 0.057 0.782 0.149
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the indirect effect. We generate 100 samples with 500
clusters of size 50 using the above model with the
contextual effect and the new parameter ρ ¼ 0:7.
Table 17 contains the results of the simulation study.
We can make several conclusions from these results.
The simulation confirms that the formula ðβ1 þ β2Þβ4
used in Preacher et al. (2010) does not compute the
indirect effect correctly in these circumstance while for-
mula (120) works fine in terms of being unbiased and
the coverage is near the nominal level. Note also that the
latent centering again outperformed the hybrid method in
terms of being more accurate (smaller MSE). This exam-
ple also illustrates another advantage of the latent cen-
tering method. Because the latent centering method
completely separates the within and the between effects,
the indirect effect can be computed always using the
same simple formula β2β4 that is used also for comput-
ing indirect effects in single level models. On the other
hand, the hybrid method computation of the indirect
effect is more complex and likely to depend on the
particular model. In addition, if the hybrid model is
more complex there is no guarantee that the estimated
model would be a good model to base our inference on.
If the true model is the latent centering model, using
uncentered method during the estimation could lead to
other biases that can lead to further problems with the
estimation of the indirect effect. For example, if the
latent centering model is misspecified and the parameter
ρ is fixed to 0, there is no big change in the estimation
of the indirect effect and the estimate is still unbiased. If
that parameter is fixed to 0 with the hybrid model, the
estimation of the indirect effect will be biased and no
matter what formula is used the indirect effect will be
biased because the model is misspecified. Thus, we
conclude that yet another advantage of the latent center-
ing method for multilevel mediation models with ran-
dom slopes is the fact that the computation of the
indirect and the direct effects is more robust to model
misspecifications.

The supplemental materials of Preacher et al. (2010)
will be updated to reflect the above finding. Other
appendices in Preacher et al. (2010) that may require
additional development are appendices G, J and O, how-
ever, such development may be too complex and the
latent centering approach may remain the only practical

method for conducting mediation models with random
slopes. All other supplemental materials in Preacher
et al. (2010) are correct as they do not involve random
slopes.

CENTERING OF PREDICTOR OR MEDIATOR
VARIABLE WITH MISSING DATA

In this section, we consider the different centering options when
the predictor or mediator variable has missing data. Observed
group mean centering is based on the sample cluster means. The
sample mean, however, is a biased estimate of the mean when
the missing data is MAR. It is unbiased only when the missing
data is MCAR. Thus, we can expect that the observed group
mean centering will perform poorly in the presence of MAR
missing data. We conduct a simulation study to illustrate this
point based on the mediation model described in the previous
section. We use the model parameters corresponding to the first
row in Table 15, that is, we use the model without contextual
effect, with 500 clusters and cluster size of 50. Under these
circumstance and no missing data the observed group mean
centering performs well. Two changes are made to the para-
meters, however. For data generation purposes the two mean
parameters α1 and α2 are set to 0. This is done to simplify the
understanding of missing data generation. To generate MAR
missing data for the mediator we use the following model:

PðMij is missingÞ ¼ 1

1þ Expð1þ 0:5YijÞ : (103)

This model generation produces approximately 33% miss-
ing data. To generate MCAR missing data for the mediator
we use the model:

PðMij is missingÞ ¼ 1

1þ Expð1Þ (104)

which produces approximately 27% missing data. We use
four different estimation methods: the latent centering
method using Bayesian estimation, the observed group
mean centering method using Bayesian estimation, the
observed group mean centering method using ML estima-
tion in Mplus with montecarlo numerical integration and the
observed group mean centering method using ML estima-

TABLE 18
Indirect Effect with Missing Data on the Mediator: Absolute bias/coverage/SMSE

Missing Data Latent Bayes Observed Bayes Observed ML + montecarlo Observed ML + listwise

MCAR 0.00/0.93/0.064 0.01/0.92/0.062 0.02/0.91/0.068 0.00/0.91/0.064
MAR 0.00/0.92/0.063 0.09/0.68/0.108 0.10/0.58/0.121 0.13/0.39/0.142
Comp Time 3 sec 5 sec 16 min 1 sec
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tion and listwise deletion of the missing data based on
estimation without numerical integration. We evaluate the
performance of the four estimation methods by computing
the absolute bias, the coverage and the MSE for the indirect
effect. The results of the simulation are presented in
Table 18.

The results clearly show that the observed group mean
centering method, with any of the three estimators, yields
biased results when the missing data is MAR. The coverage
is also affected and is below the nominal levels. The latent
centering method on the other hand performs well and the
coverage is near the nominal level. The SMSE differences are
substantial among the four estimators. The latent centering
method is the most accurate followed by the observed group
mean centering method using the Bayesian estimator. The
observed group mean centering method using three dimen-
sional montecarlo integration is less accurate than the Bayes
estimator due to the imprecision of the montecarlo integra-
tion. We use the Mplus default setting for the numerical
integration. If the number of integration points is increased
further the precision of the estimates should become closer to
the ones obtained with the observed group mean centering
method and the Bayesian estimator. However, Table 18 also
shows the computational times for each replication for the
four estimation methods. All methods are fast except the ML
method with montecarlo integration. Thus, increasing the
number of integration points to improve precision is imprac-
tical. The most inaccurate method is the listwise deletion
method, in terms of bias, MSE and coverage. When the
missing data is MCAR all methods perform similarly: no
bias, good coverage and similar MSE. This further shows
that the biased results seen in Table 18 for the MAR missing
data and the estimators with observed group mean centering
is precisely due to the fact that the data is not MCAR. Note
also that unlike Lüdtke’s bias or the indirect effect bias in the
presence of contextual effect the bias due to MAR missing
data will not disappear if the size of the clusters is increased.
That is due to the fact that, in the case of MAR missing data,
the error in the sample mean estimate of the true mean will
not disappear as sample size increases.

SUMMARY

In this note, we show that the latent centering of predictors and
mediators in multilevel models can be used to resolve multiple
problems that occur with the traditional observed centering.
Among these are Lüdtke’s bias in the estimation of contextual
effects, Nickell’s bias in the estimation of the autocorrelations,
bias due to MAR missing data, bias due to the non-linearity of
the link functionwhen the predictor is a categorical variable, and
bias in the indirect effect estimate in multilevel mediation mod-
els. The method also provides a clean separation of the within
and the between effects which makes the multilevel mediation
models much easier to utilize. In most situations, the benefits

extend beyond the elimination of the bias and also result is much
more accurate estimates as measured by the MSE as well as
more accurate standard errors. The use of the Bayesian estima-
tion makes it possible to go beyond traditional multilevel meth-
odology. The proposed latent variable centering gives
unexpected improvements over observed variable centering.

In almost all of the simulations presented in this article,
the latent centering method based on the Bayesian estima-
tion outperformed the alternatives. The one notable excep-
tion is the second to last row in Table 15, which is
characterized by small cluster sizes, small number of clus-
ters and no contextual effect. Under such circumstances the
observed centering is more accurate and yields smaller
MSE. In the context of non-random slope regression and
the ML estimator, Lüdtke et al. (2008) also find that the
observed centering can outperform the latent centering in
certain data constellations (e.g., small ICC of the covariate,
small clusters sizes and small number of clusters).
Asymptotically, as the number of level 2 units increases,
the latent centering method is guaranteed to outperform the
observed centering method. The small sample size results,
however, should not be ignored as many practical applica-
tions are based on such small samples. Further small sample
size research is needed to identify the circumstances where
the observed centering method is the more accurate
approach. In addition, in small sample size estimation, the
ML estimator is not necessarily similar to the Bayes esti-
mator and the pairing of estimator and centering option
should be investigated as well. Furthermore, the choice of
the priors in the Bayesian estimation with small sample size
becomes important and should be evaluated as well. Note,
however, that small sample size results are extremely diffi-
cult to generalize and to extrapolate from one situation to
another. Any claims on estimation performance specific to
small sample size should not be relied upon unconditionally.
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APPENDIX A. LÜDTKE’S BIAS IN TIME-SERIES
MODELS

According to formula (53), Lüdtke’s bias is equal to

ðβ1 � β2Þð1� RÞ (105)

where R is the reliability of the sample cluster mean for Xij

R ¼ VarðXb;jÞ
VarðX :jÞ

: (106)

Denote by ψw ¼ VarðXw;ijÞ and by ψb ¼ VarðXb;jÞ. Note that

X :j ¼ Xb;j þ Xw;:j. Thus VarðX :jÞ ¼ ψb þ VarðXw;:jÞ. The variance

VarðXw;:jÞ can be computed as follows

Varð�Xw;:jÞ ¼ 1

T2
CovðXw;1j þ Xw;2j þ :::þ Xw;Tj;Xw;1j

þ Xw;2j þ :::þ Xw;TjÞ ¼
(107)

1

T2
ðTψw þ 2ðT � 1Þrxψw þ 2ðT � 2Þr2xψw þ :::

þ 2rT�1
x ψwÞ

¼ (108)

ψw

T2
ð�T þ 2

1� rx
1� rx

þ 2
1� r2x
1� rx

þ :::þ 2
1� rTx
1� rx

Þ ¼ (109)

ψw

T2ð1� rxÞ ð�Tð1� rxÞ þ 2T � 2ðrx þ r2x þ :::þ rTx ÞÞ ¼ (110)

ψw

T2ð1� rxÞ ðTð1þ rxÞ � 2rxð1� rTx Þ
1� rx

Þ ¼ (111)

ψwð1þ rxÞ
Tð1� rxÞ ð1� 2rxð1� rTx Þ

Tð1� r2x Þ
Þ � (112)

ψwð1þ rxÞ
Tð1� rxÞ ð1� 2rx

Tð1� r2x Þ
Þ ¼ ψw

T � ; (113)

LATENT VARIABLE CENTERING OF PREDICTORS AND MEDIATORS IN MULTILEVEL AND TIME-SERIES MODELS 23

http://statmodel.com/download/Bayes3.pdf
http://statmodel.com/download/Bayes3.pdf
http://statmodel.com/
https://doi.org/10.1037/1082-989X.12.2.121
https://doi.org/10.3389/fpsyg.2014.01492
https://doi.org/10.1080/00220973.2014.907229
https://doi.org/10.1080/00220973.2014.907229
https://doi.org/10.1037/a0012869
https://doi.org/10.1016/j.learninstruc.2014.04.002
https://doi.org/10.1080/00461520.2012.670488
https://doi.org/10.1080/00273170903333665
https://doi.org/10.2307/1913646
https://doi.org/10.1111/bmsp.1990.43.issue-1
https://doi.org/10.1177/0049124194022003006
https://doi.org/10.1080/10705511.2014.935843
https://doi.org/10.1080/10705511.2014.935843
https://doi.org/10.2307/271070
https://doi.org/10.1037/met0000052
https://doi.org/10.1037/a0020141
https://doi.org/10.1080/10705510802154281


where in the above approximation we used the fact that rxj j<1 and rTx � 0 for
sufficiently large T . We also used the definition of T� given in equation (82).
Thus, Lüdtke’s bias for the time-series model is

ðβ1 � β2Þð1� RÞ ¼ ðβ1 � β2Þð1�
ψb

ψb þ ψw=T �Þ ¼ (114)

ðβ1 � β2Þ
ψw=T

�

ψb þ ψw=T� ¼ ðβ1 � β2Þ
ð1� ICCÞ=T�

ICC þ ð1� ICCÞ=T� ; (115)

where ICC is the intra-class correlation of X .

APPENDIX B. COMPUTING THE INDIRECT EFFECT
FOR THE 2–1-1 MEDIATION MODEL

When the 2–1-1 mediation model is estimated with the uncentered or the hybrid
methods, the between part of Yij includes also β1;jMb;j which is the term that
appears on the within level because the mediator is not centered. Thus with the
uncentered or the hybrid methods

Yb;j ¼ α1 þ β2Mb;j þ β3Xj þ β1;jMb;j þ εb;j: (116)

If the random effectsMb;j and β1;j are correlated as shown in equation (101), we
can use equation (98) to get that the conditional expectation of β1;j conditional

on Mb;j and Xj

E½β1;jjMb;j;Xj� ¼ β1 þ ðMb;j � α2 � β4XjÞρ=ψb: (117)

Combining equations (116) and (117) we get the conditional expectation for Yb;j

E½Yb;jjMb;j;Xj� ¼ α1 þ β2Mb;j þ β3Xj

þ ðβ1 þ ðMb;j � α2 � β4XjÞρ=ψbÞMb;j

(118)

¼ α1 þ ðβ1 þ β2 � α2ρ=ψbÞMb;j þ β3Xj

þ ðρ=ψbÞM 2
b;j � β4ðρ=ψbÞMb;jXj: (119)

Using the potential outcome methodology described in Muthén and
Asparouhov (2015) and chapters 4 and 8 in Muthén et al. (2017), we can
now compute the total natural indirect effect (TNIE)

TNIE ¼ E½Y ð1;Mð1ÞÞ� � E½Y ð1;Mð0ÞÞ�: (120)

To compute E½Y ð1;Mð1ÞÞ� we use the above conditional expectation for-
mula (119), where Mb;j is now Mð1Þ and is distributed as
Mð1Þ,½Mb;jjXj ¼ 1� ¼ Nðα2 þ β4;ψbÞ

E½Y ð1;Mð1ÞÞ� ¼ E½Yb;jjMb;j,Nðα2 þ β4;ψbÞ;Xj ¼ 1� ¼ (121)

α1 þ ðβ1 þ β2 � α2ρ=ψbÞðα2 þ β4Þ þ β3

þ ðρ=ψbÞððα2 þ β4Þ2 þ ψbÞ
� β4ðρ=ψbÞðα2 þ β4Þ:

(122)

To compute E½Y ð1;Mð0ÞÞ�, we use the conditional expectation for-
mula (119), where Mb;j is Mð0Þ and is distributed as
Mð0Þ, ½Mb;jjXj ¼ 0� ¼ Nðα2;ψbÞ

E½Y ð1;Mð0ÞÞ� ¼ E½Yb;jjMb;j,Nðα2;ψbÞ;Xj ¼ 1� ¼ (123)

α1 þ ðβ1 þ β2 � α2ρ=ψbÞα2 þ β3
þ ðρ=ψbÞðα22 þ ψbÞ � β4ðρ=ψbÞα2: (124)

Subtracting these two expressions yields

TNIE ¼ ðβ1 þ β2 þ α2ρ=ψbÞβ4: (125)
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