
Dynamic Structural Equation Models

Tihomir Asparouhov, Ellen L. Hamaker and Bengt Muthén

Version 2

April 27, 2017

Abstract

This paper presents a dynamic structural equation model (DSEM),
which can be used to study the evolution of observed and latent vari-
ables as well as the structural equation models over time. DSEM is
suitable for analyzing intensive longitudinal data (ILD) where observa-
tions from multiple individuals are collected at many points in time.
The modeling framework encompasses previously published DSEM
models and is a comprehensive attempt to combine time series mod-
eling with structural equation modeling. The DSEM model is esti-
mated with Bayesian methods using the MCMC Gibbs sampler and
the Metropolis-Hastings sampler. We provide a detailed description
of the estimation algorithm as implemented in the Mplus software
package. DSEM can be used for longitudinal analysis of any duration
and with any number of observations across time. Simulation stud-
ies are used to illustrate the framework and study the performance
of the estimation method. Methods for evaluating model fit are also
discussed. Continuous time modeling, uneven times of observations
and subject-specific times of observations are discussed as well.

1 Introduction

In the last several years intensive longitudinal data with many repeated mea-
surements from a large number of individuals have become quite common.
These data are often collected using smart phones or other electronic devices
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and are referred to as ambulatory assessments (AA), daily diary data, eco-
logical momentary assessment (EMA) data, or experience sampling methods
(ESM) data (cf. Trull & Ebner-Priemer, 2013). The accumulation of these
types of data naturally leads to an increasing demand for statistical meth-
ods that allow us to model the dynamics over time as well as individual
differences therein using intensive longitudinal data.

One of the most common methods for longitudinal analysis in the social
sciences is growth modeling where an observed or latent variable is modeled as
a function of time, for example, a linear function of time. The coefficients of
the function, for example, intercept and slope, which determine the trajectory
for the variable are subject-specific random effects. Frequently such growth
models are expressed as multivariate models especially when the number
of observations for each person is small, for example less than 10. Using a
multivariate model allows us to introduce additional auto-correlations or add
time-specific parameters such as time-specific residual variances. However, a
multivariate model is not suitable for modeling longer longitudinal analysis
such as 30 or more observations across time for several different reasons.
The first reason is that the model can become computationally intensive
for longer longitudinal data. A univariate model with 30 observations will
require modeling the joint distribution for all 30 observations, i.e., a 30x30
variance covariance matrix. A bivariate model would require 60x60 variance
covariance matrix and so on. The dimensions of the joint distribution increase
rapidly and can easily become computationally prohibitive.

Longer longitudinal data provides further challenges for standard growth
modeling. While it is reasonable to expect that the evolution of a variable
across 10 time points can be quite well approximated by a linear, quadratic
or cubic curve, it is unlikely that such an approach will be sufficient for
100 times of observations, simply because 4 parameters out of 10 degrees of
freedom is much likelier to be approximately correct than 4 out of 100 degrees
of freedom. This is also the reason why splines have gained momentum in
modeling longer trajectories. However, splines or other smoothing techniques
cannot be used for inference about the future as splines have no natural
continuation outside of the observed period the way quadratic and linear
trends do.

In longer longitudinal data the best predictors of a particular observation
would typically be other observations taken around the same time. This is
essentially the premise of time series analysis, i.e., allowing observations to
be directly regressed on observations from the preceding periods. For longer
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longitudinal analysis it will be much harder to predict the value of an ob-
servation at a particular time point simply using some global characteristics
about the individual rather than to use characteristics about the individual
that are relevant to that time period.

An alternative specification of a growth model is as a two-level model
where each cluster consists of all the observations for one individual. Using
cross-classified modeling this approach can be extended to allow time-specific
random effects in addition to subject-specific random effects, see Asparouhov
and Muthén (2016). Such an approach can accommodate longitudinal studies
of any duration and number of observations. However, it does not accom-
modate autoregressive modeling where consecutive observations are directly
related rather than through subject-specific effects. The framework that we
describe here is a direct extension of the cross-classified ILD modeling frame-
work described in Asparouhov and Muthén (2016). We simply add to that
framework the ability to regress any variable, observed or latent, not only
on other variables from the same time period but also from several of the
previous periods.

The DSEM model described here can be viewed as the two-level exten-
sion of the dynamic structural models described in Molenaar (1985), Zhang
and Nesselroade (2007) and Zhang et al. (2008). Time series models for
observed and latent variables date back to Kalman (1960) and are applied
extensively in engineering and econometrics. In most such applications, how-
ever, multivariate time series data of a single case (i.e., N=1) are analyzed. In
contrast, the intensive longitudinal data discussed in this article is for a sam-
ple of individuals and the DSEM framework discussed here accommodates
this more complex modeling need. Analyzing a random sample of individ-
uals as usual allows us to make inference about individuals that are not in
the sample, which is something that can not be done when a single individ-
ual is analyzed. Thus the DSEM framework will allow us to make inference
for individuals outside of the sample as well as for future observations for
individuals in the sample.

The DSEM framework is a powerful tool for exploring intensive longitudi-
nal data as it combines four different modeling techniques: multilevel mod-
eling, time-series modeling, structural equation modeling (SEM) and time
varying effects modeling (TVEM). Each of these four techniques addresses
different aspects of the data and is used to model different correlations that
are found in such data. The multilevel modeling is based on correlations that
are due to individual-specific effects. The time series modeling is based on
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correlations due to proximity of observations. The SEM modeling is based
on correlations between different variables. The TVEM modeling is based
on correlations due to the same stage of evolution. The goal of the DSEM
framework is to parse out and model these four types of correlations and
thereby give us a fuller picture of the dynamics found in the ILD.

The outline of this article is as follows. First we present the general
DSEM model and the model estimation using Bayesian methods. Next we
discuss methods for model fit evaluation. We then illustrate the framework
with multiple simulation studies and conclude with a summary discussion.

2 The general DSEM model

The general DSEM model consists of three separate models. The most
general DSEM model is the cross-classified model which incorporates both
individual- and time-specific random effects. The second most general model
is the two-level DSEM model which incorporates individual-specific random
effects only. This model could actually be the most popular and useful model
as it is easier to estimate, identify and interpret. The third model is the
single-level DSEM model for N=1, that is, a DSEM model-estimated with
the time series data from a single individual, see Zhang and Nesselroade
(2007). There are no random effects in the single-level model, that is, all
model parameters are non-random. Here we describe the most general cross-
classified DSEM model. The two-level and the single-level DSEM models are
special cases of the cross-classified DSEM model.

Let Yit be a vector of measurements for individual i at time t, where the
i-th individual is observed at times t = 1, 2, ..., Ti. The cross-classified DSEM
model of lag L begins with the following decomposition

Yit = Y1,it + Y2,i + Y3,t, (1)

where Y2,i and Y3,t are individual-specific and time-specific contributions and
Y1,it is the deviation of individual i at time t. All three components are
latent normally distributed random vectors and are used to form three sets
of structural equations - one on each level.
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2.1 The between-level models

The second and the third level structural equation models take the usual
form

Y2,i = ν2 + Λ2η2,i +K2X2,i + ε2,i (2)

η2,i = α2 +B2η2,i + Γ2X2,i + ξ2,i (3)

Y3,t = ν3 + Λ3η3,t +K3X3,i + ε3,t (4)

η3,t = α3 +B3η3,t + Γ3Xt + ξ3,t. (5)

On each level the first equation is generally referred to as the measurement
equation and the second equation is referred to as the structural equation.
The vector x2,i is a vector of individual-specific time-invariant covariates and
x3,t is a vector of time-specific but individual-invariant covariates. Similarly,
η2,i is a vector of individual-specific time-invariant latent variables and η3,t is
a vector of time-specific individual-invariant latent variables. The variables
ε2,i, ξ2,i, ε3,t, ξ3,t are zero mean residuals as usual and the remaining vectors
and matrices in the above equation are non-random model parameters.

While the above equations do not include regressions among Y compo-
nents such regressions are typically achieved by creating a latent variable
equal to the Y variable, that is, the Y variable would be a perfect error-free
indicator for a latent variable. Once such latent variables are included in the
model the regression between the Y variables is specified as a regression be-
tween the corresponding latent variables using the structural equations. This
is a simple way to reduce the number of matrices in the above equations and
is somewhat of a tradition in the structural equation modeling literature, but
it has no implication to model specification or estimation.

In the above specification we did not include level 2 and level 3 dependent
variables but such variables are easy to accommodate as well. The vectors Y2,i
and Y3,t can include not just the latent decomposition parts of the variables
Yit but can also include observed variables that are subject-specific or time-
specific.
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2.2 The within-level model

The within-level part of the DSEM model is described by the following equa-
tions which now include time-series components

Y1,it = ν1 +
L∑
l=0

Λ1,lη1,i,t−l +
L∑
l=0

RlY1,i,t−l +
L∑
l=0

K1,lX1,i,t−l + ε1,it (6)

η1,it = α1 +
L∑
l=0

B1,lη1,i,t−l +
L∑
l=0

QlY1,i,t−l +
L∑
l=0

Γ1,lX1,i,t−l + ξ1,it. (7)

Here x1,it is a vector of observed covariates for individual i at time t and η1,it
is a vector of latent variables for individual i at time t.

In the above equations the latent variables η, the dependent variables Y
and the covariates X at times t, t − 1, ..., t − L can be used to predict the
latent variables η and the dependent variables Y at time t. Including the
lagged predictors X in the above equations is somewhat inconsequential, and
we do this mostly for completeness. The covariate X1,i,t−l is not any different
from the covariate X1,i,t because the model does not include distributional
assumptions about the covariates X and is essentially a model for the condi-
tional distribution of [Y |X]. Including the lagged covariates X1,i,t−l doesn’t
involve any special statistical consideration with one small exception of the
initial unobserved values which we will address later.

Latent centering

The dependent variables Y , on the left and the right hand side of the above
equations are not the actual observed quantities Yit but rather the within-
level component Y1,it. These are sometimes referred to as the centered vari-
ables since Y1,it = Yit − Y2,i − Y3,t. The variables Y2,i and Y3,t can be inter-
preted as the mean for individual i and the mean for time t which are thus
subtracted to form the pure realization for individual i at time t excluding
any global effects specific for individual i and time t.

Centering is inconsequential for the variables on the left hand side of the
equations but is important for the variables on the right hand side of the
equations and is well established in the multilevel modeling literature, see
Raudenbush and Bryk (2002). In principle one can use the corresponding
observed sample means instead of the latent true means Y2,i and Y3,t, however,
that will produce biased estimates because the sample mean is different from
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the true mean and has a sampling error which will be unaccounted for. In
multilevel models this has been documented in Ludke et al. (2008) where the
bias is shown to occur for the between-level estimates when the regression
involves two separate variables. In time series models the bias has been
documented in Nickell (1981) and Hamaker and Grasman (2015) where the
bias occurs on the within-level and involves just one variable that is regressed
on itself at the preceding time. In both cases the bias disappears as the cluster
size increases and the difference between true mean and sample mean vanish.

Random slopes and loadings

In addition to the above equations we allow random slopes and loadings
on the within-level. Every structural coefficient on the within-level can be
a non-random model parameter or it can be a random parameter. Every
within-level random parameter s can be decomposed as follows

s = s2,i + s3,t, (8)

where s2,i is an individual-specific random effect, that is, an individual-
specific latent variable which is an element of the vector η2,i modeled in
the level 2 structural model. Similarly, s3,t is a time-specific random effect,
i.e., a time-specific latent variable which is a part of the vector η3,t modeled
in the level 3 structural model. An alternative way to present this model
is to directly introduce the indices i and t in the structural parameters in
Equations (6) and (7) as follows

Y1,it = ν1 +
L∑
l=0

Λ1,litη1,i,t−l +
L∑
l=0

RlitY1,i,t−l +
L∑
l=0

K1,litX1,i,t−l + ε1,it (9)

η1,it = α1,it +
L∑
l=0

B1,litη1,i,t−l +
L∑
l=0

QlitY1,i,t−l +
L∑
l=0

Γ1,litX1,i,t−l + ξ1,it (10)

with the additional specification that every parameter varying with i and t
is decomposed as in Equation (8).

Random residual variances
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In addition to the above random effects we allow residual variances V on the
within-level to be random parameters, i.e., the model parameters V ar(ε1,it)
and V ar(ξ1,it) can be random as follows

V = Exp(s2,i + s3,t), (11)

where s2,i is an individual-specific normally distributed random effect and s3,t
is a time-specific normally distributed random effect and again these random
effects are elements of the higher level latent variable vectors η2,i and η3,t.

Note that random structural parameters such as loadings and slopes have
a normal distribution, that is, are normally distributed random effects, while
random residual variance parameters have a log-normal distribution. This
is necessary to ensure that the variance parameters remain positive during
the MCMC estimation. Note also that this random variance approach ap-
plies only to univariate variance parameters and it does not include random
multivariate variance covariance matrices.

It is somewhat more difficult to construct random positive definite vari-
ance covariance matrices, based on random effects that could also be used in
linear models such as (3) and (5) and remain positive definite for any indi-
vidual and any set of covariates while at the same time be easy to interpret.
However, it is possible to construct random variance covariance matrices by
introducing factors with random variances or via random loadings Cholesky
decomposition. Both of these approaches are somewhat more complex not
just in implementation but also in interpretation as well.

Including moving-average terms

The DSEM model incorporates only the auto-regressive modeling as a
time-series feature, but can easily accommodate the moving average model-
ing because it includes latent variable modeling. Consider for example the
ARMA(1,1) model

Yt = µ+ aYt−1 + ηt + bηt−1. (12)

The moving average part of this model is nothing more than a latent variable
and its lagged 1 latent variable predicting the dependent variable Y . Thus
the ARMA models are a special case of the DSEM model. Similarly accom-
modating ARIMA models amounts to fixing the regression coefficients of Yt
on Yt−l to (−1)l+1

(
m
l

)
, where m is the degree of integration. For example,

fixing parameter a to 1 in Equation (12) yields the ARIMA(0,1,1) model.
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Starting up the process

One final issue that should be specified in the above model is the fact
that the variables Y1,i,t−l, X1,i,t−l and η1,i,t−l can have a time index that is
zero or negative in the above model. For example when t ≤ l the time index
t−l ≤ 0 appears in Equations (6) and (7). Such variables never appear in the
model as dependent variables and thus we have to provide a specification of
some kind. In this treatment we have chosen a method that is similar to the
one used in Zhang and Nesselroade (2007). We treat all of these variables
as auxiliary parameters that have their own prior. Such a prior could be
difficult to specify in practical settings, however, and thus we propose the
following method which estimates the prior during a burnin phase of the
MCMC estimation. In the first iteration all the variables with non-positive
time index are set to zero. After each MCMC iteration during the burnin
phase of the estimation a new prior is computed as follows. The prior for
Y1,it for t ≤ 0 is set to be the normal prior with mean and variance the
sample mean and variance of Y1,it over all t > 0 values. Similarly the prior
is set for X1,it and η1,it for t ≤ 0. Note that none of the burnin iterations
are used to construct the final posterior distribution of the parameters. This
is essential in order to preserve the integrity of the MCMC sequence. This
method is easy to use and appears to be quite well tuned. It is the default
option in Mplus and is based on 100 burnin iterations. Note that when the
time series model is sufficiently large with 30 or more observations it is very
unlikely that the prior specification affects the estimation. The effect of this
prior tends to fade away beyond the first few time periods. However, when
the number of time periods in the time series is small such as less than 20
one can expect that the prior will have some small effect on the estimates.
The burnin phase prior estimation method we propose here appears to be
working quite well even for short time series.

2.3 Categorical variables

Categorical variables can easily be accommodated in the above model through
the probit link function. For each categorical variable Yijt in the model,
j = 1, ..., p, taking the values from 1 to mj, we assume that there is a nor-
mally distributed latent variable Y ∗ijt and threshold parameters τ1j, ..., τmj−1j
such that

Yijt = m⇔ τm−1j ≤ Y ∗ijt < τmj, (13)
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where τ0j = −∞ and τmjj = ∞. The above definition essentially converts
a categorical variable Yijt into an unobserved continuous variable Y ∗ijt. The
model is then defined using Y ∗ijt instead of Yijt in Equation (1). Note that the
τ parameters are non-random parameters while the random intercept param-
eters Y2,ij and Y3,jt provide a random and uniform shift for these threshold
parameters, i.e., a certain degree of uniformity is assumed when the variable
is ordered polytomous. Such an assumption does not exist for binary vari-
ables and when the variable is binary, depending on the structural model at
hand the single threshold parameter can be replaced by a mean parameter
for Y ∗ijt. This kind of parametrization yields a more efficient estimation by
avoiding the slow mixing of Cowles (1996) algorithm for sampling thresholds,
see also Asparouhov and Muthén (2010). This is also the reason why some-
times models with binary variables tend to be easier to estimate as compared
to models with ordered polytomous variable with more than one category,
despite the fact that ordered polytomous variables carry more information
in the analysis and more information generally means better model identifi-
cation and more precise estimation.

Note that while the categorical variable modeling given in Equation (13)
relies on the underlying continuous variable Y ∗ijt the actual model applica-
tion does not require such an interpretation. The variables Y ∗ijt are just a
convenience for formulating the model. The model can equivalently be for-
mulated without the underlying continuous variables Y ∗ijt and directly on the
model-implied discrete probabilities P (Yijt = m) using the model-implied
probit regression. Thus even when underlying continuous variable is deemed
an unacceptable concept from a substantive point of view the above model
is applicable.

2.4 Continuous time dynamic modeling

The DSEM model as described this far applies to situations where the time
variable can be scaled so that each person is observed at times 1, 2, ..., Ti.
This assumption is reasonable for example in daily diary applications where
each subject is observed once a day. However, it is unrealistic in other appli-
cations where multiple observations are taken per day or in situations where
observations are so dispersed that a daily scale is unrealistic. In many cases
individual observations are taken at uneven time intervals or at random.
The times of observations could be considered real values rather than integer
values which would call for continuous time modeling.
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We can resolve this problem by resetting the time variable using scaling,
shifting, and rounding so that the continuous times of observations are well
approximated by integer values. In its essence this process amounts to the
following. Using a small value δ we divide the time line using an equally
spaced grid where δ represents the length of the grid intervals. The times
of observations are rounded to the nearest grid time point which thereby
converts the continuous times of observations to integer times of observations.
We then fill in the data with missing values for those integers that were not
the nearest for an observed continuous time point. The complete details of
the algorithm implemented in Mplus are given in Appendix A. Understanding
the process of discretization is also important for a proper interpretation of
the DSEM results.

2.5 Final remarks on the general DSEM model

For identification purposes, restrictions need to be imposed on the above
general model. For example, mean structure parameters can exist only on
one of the levels for most common situations, that is, νj will be fixed to 0 on
2 out of the 3 levels. Other identifying restrictions need to be imposed along
the lines of standard structural equation models.

The above model is the time-series generalization of the time intensive
model described in Section 8.3 of Asparouhov and Muthén (2016). The
remarkable and daring features of this model are that longitudinal data of any
length is allowed, an unlimited number of random effects can be estimated
without a substantial computational burden, and that no two observations in
the data are truly independent of each other, as the time series and subject-
specific random effects correlate data within each subjects and the time-
specific effects correlate data across subject.

The DSEM model is a two-level model, but because it is a multivariate
model, it can be used to formulate three-level DSEM models where the first
level is written in a multivariate wide format. This is particularly the case
when the first level contains only a small number of observations. One such
example is described in Jahng et al. (2008) where the three level structure
is as follows: subjects, days, and observations within days. The number of
observations within a day is typically a number smaller than 10 and thus
can be represented with a 10 dimensional vector. Using this approach it is
possible to model within-day autocorrelation structures and between-days
autocorrelation structures, that is, construct three-level DSEM models.
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The DSEM model estimation is implemented in Mplus Version 8, with
three notable exceptions that may be resolved in future Mplus implementa-
tions. The three exceptions are as follows: a) the parameters Rl and Ql can
not be random for when l = 0; b) the parameters Λ1,l, B1,l and the parame-
ter in (11) can be random, but can not include a time-specific random effect;
and c) for categorical variables the lagged variables Y ∗ij,t−l are not a part of
the model, that is, for categorical variables time series models can be built
only through latent variables or other continuous dependent or independent
variables.

In conclusion, the cross-classified DSEM model presented above allows
us to study the evolution across time not just of the observed and latent
variables but also of the structural model as well. The two-level DSEM
model is a special case of the cross-classified DSEM model and eliminates
Y3,t, X3,t and η3,t variables from the model as well as Equations (4) and (5).
In (1) the component Y3,t is eliminated and thus the main decomposition
is the usual within/between decomposition that is fundamental to two-level
structural equation models. The structural model is assumed to be time-
invariant. However, this does not imply that the variable distribution is time
invariant: Time-varying covariates, including the time variable t itself, can
still be included in the model, and thus trends and growth models can be
estimated in addition to the subject-specific time series models.

Furthermore, the single-level DSEM model is a special case of the two-
level DSEM model and it essentially contains just one cluster and no random
effects. Equation (1) reduces to Y1,it = Yit and the variables Y2,i, X2,i and
η2,i are removed from the model as well as Equations (2) and (3). In fact,
the model is completely specified only by Equations (6) and (7). Since we
have just one cluster/individual in the model, the index i can be removed
from the model.

Finally, note that the cross-classified DSEM model requires the time scale
to be aligned across all individuals so that a time-specific effect s3,t has the
same meaning for all individuals at time t. Not every ILD set is suitable
for the cross-classified DSEM model. Consider for example an observational
study in which time t is simply the time since the first observation was
recorded; in this case, no particular effect may be expected at time t that
applies to every subject in the study. On the other hand, if the study was
on subjects that enrolled in a treatment and time t represents the time since
enrollment in the treatment, it is natural to expect that time-specific effects
at time t can exist and apply to all subjects in the data; in that case, the
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cross-classified DSEM model can be used. Note that the two-level DSEM
model has no particular requirements on the time scale and is thus suitable
for any ILD analysis.

3 Model Estimation

The model estimation without the time-series features is described in As-
parouhov and Muthén (2016) and Asparouhov and Muthén (2010). A sub-
stantial portion of that estimation algorithm also applies directly to the es-
timation of the DSEM model. We will summarize the general framework
briefly and then we will provide details on the estimation that are specific to
DSEM. The details that are not provided here can be found in Asparouhov
and Muthén (2010) and are related to Bayesian estimation of SEM. Alter-
natively, these details can be found in Arminger and Muthén (1998) or Lee
(2007).

The estimation is based on the MCMC algorithm via the Gibbs sampler.
All model parameters, latent variables, random effects, between-level 2 com-
ponents, between-level 3 components, and missing data are arranged into
blocks. Each of these blocks is updated (new value is being generated) from
the conditional distribution of that block, conditional on all other remaining
blocks and the data. This process is repeated until a stable posterior distri-
bution for all blocks is obtained. The goal of the block arrangement is to
assure that each block has an explicit or manageable conditional distribu-
tion. In addition, the blocks are arranged in such a way that elements that
are highly correlated are generated simultaneously as to improve the quality
of the MCMC mixing. To achieve that we arrange the blocks to be as large
as possible, while keeping the conditional distributions explicit. Then within
each block we arrange the elements into the smallest possible sub-blocks that
are conditionally independent and can be generated separately.

The MCMC estimation, unlike ML estimation, has the ability to absorb
new modeling features easily, meaning that the estimation would not change
dramatically when a new model feature is added. This is because the MCMC
estimation is based on many conditional distributions rather than one joint
distribution. Thus when a new feature is added to the model not all con-
ditional distributions are affected. As an example consider the conditional
distribution of the underlying Y ∗it for a categorical dependent variable. Com-
puting the conditional distribution of Y ∗it can be done by the same method
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we would apply without the time-series features of the model. Similarly the
methodology for updating the threshold parameters is not changed by the
time-series features of the model.

Let θ represent all non-random model parameters. We split θ in 3 blocks:
intercepts, slope and loading parameters θ1; variance, covariance and correla-
tion parameters θ2; and threshold parameters θ3. Priors for each of these pa-
rameters have to be specified. Proper, improper, and informative conjugate
prior specification for the various parameters are discussed in Asparouhov
and Muthén (2010). Here we generally assume non-informative priors for
all the parameters but informative priors can be facilitated as well in the
MCMC estimation.

All unknown quantities in the DSEM model are placed in the following
13 blocks which are updated one at a time during the MCMC estimation

• B1: Y2,i

• B2: All random slopes s2,i

• B3: Y3,t

• B4: All random slopes s3,t

• B5: Other latent variables η2,i and η3,t

• B6: Latent variables η1,it, including initial conditions where t ≤ 0

• B7: Missing variables Yit

• B8: Initial conditions Y1,it and X1,it for t ≤ 0

• B9: Threshold parameters for all categorical variables θ3

• B10: Underlying variables Y ∗it for all categorical variables

• B11: Non-random intercepts, slope and loadings parameters θ1

• B12: Non-random variance, covariance and correlation parameters θ2

• B13: Random variance parameters
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In certain cases, blocks can be combined to improve mixing quality and
the speed of the computation. For example, if Rl and Ql are non-random
parameters, blocks B1 and B2 can be combined and blocks B3 and B4 can
be combined. That is because the joint conditional distribution of B1 and
B2 is normal. It is not normal if Rl and Ql are random because Equation
(9) will contain the product of elements of B1 and elements of B2. Similar
logic applies to B3 and B4.

To complete the description of the MCMC estimation, the conditional dis-
tribution of each of the above blocks, conditional on all other blocks and the
data, should be specified. The technical details of deriving these conditional
distributions are given in Appendix B.

4 Model fit and model comparison

The easiest method for model comparison in the DSEM framework is to
evaluate significance of individual parameters through the credibility inter-
vals produced by the Bayesian estimation. This is particularly effective when
models are nested and model comparison is essentially a test of significance of
effects. However, in more complicated model comparisons such significance
testing is not available. This section discusses the DIC and comparisons of
sample and estimated quantities as methods for evaluating model fit and
model comparison.

4.1 DIC

A commonly used criterion for model comparison in Bayesian analysis is the
DIC that was first introduced by Spiegelhalter et al. (2002). The DIC can be
computed when all the dependent variables are continuous using the usual
formulas. The deviance is computed as

D(θ) = −2 log(p(Y |θ)), (14)

where θ represents all model parameters and Y represents all observed de-
pendent variables. The effective number of parameters pD is computed as
follows

pD = D̄ −D(θ̄), (15)

where D̄ represents the average deviance across the MCMC iterations and θ̄
represents the average model parameters across the MCMC iterations. The
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DIC criterion is then computed as

DIC = pD + D̄. (16)

DIC can be used to compare any number of competing models, and these may
be nested or not. The best model is the model with the lowest DIC value.
The effective number of parameters pD should generally be close to the size
of the vector θ and is the penalty for model complexity of this information
criterion.

Comparability of the DIC

Despite this seemingly clear definition, there is substantial variation in
how the DIC is actually computed and defined (cf. Celeux, Forbes, Robert &
Titterington, 2006). The source of the variation is the definition of θ, and in
particular in depends on whether latent variables are treated as parameters
or not. If a latent variable is treated as a parameter, it is a part of the vector
θ and the likelihood used in the definition of the deviance is conditional on
that latent variable. If a latent variable is not treated as a parameter, it is
not a part of the vector θ and the likelihood used in the definition of the
deviance is the marginal likelihood, that is, the latent variable has to be
integrated out (see for a similar discussion in the context of the AIC: Vaida
& Blanchard, 2005).

Consider for example a one-factor analysis model. If the factor is treated
as a parameter, p(Y |θ) is the likelihood conditional on the factor where all
indicators are independent of each other conditional on that factor. If the
factor is not treated as a parameter, p(Y |θ) is computed without condition-
ing on the factor and instead using the model-implied variance covariance
matrix where the indicators are not independent. These two different ways
of computing the DIC will naturally produce different pD and naturally will
be on a completely different scale and incomparable, despite the fact that
the model is the same. In more complicated models even more variation can
occur as some latent variables can be included as parameters as some may
not. This phenomenon makes the DIC somewhat trickier to use in latent
variable rich DSEM models as one has to always check that the definitions
of DIC are comparable.

Consider a different example that consist of 3 models. Model 1 is a two-
indicator one-factor model example where we treat the factor as a parameter.
Model 2 is the same as Model 1, but the variance of the factor is fixed to
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zero, which is equivalent to the model of two independent indicator variables.
Model 3 is the model of two correlated indicators without any factors. In this
example the two different formulations of Model 2 yield the same DIC. Thus
Model 2 DIC is comparable to Model 1 DIC. Model 2 DIC is also comparable
to Model 3 DIC. However, Model 1 DIC is not comparable to Model 3 DIC
(despite the fact that they are the same model), that is, model comparability
is not transitive.

Stability of the DIC estimate

An additional complication that arises in the computation of DIC for the
DSEM model is that when latent variables are treated as parameters the
number of parameters pD becomes so large and so many parameters have to
be integrated through the MCMC iterations that the DIC precision is difficult
to achieve. It is not unusual that convergence for the model parameters is
easily achieved but stable DIC estimate require many more iterations, and
there may be cases where it is practically infeasible to obtain a stable DIC
estimate. In such cases, the imprecision that remains may be bigger than
the DIC difference in the models we are trying to compare.

Therefore, we recommend to verifying that the DIC estimate has con-
verged by running the MCMC estimation with different random seeds for
the same model, and comparing the DIC estimates across the different runs
to evaluate the precision of the DIC. Despite all these difficulties the DIC
is the most practical way to compare models when simple parameter signifi-
cance tests are not enough.

Formal definition of the DIC for the DSEM model

The definition of the DIC consists of the list of latent variables that are
treated as parameters. As in Asparouhov and Muthén (2016), for DIC with
two-level and cross-classified models all random effect variables such as ran-
dom loadings, random slopes, random variances as well as the random inter-
cept variables Y2,i and Y3,t are treated as parameters. In addition, any latent
variable on the within-level that is lagged in a time series model is treated as
a parameter, that is, any latent variable η1,i,t that is also used on the right
hand side of Equations (6) and (7) in its lagged version η1,i,t−l is treated as a
parameter. Clearly, this increases the number of parameters pD of the DIC
substantially, usually much more so than the between-level random effects.
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A between-level random effect increases pD by N while a within-level lagged
latent variable increases pD by N ·T . Similarly, the missing values for Yit for
every dependent variable that is lagged, meaning it is used on the right hand
side of Equations (6) and (7) in lagged form, is also treated as a parameter.

Given that these variables are conditioned on, the variables Yit are inde-
pendent across time and persons, and the likelihood is computed as follows

log(P (Y |θ)) =
∑
i,t

log(P (Yit|θ)), (17)

where P (Yit|θ) is the likelihood for a single-level SEM model for individual i
at time t. Thus, treating the lagged latent variables on the within-level and
the lagged missing data as model parameters makes the computation of the
DIC feasible.

To summarize, the DIC can be used to compare two or more DSEM
models if the list of latent variables that are treated as parameters is the
same, and it is provided as standard output when doing DSEM.

4.2 Comparing sample statistics and their correspond-
ing model-estimated quantities

Another array of possibilities for evaluating model fit is to compare sample
statistics and their corresponding model-estimated quantities. This is partic-
ularly effective for the two-level DSEM model. Let µi be the model-estimated
mean for a single dependent variable Y for subject i. Let Yi∗ be the sample
mean for subject i, i.e., Yi∗ =

∑Ti
t=1 Yit/Ti. From these two quantities we can

compute the following statistics of model fit

R = Cor(µi, Yi∗) (18)

MSE =
N∑
i=1

(µi − Yi∗)2/N. (19)

Here R is the correlation between estimated and observed means across the
clusters/individuals and MSE is the mean squared error of the estimated
versus observed mean. If we compare two competing models, we want to
select the model with smaller MSE and higher R as it will better represent
the data. Note that such model fit evaluation is useful not just for two-level
DSEM models but also for general two-level models.
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It is important to realize that the above comparison is most reliable under
the condition that there is no missing data. When data is missing and is
missing at random (MAR) rather than completely at random (MCAR), the
sample quantities Yi∗ will not necessarily be the mean of Y in cluster i and
the model-estimated µi could be the more accurate estimate for that mean.
Cautious inference in the presence of missing data can still be made using R
and MSE. However, undeniably these statistics are not as reliable as in the
case of no missing data and discrepancy between model-estimated values and
sample values could simply be the result of MAR and not MCAR missing
data.

Note also that R and MSE can be computed for any observed model vari-
able and statistic. For example, instead of the mean of Y we can compute the
sample and model-estimated variance of Y . Another example is the covari-
ance between two dependent variables Cov(Y1, Y2), that is, computing the
correlation R between the cluster-specific model-estimated covariance and
the cluster-specific sample covariance. Yet another example that is particu-
larly of interest for the two-level DSEM model is to compute the correlation
R between the subject-specific sample autocorrelation for a variable Y and
the subject-specific model estimated autocorrelation of Y across the subjects.

Because there are many variables and many different statistics, one can
expect that the R and MSE statistics can potentially disagree about which
model represents the data better. Empirical data applications will yield more
insight on that topic and whether such a disagreement is common. Note also
that the DSEM model offers many more subject-specific estimated quantities
than the standard two-level SEM model without any random structural co-
efficients. For example, in the standard two-level SEM, estimated variances
are not subject-specific so R would be zero for all models and no model
comparison can be performed that way.

In Mplus the correlations R can be obtained for the means and the vari-
ance statistics within the Mplus between-level scatter plots simply by plot-
ting the estimated gainst the sample quantities. The MSE is not reported
in those plots but can easily be computed by saving the data of the plots
and computing it in a separate step. In the Mplus residual output other
estimated statistics, such as covariance and autocorrelations, can be found
as well.

The model-estimated means, variances and covariances for the DSEM
model are not computed as they are computed for the SEM model. The
details on this computation are given in Appendix C.
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5 Simulation Examples

In the following sections we illustrate the framework with several simulation
studies that are also insightful in their own right.

5.1 Centering

In this section we show that the DSEM framework can be used to eliminate
the dynamic panel bias, also known as Nickell’s bias, see Nickell (1981). The
example we use for this illustration is taken from Hamaker and Grasman
(2015). The sample consist of N individuals observed at times t = 1, ..., T .
We consider the univariate random autoregressive AR(1) model given by the
following equation

Yit = µi + φi(Yi,t−1 − µi) + ξit. (20)

The variable ξit is assumed to be white-noise with mean 0 and variance
σw. The variables µi and φi have a bivariate normal distribution with mean
parameters µ and φ, variances σ11 and σ22 and covariance σ12. In the DSEM
framework the above model can be estimated directly. The predictor Yi,t−1−
µi in Equation (20) is centered, that is, its mean is subtracted. Because
the centering uses the true mean µi which is a latent variable, we call this
centering the latent centering.

In contrast to the latent centering model we also consider the observed
centering model

Yit = µi + φi(Yi,t−1 − Yi∗) + ξit, (21)

where the predictor is now centered by the sample mean instead of the true
mean for individual i. Model (21) can be estimated as a standard two-level
regression model. However, that estimation produces Nickell’s bias for the
parameter φ because the model does not account for the error in the sample
mean estimate of the true mean. Nickell (1981) also produced the following
formula that approximates the bias

− 1 + φ

T − 1
. (22)

We conduct a simulation study to evaluate Nickell’s bias, generating data
according to model (20) and using the following parameter values µ = 0, φ =
0.3, σ11 = σw = 3, σ22 = 0.01, σ12 = 0. The variance σ22 is small so that the
autocorrelation parameter φi remains in the (−1, 1) range as it is a correlation
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Table 1: Nickell’s bias for φ=0.3

T N DSEM(latent centering) Observed centering Nickell’s formula
10 100 0.025 -0.140 -0.144
20 50 0.006 -0.070 -0.068
30 30 0.008 -0.042 -0.045
50 50 0.000 -0.029 -0.027
100 100 -0.001 -0.014 -0.013

parameter. If the parameter φi exceeds that range, V ar(Yit) will increase
with time to infinity. When data is generated for each person we need a
starting value for the first time point that is generated. The standard way
to resolve this ambiguity is to start at 0 but generate and discard the first
few observations. That way the generated values stabilize and the effect of
the original starting value of 0 is removed. We discard the first 10 values for
each person.

In Table 1 we report the simulation results for various values of N and T
using 100 simulated data sets for each combination of N and T . The results
show that the DSEM latent centering approach resolves Nickell’s bias and
that the latent centering is superior to the observed centering. We also see
that the bias is quite small for T ≥ 100. The simulation study shows also
that Nickell’s formula predicts the bias quite accurately.

It was noted in Hamaker and Grasman (2015) that not centering the
covariate also produces very good results for Nickell’s bias, that is, we can
replace Equation (21) with

Yit = µi + φiYi,t−1 + ξit. (23)

We call this model the uncentered model. The model can also be estimated
as a standard two-level regression model. The uncentered approach resolves
Nickell’s bias, however, it produces bias for the parameters on the between-
level. In Table 2 we report the bias for σ11 = V ar(µi) using the uncentered
method and the DSEM method

We can make several conclusions from these results. The bias in the
DSEM method for between-level parameter is driven by the number of sub-
jects in the sample N and seems to disappear for N ≥ 100. The DSEM bias
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Table 2: Bias for V ar(µi) = 3

T N DSEM(latent centering) Uncentered
10 100 -0.015 -1.637
20 50 0.217 -1.483
30 30 0.645 -1.256
50 50 0.378 -1.361
100 100 0.096 -1.508

is guaranteed to disappear asymptotically as the method is equivalent to the
ML method for large N . It is also know that the variance of the between-level
effect when N < 100 can be fine-tuned by using proper priors, see Browne
and Draper (2006). For N < 100 the effect of the prior is not negligible and
selecting a weakly informative prior can reduce the bias substantially. In this
simulation study we used improper and uninformative priors. We can also
conclude that the uncentered method yields distortion on the between-level
and the bias seen in Table 2 does not disappear asymptotically.

This simulation uses a very simple DSEM model. The biases that we il-
lustrated here for the observed centering method and the uncentered method
will be difficult to track in more complicated models, especially because Nick-
ell’s bias can interact with Ludke’s bias to further distort the model. We can
also see clearly that the perils of the uncentered method are more dangerous
from an estimation point of view as they remain in the model even with large
samples.

Note also that the latent centering method used with DSEM is the only
method that accommodates missing data and both the observed centering
and the uncentered method are essentially not available when there are miss-
ing values in the data. The covariate can not be constructed when the data
point is missing and that means that if Yi,t−1 is missing the equation con-
taining Yi,t would have to be removed as well. Thus if the data contain 20%
missing data we have to remove another 20% that are next to the missing
data. If the model we estimate is AR(2) we have to remove another 20% and
the only data points that can be used for model estimation would be when
3 consecutive observations are all observed. This problem is in addition to
the well know problems that occur when listwise deletion is used for dealing
with missing data, particularly when the missing data is not MCAR.
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5.2 Subject-specific variance

In regular multilevel analysis the within-level variance is generally estimated
to be a cluster-invariant parameter. Even if that parameter is not cluster-
invariant, the assumption of invariance generally does not affect the estima-
tion of the structural parameters. However, for DSEM models that is not the
case. Jongerling (2015) et al. show that ignoring the subject-specific vari-
ance can distort the structural parameters of the model particularly when
the subject-specific variance is correlated with other random effects in the
model. In this section we will reproduce this finding in the DSEM framework
and discuss the general implications for DSEM modeling.

Consider the following simulation study based on the random autoregres-
sive AR(1) model given by the following equations

Yit = µi + εit (24)

εit = φiεi,t−1 + ξit, (25)

where now we include subject-specific residual variance through the normally
distributed random effect vi

vi = Log(V ar(ξit)). (26)

The three random effects (µi, φi, vi) in the above model are assumed to have
an unrestricted multivariate normal distribution with mean ν = (2, 0.2, 0)
and variance covariance Σ where σ11 = 0.7, σ22 = 0.05, σ33 = 0.5, σ12 =
σ13 = 0. Since the covariance parameter between φi and vi appears to be
the most important parameter in this simulation study we use four different
values for σ23 = 0.15, 0.1, 0.05, and 0. These four values correspond to the
following correlation values 0.95 (high), 0.63 (medium), 0.31 (small) and 0
(none). In the simulation we use 100 replications, N = 200 and T = 100 for
each value of σ23. We generate data according to model (24-26) and analyze
the data with the same model and the model (24-25) excluding the random
variance variance effect, i.e., assuming subject invariant variance parameter.
The results of the simulation are presented in Table 3.

We can make several conclusions from these results. The DSEM model
without the random variance effect shows parameter bias and low coverage
while the DSEM model with the random variance effect shows no bias and
good coverage. Model parameter distortions are directly caused by the cor-
relation between the random autoregressive parameter φi and the random
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Table 3: Bias(coverage) for subject-specific variance simulation

parameter Cov(φi, vi) random variance invariant variance
E(φi) high .001(.97) .040(.35)
E(φi) medium .001(.98) .028(.65)
E(φi) low .001(.97) .017(.83)
E(φi) none .001(.96) .007(.92)
V ar(φi) high .001(.97) -.012(.47)
V ar(φi) medium .001(.93) -.007(.78)
V ar(φi) low .001(.93) -.004(.88)
V ar(φi) none .001(.94) -.001(.91)

Table 4: Square root of the MSE for the random autoregressive parame-
ters and the correlation between true and estimated random autoregressive
parameters

Cov(φi, vi) DSEM random variance DSEM invariant variance
SMSE high .255 .346
SMSE medium .293 .329
SMSE low .300 .316
SMSE none .300 .310

correlation high .96 .87
correlation medium .92 .89
correlation low .91 .90
correlation none .91 .90
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variance parameter vi. The higher that correlation is the bigger the dis-
tortions. Note that these two random effects are directly related via the
following equation

V ar(Yit|i) =
Exp(vi)

1− φ2
i

. (27)

Because of that strict relationship one can expect in practical applications vi
and φi to be fairly highly correlated and therefore one can expect the DSEM
model results with random variances to differ somewhat from the results
without random variances. In that case we can assume that the DSEM
model with random variances will yield the more accurate results.

The effect of ignoring the random variance parameters on the random
autoregressive parameters is even more dramatic than the effect on the non-
random parameters. To compare the estimated random autoregressive pa-
rameters with their true values we compute the square root of the mean
squared error and the correlation between the estimated random autoregres-
sive parameters and the true values

SMSE =

√
(1/N)

∑
i

(φ̂i − φi)2 (28)

correlation = Cor(φ̂i, φi) (29)

The above quantities are computed for each of the 100 replications and the
average values are reported in Table 4. The results show that the distortions
in the estimates caused by ignoring the random variance effect go beyond
simple inflation or deflation of the random parameters and the errors appear
to have doubled from what they are for the non-random parameters. How-
ever, the cause of the increase in the SMSE error is somewhat more complex
because it is not just due to the misspecification of the random variance ef-
fect. Consider for example the fact that the DSEM model with the random
variance effect extracted a lot more information from the data and created vi
which is essentially a very good predictor for φi on the between-level. This
will undeniably result in precision improvement for the φi estimates. Such a
phenomenon exists of course not just for DSEM models but for regular two-
level models as well, i.e., even when the non-random parameter estimates are
not distorted, adding a random variance effect will improve the estimation
of the other random effects particularly when the random variance effect is
correlated with those other effects.

25



In multivariate DSEM models we can further consider modeling not just
random variances but also random covariances and random correlations. The
easiest way to model random covariance in the above framework is to model
the covariance through a random variance of a common factor. However,
it is not as easy to evaluate the effect of random covariance on the model
estimates, because even if the factor covariance is not random the correla-
tion between the variables is random when the variances are random. Some
preliminary simulation studies, not reported here, indicate that the effect of
random covariances might be more muted than those of random variances
and might require much larger samples to detect. Further simulation studies
are needed on this topic.

The DSEM framework can accommodate seamlessly a large number of
random effects and thus using models with random variances and covariances
in many situations should be the preferred choice as long as the MCMC con-
vergence is unhindered. Because of the increase in the number of random
effects, the likelihood of the model with these random variances and covari-
ances will be less pronounced and in some cases the MCMC convergence will
be much slower. This should be taken as an indication that there is not
sufficient information in the data to identify the DSEM model with random
variances and covariances. In such situations using cluster-invariant vari-
ances and covariances is not a poor choice by any means and unless these
random variances and covariances are highly correlated with other random
parameters we see that the effects are somewhat negligible.

5.3 ARMA(1,1) and the measurement error AR(1) model

The ARMA(1,1) time-series model is given by the following equation

Yt = µ+ φYt−1 + εt + θεt−1. (30)

The model has 4 parameters µ, φ, θ and σ = V ar(εt). The ARMA(1,1) pro-
cess is stationary and invertible, see Green (2014), when the two parameters
φ and θ are within the interval (−1, 1) and generally when used in practical
applications we expect these two parameters to be within that range. The
model-implied variance for the ARMA(1,1) model is given by

V ar(Yt) = σ

(
1 +

(φ+ θ)2

1− φ2

)
. (31)
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The model-implied first autocorrelation is given by

ρ(1) =
(θ + φ)(1 + θφ)

1 + 2θφ+ θ2
(32)

and for lag l > 1 the autocorrelation is given by

ρ(l) = φl−1ρ(1). (33)

It is shown in Schuurman et al. (2015) that this model is equivalent
to the following measurement error AR(1) model under certain parameter
restrictions

Yt = µ+ ft + ξt (34)

ft = φft−1 + εt. (35)

We call this model the measurement error AR(1) model, that is, MEAR(1),
because the latent variable ft follows an AR(1) process but is not observed
directly, rather, it is measured with error by the observed variable Yt. This
model is also sometimes referred to as AR(1)+WN (Granger & Morris, 1976),
where WN stands for the white noise process representing the measure-
ment error. The 4 parameters in this model are µ, φ, σ1 = V ar(ξt) and
σ2 = V ar(εt). The relationship between the parameters in the two models
is as follows. The parameters µ and φ are unchanged while the MEAR(1)
parameters σ1 and σ2 can be derived from the ARMA(1,1) parameters via
the following equations

σ1 = −θσ
φ

(36)

σ2 = (1 + θ2)σ +
(1 + φ2)θσ

φ
. (37)

The equivalence of the two models is subject to the parameter constraints
that arise from the inequalities σ1 > 0 and σ2 > 0. Under the regularity
conditions of φ and θ being in the interval (-1,1) the constraints can be
further simplified to

φθ < 0 (38)

φ+ θ > 0 (39)

Every MEAR(1) model can be represented as an ARMA(1,1) model, while
an ARMA(1,1) model can be represented by a MEAR(1) model when (36)
and (37) produce positive variances or equivalently when (38) and (39) hold.
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In the most common situation the autoregressive parameter φ will be
positive. Let’s assume for now the case of φ > 0. In that case it is interesting
to note for the MEAR(1,1) model that the autocorrelation parameters for the
latent variable are always larger or equal to those for the observed variable

Cor(ft, ft−l) ≥ Cor(Yt, Yt−l). (40)

For the ARMA(1,1) model this is not the case and the corresponding state-
ment

φl > ρ(l) (41)

is precisely equivalent to θ being negative which is the necessary condition
for the ARMA(1,1) models to be equivalent to the MEAR(1) model, i.e.,
these constraints are no coincidences and have meaningful interpretations.

The MEAR(1) model is much easier to interpret than the ARMA(1,1)
model, especially in the social sciences applications where measurement er-
ror is common. In cross sectional studies it is not possible to identify the
measurement error model when there is only one measurement but as the
MEAR(1) model clearly illustrates it is possible to do that in dynamic time-
series models.

The MEAR(1)/ARMA(1,1) model is generally preferred to the AR(1)
model in the econometrics literature as it offers more flexible autoregressive
representation. The AR(1) model has an exponential decay of the autocor-
relation function while the ARMA(1,1) autocorrelation decays slower. This
is particularly important if we have to change time scale as is done with
continuous time dynamic modeling. AR(1) hourly autocorrelation of 0.75
implies a daily autocorrelation of 0.001. With reliability of 0.8 the MEAR(1)
model hourly autocorrelation of 0.75 implies a daily autocorrelation of 0.212.
The AR(1) model implies that observations in two consecutive days would
be approximately independent, while the MEAR(1) model implies that some
lag relations will remain across consecutive days, which is a more realistic
assumption. The difference in the decay of the autocorrelation is illustrated
in Figures 1 and 2 which show typical decay for the autocorrelation for the
AR(1) and ARMA(1,1) models.
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Figure 1. AR(1) autocorrelation decay function

Figure 2. AR(1,1) autocorrelation decay function

In practical settings one can compute the sample autocorrelations and check
if the decay is exponential or not and based on that decide if the AR(1) model
is sufficent or the ARMA(1,1) should be explored. Of course there are many
other possibilities such as the AR(2) model, the more general ARMA(p,q)
model, or a MEAR(p) model which is a special case of the ARMA(p,p)
model, see Granger and Morris (1976).

Next we conduct a brief simulation study to evaluate the performance
of the estimation of the MEAR(1)/ARMA(1,1) model and to evaluate the
sample size needed to obtain satisfactory estimates. We use the N = 1 case
with T = 100, 200, 300, 500. We use 100 replications in all cases. The results
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Table 5: Bias(coverage) AR(1) measurement error model / ARMA(1,1), N=1

parameter True value T = 100 T = 200 T = 300 T = 500
µ 0 -.09(.82) -.01(.89) -.04(.85) -.02(.87)
φ .8 -.07(.96) -.04(.92) -.03(.87) -.01(.95)
σ1 1 -.10(.97) -.09(.94) -.08(.88) -.04(.90)
σ2 1 .25(.95) .17(.92) .14(.91) .08(.90)

are presented in Table 5. We use the MEAR(1) model formulation given in
Equations (34) and (35).

We can make the following conclusions from these results. The estimation
of the ARMA(1,1) model is more difficult than the estimation of the AR(1)
model. Good estimation where the bias is small and the coverage is near or
above 90% needs at least T ≥ 200. The estimates are biased at T = 100 and
coverage dropped to 82%. We can also conclude that to estimate a two-level
ARMA(1,1) model, with all four of the parameters as random subject-specific
parameters at least T ≥ 200 is needed per person. If such a sample size is
not available then one or two of the four ARMA(1,1) parameters should be
held equal across individuals, i.s., should be non-random parameters. Most
suitable are the two variance parameters σ1 and σ2 because the bias in Table
3 is smaller than the bias in Table 5 for T = 100. When parameters are held
equal across individuals essentially the sample size used for the estimation
changes from T to N · T and we can estimate a two-level ARMA(1,1) model
with much fewer observations per person than we need for a single-level
ARMA(1,1) model.

In the next simulation study we illustrate the two-level MEAR(1) model
using categorical data. The DSEM framework has one limitation when it
comes to categorical variables. Such variables can not be lagged on its own
but only through a factor. The MEAR(1) model essentially resolves this
problem as it includes such a factor already and thus we can estimate a
univariate autoregressive model with a categorical variable. If we attempt to
estimate a subject-specific auto-regressive model, such as the one in Equation
(20), where the autoregressive parameter is subject-specific we will need a
substantial sample size. Simulation studies, not reported here, indicate that
for the N=1 case the MEAR(1) model needs a sample size of about 10000
for the binary case and about 1000 for an ordered polytomous case with 6
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Table 6: Two-level ARMA(1,1) with binary variable, N=100, T=300

parameter True value Estimate(Coverage)
µ 0 0.00 (.95)
φ .5 0.50(.78)
σw 1 1.01(.71)
σb 0.5 0.52(.94)

categories. This is the kind of sample size we would need per subject if we
want to estimate a subject-specific two-level MEAR(1) model. Such a sample
size, however, is not common in practical applications. If we estimate a two-
level MEAR(1) model where the autoregressive parameter is not subject-
specific then the data from the different subjects are combined and much
fewer observations will be needed per subject. Our simulation study uses
N = 100 individuals with T = 300 time points and 100 replications. Since the
autoregressive coefficient is estimated at the population level, we essentially
have 100 ·300 = 30000 observations to estimate this model which is sufficient.

The MEAR(1) model we estimate for the binary variable is given by

P (Yit = 1) = Φ(µi + fit) (42)

fit = φfi,t−1 + ξit (43)

µi ∼ N(µ, σb), ξit ∼ N(0, σw) (44)

The function Φ is the standard normal distribution function. Note that for
identification purposes the residual variance in Equation (34) is now fixed
to 1. The model has four parameters µ, σb, φ and σw. The results of the
simulation study are presented in Table 6. Parameter estimates appear to
have no bias, however, some of the parameters have low coverage. This
usually can be resolved by running longer MCMC chains. Here we used
a minimum of 1000 MCMC iterations and convergence is determined by
the PSR convergence criterion, see Asparouhov and Muthén (2010). Mixing
with categorical variables is somewhat slower than with normally distributed
variables and may require much longer MCMC chains. This simulation takes
one minute per replication.

Let’s also consider the model with ordered polytomous variables. Using
ordered polytomous variables in practical applications is one way to deal
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Table 7: Two-level ARMA(1,1) with ordered polytomous, N=100, T=100

parameter True value Estimate(Coverage)
τ1 -3 -3.06 (.87)
τ2 -1 -1.02 (.81)
τ3 0 -0.01 (.79)
τ4 1 1.01 (.75)
τ5 3 3.05 (.81)
φ .5 0.50(.93)
σw 1 1.09(.83)
σb 0.5 0.54(.94)

with non-normally distributed dependent variables. The model is given by
the following equations

P (Yit = j) = Φ(τj+1 − µi − fit)− Φ(τj − µi − fit) (45)

fit = φfi,t−1 + ξit (46)

µi ∼ N(0, σb), ξit ∼ N(0, σw) (47)

The first τ0 = −∞ and the last threshold τJ =∞, where J is the number of
categories of the observed variable. We conduct a simulation study using a
6 category variable, N = 100, T = 100 and 100 replications. The results are
presented in Table 7. The parameter bias appears to be small and again we
see some standard error underestimation that could potentially be resolved
with running much longer MCMC chains. Each replication takes 2 minutes.
Note here that because the outcome is ordered polytomous we were able to
estimate the model only with T = 100 which is much smaller than we needed
with the binary outcome. This is due to the fact that the ordered polytomous
variable carries more information than the binary variable.

5.4 How to add a covariate in the MEAR(1) and AR(1)
models

Note that the AR(1) model is nested within the MEAR(1) model. In Equa-
tion (34) if we set the parameter V ar(ξt) = 0, i.e., if we set the measurement
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error to zero the model becomes equivalent to the AR(1) model. The follow-
ing discussion applies to both the AR(1) and the MEAR(1) models. There
are three ways to add a covariate in the MEAR(1) model given in Equations
(34) and (35). The covariate can be used in either of the two equations but
it can also be used in both equations. In total we have three models. We
call the following model the direct model

Yt = µ+ ft + β1Xt + ξt (48)

ft = φft−1 + εt. (49)

The following model we call the indirect model

Yt = µ+ ft + ξt (50)

ft = φft−1 + β2Xt + εt. (51)

The following model we call the full model

Yt = µ+ ft + β1Xt + ξt (52)

ft = φft−1 + β2Xt + εt. (53)

The full model has a direct and an indirect effect from X on Y .
The first issue that we have to address is the fact that the full model is

not identified in some special cases. The first case where the model is not
identified is the case where the autoregressive parameter φ = 0. In that case
the model is a standard SEM model and the direct and indirect effects on Y
are equivalent and therefore the full model which includes both effects is not
identified. Note also that in the case of φ = 0 the measurement error model
is not identified as well with or without a covariate as the one indicator factor
model is not identified in standard SEM.

Another case where the full model is not identified is the two-level MEAR(1)
model where the covariate is time invariant. If the covariate is time invariant,
then the indirect and the direct model become equivalent and the relationship
between the parameters is as follows

β2 =
β1

1− φ
. (54)

This relationship holds because when the covariate is time invariant it is
essentially equivalent to the µ parameter. If the µ parameters is moved from
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Equation (52) to Equation (53) it will also be divided by (1−φ). Because the
indirect and the direct models are equivalent the full model is not identified.

Another covariate for which the indirect and direct model become equiva-
lent and the relationship (54) holds is the case Xt = t, i.e., the linear growth
model, see Hamaker (2005). We formulate this equivalence for the AR(1)
model but the same holds for the MEAR(1) model. The direct linear growth
AR(1) model is formulated as follows

Yt = γ0 + γ1t+ ξt (55)

ξt = φξt−1 + εt. (56)

The indirect linear growth AR(1) model can be formulated as follows

Yt = β0 + β1t+ φYt−1 + εt. (57)

The difference between the two models is that the autoregressive structure is
imposed on the residuals variable ξt in the direct model while in the indirect
model it is imposed on the observed variable Yt. Simple algebraic manipu-
lations show that the direct and indirect models are algebraically equivalent
and the relationship between the parameters is as follows

γ0 =
β0

1− φ
− φβ1

(1− φ)2
(58)

γ1 =
β1

1− φ
(59)

while the parameters φ and V ar(εt) remain unchanged. Here we conclude
once again that if Xt = t the full model is unidentified. Note also that the
equivalence between the direct and the indirect linear growth models does
not translate completely in two-level models with subject-specific random
parameters particularly when there are covariates predicting the random ef-
fects βj and φ. Linear relationship between a covariate and subject-specific
βj and φ will result in non-linear relationship of that covariate with γj. Thus
the two-level indirect linear growth model is not equivalent to the two-level
direct linear growth model which estimates a linear relationship between the
covariate and γj.

Consider now the quadratic growth AR(1) model. The direct quadratic
growth AR(1) model is

Yt = γ0 + γ1t+ γ1t
2 + ξt (60)
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ξt = φξt−1 + εt. (61)

The indirect quadratic growth AR(1) model is

Yt = β0 + β1t+ β2t
2 + φYt−1 + εt. (62)

Simple algebraic manipulations show again that the models are algebraically
equivalent and the relationship between the parameters is as follows

γ0 =
β0

1− φ
− φβ1

(1− φ)2
+
β2φ(1 + φ)

(1− φ)3
(63)

γ1 =
β1

1− φ
− 2φβ2

(1− φ)2
(64)

γ2 =
β2

1− φ
(65)

while the parameters φ and V ar(εt) remain unchanged. Similar algebraic
equivalence can be constructed with any polynomial growth AR(1) model.
Again the equivalence between the direct and the indirect model implies that
the full model is unidentified when βXt represents a polynomial of t, i.e., if
the predictor is a polynomial of t we can use it in either of the Equations
(52) or (53) but not both. Another conclusion that we can make is that the
simple relationship given in (54) where one simply divides the direct effect by
1− φ to obtain the equivalent indirect effect doesn’t hold except for the two
cases of linear growth model and a between-level covariate. The relationship
shown in the quadratic growth case is more complex. Not only that but we
see that the relationship does not depend only on the covariate but also on
what other covariates there are in the model. When Xt = t, the relationship
between the direct and the indirect effect changed after we added another
covariate t2.

Let’s consider now the fundamental difference between the direct, indirect
and the full model using the conditional expectation E(Yt|X). For the direct
model we have

E(Yt|X) = µ+ β1Xt. (66)

For the indirect model we have

E(Yt|X) = µ+ β2(Xt + φXt−1 + φ2Xt−2 + φ3Xt−3 + ...). (67)
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For the full model we have

E(Yt|X) = µ+ β1Xt + β2(Xt + φXt−1 + φ2Xt−2 + φ3Xt−3 + ...). (68)

The interpretation is very clear. In the direct model the condition expectation
depends only on the current value of Xt. This value may or may not depend
on the prior values of X, but this is not a part of the model as we model
only the conditional distribution of Y given X. Regardless of what the Xt

process is, it is clear that the conditional expectation of Yt can depend only
on Xt and if there is any dependence on Xt−1 it is only indirect through the
effect of Xt−1 on Xt.

The interpretation for the indirect effect is completely different. The
current conditional expectation accumulates the effect of all prior values of
X with diminishing influence when the model is stationary and |φ| < 1. The
power φl will converge to 0 as l increases and so will the effect of Xt−l on Yt.
The interpretation of the full model combines the two. It allows accumulated
effect of Xt as well as a special direct effect exceeding the accumulating effect
for the current value Xt. In practical applications we can determine the type
of influence a covariate should have, accumulated v.s. direct, by estimating
the full model and considering the significance of the two effects β1 and β2.

Next we illustrate the performance of the full model in a two-level sim-
ulation study. We will use the MEAR(1) model but the simulation results
using the AR(1) model are similar. The full two-level MEAR(1) model is
given by

Yit = µi + fit + β1Xit + ξit (69)

fit = φfi,t−1 + β2Xit + εit, (70)

where µi is a between-level random effect with mean µ and variance σb.
We generate and analyze 100 samples using this model and the following
parameter values β1 = 0.3, β2 = 0.4, φ = 0.5, µ = 0, σb = 0.7, V ar(ξit) =
V ar(εit) = 1 . The covariate Xit is generated from an AR(1) process with
V ar(Xit) = 1 and autocorrelation φx. We use three different values for φx:
0, 0.5 and 0.8. The sample consist of N = 200 individuals each observed at
T = 100 times.

Table 8 contains the results of the simulation study for the structural
parameters and the various values of φx. The results show that the parameter
estimates are unbiased, the coverage is acceptable and the model is well
identified.
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Table 8: Two-level full MEAR(1) with covariate, N=200, T=100

parameter φx True value Estimate(Coverage)
β1 0 .30 .30(.87)
β1 0.5 .30 .30(.96)
β1 0.8 .30 .31(.89)
β2 0 .40 .40(.87)
β2 0.5 .40 .40(.93)
β2 0.8 .40 .40(.90)
φ 0 .50 .50(.88)
φ 0.5 .50 .50( .93)
φ 0.8 .50 .50( .93)

Next we analyze the same data using the two-level direct and indirect
MEAR(1) models. The results are presented in Tables 9 and 10. For the
effect of the covariate in these tables we used 0.7 as this is the sum of the
two effects, however, there is no true value since the model is misspecified.
Also clearly the estimated effect for both direct and indirect model is not near
0.7 and is highly dependent on the autocorrelation parameter φx. Both direct
and indirect models failed to capture well the covariate effect. In addition the
autocorrelation parameter is distorted and coverage appears insufficient for
both the indirect and the direct models. It appear that the level of distortion
in the model parameters is directly related to how close the indirect or the
direct model is to the full model. The further away these models are from
the full model the bigger the biases.

It is also possible to estimate random direct and indirect effects in the
full two-level MEAR(1) model in addition to a random autoregressive effect.
Table 11 shows the results of a small simulation study with 100 replications,
N = 200 and T = 100. Note that we are able to estimate this two-level
random MEAR(1) model only with T = 100 due to the fact that only two
of the four MEAR(1) parameters are subject-specific and the two variance
parameters are not random. The fact that the model includes a covariate
with two random effects does not appear to complicate the model estimation.
The results show that the parameter estimates are unbiased, the coverage is
acceptable and the model is well identified.
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Table 9: Two-level full MEAR(1) with covariate analyzed as direct, N=200,
T=100

parameter φx True value Estimate(Coverage)
β1 0 .70 .65(.00)
β1 0.5 .70 .74(.07)
β1 0.8 .70 .88(.00)
φ 0 .50 .50(.92)
φ 0.5 .50 .51(.85)
φ 0.8 .50 .52(.83)

Table 10: Two-level full MEAR(1) with covariate analyzed as indirect,
N=200, T=100

parameter φx True value Estimate(Coverage)
β2 0 .70 .69(.92)
β2 0.5 .70 .67(.21)
β2 0.8 .70 .65(.07)
φ 0 .50 .36(.00)
φ 0.5 .50 .38(.00)
φ 0.8 .50 .41(.00)

Table 11: Two-level full MEAR(1) model with random effects, N=200,
T=100

parameter True value Estimate(Coverage)
E(β1i) 0.3 .30(.91)
E(β2i) 0.4 .40(.91)
E(φi) 0.2 .20(.88)

V ar(β1i) 0.1 .10(.94)
V ar(β2i) 0.1 .10(.95)
V ar(φi) 0.01 .01(.94)
V ar(ξit) 1 .98(.81)
V ar(εit) 1 1.02(.82)
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5.5 Dynamic Factor Analysis

Most of the dynamic factor analysis models considered previously have been
for the case of N = 1, i.e., when a single-subject time series data are fitted
with a factor analysis model across time. The DSEM framework described
here includes dynamic factor analysis models for an entire population rather
than a single subject only. The two most common dynamic factor models
are the direct autoregressive factor score (DAFS) and the white noise factor
score (WNFS) models, see Zhang and Nesselroade (2007). The DAFS model
is given by the following equations

Yt = ν + Ληt + εt (71)

ηt =
L∑
l=1

Blηt−l + ξt. (72)

The WNFS model is given by the following equation

Yt = ν +
L∑
l=0

Λlηt−l + εt. (73)

The difference between the two models is clear. In the DAFS model only the
current factor affects the observed variables while in the WNFS model the
observed variables are also affected by the previous periods’ factor values. In
addition, the factor in the DAFS model is an AR(L) process, while the fac-
tors in the WNFS model are independent across time, i.e., the factors follow
a white noise process. The implications for the observed variables are also
different. The observed variables in the WNFS model follow a MA(L) pro-
cess, while the observed variable in the DAFS model follows an ARMA(p,p)
process. In fact the DAFS model for L = 1 is the MEAR(1) model for each
factor indicator.

In practical applications inevitably the question arises of which one of the
two factor analysis models should be used. We will add into this consideration
the following hybrid DAFS+WNFS model that is nested above both the
DAFS and the WNFS models

Yt = ν +
L∑
l=0

Λlηt−l + εt (74)
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ηt =
L∑
l=1

Blηt−l + ξt (75)

This model is considered also in Molenaar (2017). In fact the model is referred
to as a DFM(p,q,L,L,0), where p refers to the number of observed variables
in the factor model and q refers to the number of factors in the model. It
is interesting to note that the hybrid DAFS+WNFS model is equivalent
to a DAFS model where the factor follows an ARMA(L,L) process if the
loadings Λl are proportional in the one factor model, or can be rotated into
the same loadings in the multivariate case. Such a model would be referred
in Molenaar (2017) terminology as a DFM(p,q,0,L,L) model. The hybrid
model is also interesting because it illustrates how DSEM models differ from
SEM models. In SEM models it is not possible to identify a model where a
factor predictor is also a direct predictor for all indicator variables, while in
the hybrid DAFS+WNFS this is possible.

In the following simulation study we illustrate the performance of the
estimation method for a two-level hybrid DAFS+WNFS model. We use an
L = 1 model with 5 indicators and 1 factor. We generate and analyze 100
samples with N = 100 and T = 100. The two level model also has a between-
level factor model and the full model is given by the following equations

Yit = Y1,it + Y2,i (76)

Y1,it = Λ0η1,t + Λ1η1,t−1 + ε1,t (77)

η1,t = φη1,t−1 + ξt (78)

Y2,i = ν + Λbη2,t + ε2,t (79)

We generate the data using the following parameter values which for sim-
plicity are identical across the five indicators. For j = 1, ..., 5 we set λ0,j = 1,
λ1,j = 0.6, θ1,j = V ar(ε1,t,j) = 1, φ = 0.4, ψ1 = V ar(ξt) = 1, νj = 0,
λb,j = 0.5, ψ2 = V ar(η2,t) = 1, V ar(ε2,t,j) = 1. In the estimation we fix the
variance ψ1 and ψ2 to 1 for identification purposes. Table 12 contains the
results of the simulation study for a selection of the model parameters. The
estimates show no bias and good coverage is obtained.

Next we illustrate how the DIC criterion can be used for model selection.
Using the same generated data we estimate the two-level DAFS model, the
two-level WNFS model and the two-level hybrid DAFS+WNFS model. In all
three models we use the correct one-factor model on the between-level. The
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Table 12: Two-level hybrid DAFS+WNFS, N=100, T=100

parameter True value Estimate(Coverage)
λ0,1 1 1.00(.92)
λ1,1 0.6 0.60(.93)
θ1,1 1.0 1.00(.95)
φ 0.4 0.40(.95)
ν1 0 0.00(.95)
λb,1 0.5 0.51(.94)
θ2,1 0.2 0.21(.97)

Table 13: DIC comarision

model average DIC smallest DIC value
two-level DAFS 150235 0%
two-level WNFS 149983 1%

two-level WNFS+DAFS 149813 99%

average DIC values across the 100 replications are given in Table 13. In each
replication we compare the DIC across the three models and select the model
with smallest value. In 99 out of 100 replication the correct WNFS+DAFS
model had the smallest DIC value, i.e., the DIC performed well in identifying
the correct model.

5.6 Subject-specific and uneven times of observations

In this section we illustrate the quality of the estimation when the times
of observations vary across individuals and when they are unevenly spaced.
We conduct two different simulation studies. The first study is based on a
two-level DAFS AR(1) model and the second is based on a two-level AR(1)
model.

The estimation algorithm described in Appendix A indicates that the
quality of the estimation depends on the amount of missing data inserted
between the observed values and how accurately the original times of ob-
servations are approximated by the integer grid that is used in the DSEM
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Table 14: Two-level DAFS AR(1) with subject-specific times

percentage missing φ̂ (coverage) convergence comp time per
values φ = 0.4 rate replication in min

.80 .39(.95) 100% 1.5

.85 .39(.90 95% 2.5

.90 .35(.46) 55% 10

.95 .34(.55) 55% 18

estimation. The more accurate the approximation the more missing data will
be inserted. In the first simulation study we want to see how the percentage
of missing data affects the parameter estimates, convergence rates and speed
of the estimation. We generate samples with 100 individuals using the same
two-level AR(1) model we used in the previous section with the exception
that we set Λ1 to 0 so that the model is simply a DAFS AR(1) model rather
than a hybrid. We generate T observations for each individual and mark m
percent of these observations as missing at random. To be more precise, for
each individual, each time point is marked as missing with probability m,
and is removed from the data set. Simulation study will be conducted with
four different m values: .80, .85, .90 and .95, i.e., the simulation study will
have between 80% and 95% missing values. We also vary T as a function
of m and we set T = 60/(1 − m) which implies that on average after the
missing values are removed each individual will have 60 observations taken
at various uneven and unequal times. For each value of m we generate and
analyze 20 data sets.

The results of this simulation study are given in Table 14. We report the
average estimates and coverage for the autoregressive parameter φ for the
within-level factor, the convergence rate for the estimation and the compu-
tational time per replication. The results show that in this model the quality
of the estimation deteriorates as the amount of missing data reaches 90%. As
the amount of missing data increases, the computational time increases, the
number of convergence problems increases, and the quality of the estimates
decreases in terms of bias and coverage. However, the results are acceptable
for 80% or 85% missing values. Adding too many missing values between the
observed data can destabilize the MCMC estimation.
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In the next simulation study we will use the simpler two-level AR(1)
model

Yit = µi + φ(Yi,t−1 − µi) + εit (80)

µi ∼ N(µ, v). (81)

We use the following parameters to generate the data µ = 0, v = 0.5,
V ar(εit) = 1, φ = .8. We again use N = 100 and T = 60/(1−m), where m
is the percentage of missing data. In this simulation m takes just two values
0.80 and 0.95. The missing data is generated at random and that generates
subject-specific times of observations. For example when m = .95, T = 1200
and each individual has approximately 60 observations that occur at times
between 1 and 1200.

In this simulation we will vary the interval δ used in Appendix A. This
interval is specified in Mplus using the tinterval option. We will estimate
the two-level AR(1) model using different values of δ = 1, 2, 3, 4, 5, 10. The
case of δ = 1 is the original time scale. As δ increases we use a more
and more crude time scale, worsening the time scale approximation. Note
also that we can not directly compare the models using different vales of δ.
Denote by φj the estimated autocorrelation coefficient for δ = j. This is also
the autocorrelation of lag j for the original process and therefore φj = φj1.

To compare the models we will use φ
1/j
j which is the implied estimate for

φ1 = φ = 0.8. Note here that when we use δ > 1 the data will be rearranged
and a different amount of missing data will be inserted. Let’s denote this
missing data asm2. This is the missing data that is being used in the analysis.
For each of the values of m we generate 100 data sets and we analyze those
with the various values of δ.

The results are presented in Table 15. In all cases the rate of convergence
is 100%. This means that simpler models like the two-level AR(1) model can
tolerate more missing data than the more complex models like the DAFS
AR(1) model. We can also see from the results that the cruder the scale is
the more biased the results are. The smaller the inserted amount of missing
data is the more biased the estimates are. It is also somewhat clear that it
will be impossible to establish a clear rule of thumb for δ and the amount
of missing data that should be used. These quantities are probably going to
remain specific to the particular examples. However, the trends are clear.
The smaller δ is the better the estimates are. If δ is too small and the in-
serted missing data is too big the MCMC chain might experience convergence
problems.
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Table 15: Two-level AR(1) with subject-specific times. Estimates and cov-
erage for φ and amount of missing data m2 during the analysis.

m δ φ = 0.8 m2

.80 1 .80(.91) .80

.80 2 .81(.31) .58

.80 3 .83(.00) .38

.80 4 .84(.00) .18

.80 5 .86(.00) .05

.80 10 .92(.00) .00

.95 1 .80(.85) .95

.95 2 .81(.57) .90

.95 3 .82(.20) .85

.95 4 .83(.00) .80

.95 5 .84(.00) .74

.95 10 .88(.00) .49

In practical applications when estimating an AR(1) model to verify that a
particular value of δ is sufficiently small one can simply compare the results
for the autocorrelation parameter using δ and δ/2. If φδ ≈ φ2

δ/2 we can
conclude that δ is sufficiently small. If that is not approximately true then
we should interpret that result as evidence that δ should be decreased or
that the AR(1) model does not hold. In fact we can test that method with
our simulated data for the case of m = .80. The estimate for φ using δ = 1
is φ1 = 0.8002. The estimate for φ using δ = 0.5 is φ0.5 = 0.8943 and
the estimate for φ2

0.5 = 0.7998, which confirms that δ = 1 is sufficiently
refined as it yields the same model as the more precise δ = 0.5. Note here
that if the model is a more complicated time-series model, rather than a
simple AR(1) model, the connection between the time series model for Yt
and the model for Y2t is much more complicated. This problem is somewhat
compounded by the fact that such a question has not been of interest in the
econometric literature while it is of interest in the social sciences and this
DSEM framework particularly for the purpose of addressing subject-specific
and uneven times of observations.

Overall it appears that the optimal amount of inserted missing data
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should be somewhere between 80% and 95%, depending on how complex
the model is. This corresponds to 5% to 20% present data and covariance
coverage as reported in the Mplus output. In a practical setting one should
of course consider interpretability in the choice of δ. If times of observations
are recorded on ”days” metric, choosing δ to represent one day is the most
natural choice and it will preserve the interpretability of the model.

It is also worth noting here that when δ values increase to a sufficiently
large value the amount of missing data converges to 0% which means that
the time scale is completely ignored and the times of observations are set to
1, 2, ..., i.e., are assumed to be consecutive. In our example this happened for
m = 0.80 and δ = 10. The estimate of the autocorrelation coefficient is 0.92
which is φ0.1

10 , i.e., the raw estimate of the autocorrelation is φ10 = 0.45 ≈
0.9210. This is the autocorrelation that one would get by estimating the data
and ignoring the subject-specific and uneven times of observations. Such an
estimate of course is quite different from the true value of 0.8.

There are many other ways to deal with subject-specific and uneven times
of observations. For example, continuous time modeling can be performed
using Brownian motion theory, or using dynamic models based on differential
equations, see Deboeck and Preacher (2016). Another possible approach is
to use the times between consecutive observations in the model to reflect
the strength of the relationship between the observations, i.e., having the
autoregressive parameters depend on the distance between the observations.
Yet another method is to use the same approach of missing data insertion
but to change the algorithm described in Appendix A. As described there
the algorithm focuses on global time scale matching. A different algorithm
that focuses on matching consecutive time differences could potentially yield
more accurate results. Such alternative algorithms can easily be studied
with Mplus by preprocessing the continuous times of observations before
employing the DSEM analysis. Clearly this is a vast research topic and there
are many possibilities for improving the treatment described here. The main
advantage of the method we chose is that it can fit smoothly in the general
framework, apply to all models, and work fairly well as the above simulations
show.

5.7 Time-specific effects

In this section we illustrate the TVEM feature of the DSEM framework with
an ARMA(1,1) model with a covariate where the random random intercept
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and random slope evolve over time. We will use the MEAR(1) version of the
ARMA(1,1) model. The model is given by the following equations

Yit = µt + Yi + βtXit + fit + εit (82)

fit = φfi,t−1 + ξit (83)

In this model Yi is a subject-specific random effect, while µt and βt are
time-specific random effects. We generate a single data set with 500 in-
dividuals each observed at times 1,2,...,50, using the following parameters
θb = V ar(Yi) = 0.5, θw = V ar(εit) = 0.5, φ = 0.5 and ψ = V ar(ξit) = 1.2.
We generate the covariate Xit from a standard normal distribution. The
time-specific effects µt and βt are generated from arbitrary functions of time.
In this simulation we use a logarithmic function for µt and a quadratic func-
tion for βt as follows

µt = g1(t) = log(t) (84)

βt = g2(t) = a+ bt+ ct2 = 0.001 · t · (50− t). (85)

We can estimate this model in the DSEM framework assuming that µt and
βt are normally distributed random effects with distributions N(µ, vµ) and
N(β, vβ). This is technically an incorrect assumption because µt and βt
are not time invariant, E(µt|t) = g1(t), V ar(µt|t) = 0, E(βt|t) = g2(t),
V ar(βt|t) = 0. Nevertheless, we can use the DSEM framework to estimate
the above model as a first step in an exploratory fashion. Because there are
500 observations at each time point, the prior assumptions, N(µ, vµ) and
N(β, vβ), for these two random effects will have only a minor if any effect
on the estimates. The estimates of µt and βt will be dominated by the data.
Table 16 contains the results for the non-random parameters of this analysis.
The estimates are near the true values and the credibility intervals contain
the true value for all four parameters. Figures 3 and 4 show the estimated
values of µt and βt compared with the true values given by g1(t) and g2(t).
The estimated values trace the true curves well. The correlation between the
true and estimated values for µt is 0.993 and for βt it is 0.953. The SMSE
for µt is 0.157 and for βt it is 0.057.
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Table 16: Exploratory TVEM-DSEM

Parameter True Value Estimate(95% Credibility Interval)
φ 0.5 0.523(0.496,0.549)
θw 0.5 0.541(0.462,0.617)
θb 0.5 0.537(0.461,0.628)
ψ 1.2 1.155(1.060,1.250)

Figure 3. Estimated v.s. True value for µt

Figure 4. Estimated v.s. True value for βt

Given the clear trends that are established from the exploratory TVEM-
DSEM analysis, the next step of the analysis is to incorporate these trends
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in the DSEM model by creating predictors of µt and βt that account for the
trends. The predictors are essentially smoothing curves for the estimated
values obtained in the exploratory analysis. Such curves can be constructed
through a separate algorithm, using the estimated µt and βt values, or using
multiple imputed values for µt and βt. The smoothing can be done through
polynomial functions or splines as in Buja, Hastie, and Tibshirani (1989).
These smoothed curves can be entered into the DSEM model as predictors
of µt and βt.

Alternatively the smoothing can be performed within the DSEM frame-
work as follows. We add time-specific predictors of µt and βt based on the
shapes of the trends. Given the estimated values we add log(t) as the pre-
dictor for µt and t and t2 as the predictors of βt so that it is modeled as a
quadratic function. Thus we augment the model given in (82) and (83) with
the following two equations with some added scaling for the predictors.

µt = a1 + a2log(t) + ξ1,t (86)

βt = a3 + a4(0.05t) + a5(0.001t2) + ξ2,t (87)

The results of this analysis are presented in Table 17. All parameters
are estimated well and the true values are within the credibility intervals.
The only exception is the V ar(ξ1,t) parameter where the lower end of the
credibility interval is 0.002, slightly above the true value of 0, but clearly there
is no support for a meaningful non-zero variance. The estimated random
effects for µt and βt are plotted against the true values in Figure 5 and
6. Clearly the estimates are improved particularly for the βt values. The
correlation between the true and estimated values for µt is 0.999 and for βt
it is 0.997. The SMSE for µt is 0.133 and for βt it is 0.019.
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Table 17: TVEM-DSEM accounting for the trends

Parameter True Value Estimate(95% Credibility Interval)
φ 0.5 0.516(0.482,0.542)
θw 0.5 0.522(0.417,0.600)
θb 0.5 0.540(0.465,0.627)
ψ 1.2 1.179(1.081,1.307)
a1 0 -0.390(-0.516,0.021)
a2 1 1.114(0.985,1.148)
a3 0 -0.023(-0.077,0.031)
a4 1 1.027(0.935,1.126)
a5 -1 -1.005(-1.099,-0.917)

V ar(ξ1,t) 0 0.005(0.002,0.014)
V ar(ξ2,t) 0 0.001(0.000,0.002)

Figure 5. Estimated v.s. True value for µt accounting for the trends
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Figure 6. Estimated v.s. True value for βt accounting for the trends

Given that the time-specific random effects have nearly zero residual vari-
ance, we can remove the random effects ξ1,t and ξ2,t from Equations (86) and
(87). If we do so the model can be estimated simply as a two-level DSEM
model rather than a cross-classified DSEM model as follows

Yit = a1 + a2log(t) + Yi + (a3 + a4(0.05t) + a5(0.001t2))Xit + fit + εit (88)

fit = φfi,t−1 + ξit. (89)

The coefficients a4 and a5 are the interaction effects of Xit with t and t2. The
results for this analysis are presented in Table 18. All parameter estimates
are very close to the true values. Note that in this model the effects µt and
βt are now smooth curves with no error term, which is how we generated
the data. Because the parameter estimates are so close to the true values
these curves are virtually indistinguishable from the true value curves. The
correlation for both estimated effect v.s. true value is 1 and the SMSE are
now further reduced to 0.021 and 0.017.

6 Conclusion

The DSEM framework builds on the econometric literature and advance-
ments in time series modeling as well as the progress that has been made
previously in single-level dynamic structural modeling as well as the progress
that has been made in the area of multilevel structural equation modeling.
The DSEM framework allows us to combine time series models for a popu-
lation of subjects. One of the strengths of the framework is that it allows
subject-specific structural and autoregressive parameters. These parameters
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Table 18: Two-level TVEM-DSEM accounting for the trends

Parameter True Value Estimate(95% Credibility Interval)
φ 0.5 0.528(0.503,0.554)
θw 0.5 0.555(0.487,0.628)
θb 0.5 0.536(0.462,0.626)
ψ 1.2 1.136(1.043,1.224)
a1 0 -0.030(-0.136,0.094)
a2 1 1.003(0.967,1.028)
a3 0 -0.020(-0.068,0.026)
a4 1 1.025(0.941,1.111)
a5 -1 -1.004(-1.088,-0.923)

can be used further for structural modeling on the population level, i.e., they
can be predicted by subject-specific variables or they can be used as predic-
tors of other such variables. Just as important is the total opposite. In the
DSEM framework autoregressive and structural parameters can be chosen to
be non-random, i.e., invariant across subjects in the population. When the
number of time points is within the mid length range of 10 to 100, which is
the most common range in the social sciences, parameters invariant across
subjects are essential in expanding model complexity beyond what is accessi-
ble with single-level DSEM models. The inclusion of non-random parameters
gives us the ability to combine data across the population to obtain more ac-
curate time-series and structural parameters. But perhaps the real strength
of DSEM is the fact that it seamlessly can accommodate random and non-
random parameters at the same time, not just to improve the quality of the
estimation and the quality of the statistical methodology effort to match the
data and the models, but also to use data analysis to find answers to real life
questions hidden in the data.
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7 Appendix A: Continuous time DSEM mod-

eling

In this section we describe the algorithm implemented in Mplus for approx-
imating a continuous time DSEM model with a discrete time DSEM model.
Every continuous function f(t) can be approximated by a step function. Let
δ be a small number. The function f(t) can be approximated by a step func-
tion f0(t) = fj = f(j · δ) when j · δ − δ/2 < t ≤ j · δ + δ/2. The smaller the
step interval δ the better the approximation. Based on this same principle
we can approximate a continuous time DSEM model with a discrete time
DSEM model.

7.1 Step 1: Rescaling the time variable

Suppose that individual i is observed at times tij, for j = 1, ..., Ti. We replace
the value tij with an integer value t̂ij = [tij/δ], where [t] denotes the smallest
integer value not smaller than t, i.e., t̂ij is the integer value for which

(t̂ij − 1)δ < tij ≤ t̂ijδ. (90)

Essentially, we first rescale the time variable by multiplying it by 1/δ and
then rounding it up to the nearest integer. Thus for all tij falling in the
interval (0, δ], t̂ij = 1, for all tij falling in (δ, 2δ], t̂ij = 2 and so on. Using
this approach we convert any real time values tij to the integer time values
t̂ij. At that point the standard DSEM modeling can be used. For all integer
values that are not observed, missing data is assumed, that is, for individual
i and integer time value t which is not equal to any of the t̂ij we assume that
the data is missing or not recorded. This is not really an assumption but is
a way to properly record the data so that the observations are recorded for
every integer.

If the δ value in the above algorithm is not sufficiently small it is very
likely that two or more tij values for individual i will appear in the interval
((n − 1)δ, nδ]. This will result in several values t̂ij being assigned the value
n which is not an acceptable outcome as we can use just one observation
for time n. To resolve this problem we apply the following algorithm. For
individual i all tij are placed in the intervals ((n − 1)δ, nδ] following (90).
Starting with the smallest n for which the interval ((n − 1)δ, nδ] contains
multiple values, we determine the closest empty interval to that interval
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and we shift one of the overflow values towards that interval, preserving the
original order of tij. That means that each interval from the overflow interval
to the empty interval shifts one value in the direction of the overflow interval.
This algorithm approximately minimizes∑

j

(t̂ij − tij/δ)2 (91)

over integer and unequal values t̂ij in most common situations. In some
situations the above algorithm won’t quite minimize the above objective
function but it will come fairly close to minimizing it. Full minimization may
be too intricate to accomplish in general because of the discrete optimization
space. This algorithm as implemented in Mplus would report max|t̂ij−tij/δ|
if this quantity is greater than 5, which means that an observation had to be
shifted more than 5 intervals away from it original assignment. This would
suggest that the discretized grid constructed for that value of δ is too crude
to be considered a good approximation and a smaller value of δ should be
used.

7.2 Step 2: Time shift transformation

The next step of the time transformation is a time shift transformation.
There is a fundamental difference between the cross-classified DSEM model
and the two-level DSEM model that comes into play here. In cross-classified
DSEM models we estimate time-specific effects and this can be meaning-
ful only if the time scale is aligned between individuals. In cross-classified
DSEM, time t for individual i = 1 should have the same meaning as as time
t for individual i = 2, for example, the number of days since an intervention
that both individuals received, so that the same time-specific random effect
st,3 applies. Such an alignment of time is not needed for the two-level DSEM
model and this is why the time shift transformation is different for the two
models.

For cross-classified DSEM models we compute T0 = mini,j(t̂ij) and we

shift the time so that we start at 1, ˆ̂tij = t̂ij −T0 + 1. At least one individual
is observed at time 1 and this is the earliest time an observation was made in
the sample. Missing values are recorded for all individuals and time points

not in the set ˆ̂tij. For each individual the missing values beyond the last
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observed value are not analyzed. This time-shift is done differently for two-
level DSEM models. We compute T0i = minj(t̂ij), i.e., we find the first
observed value for each individual i and shift each individual by that value

so that every individual starts at 1, i.e., ˆ̂tij = t̂ij − T0i + 1. This minimizes
that amount of missing data that will have to analyzed and imputed in the
MCMC estimation. Again all missing data after the last observed value is
not analyzed. The difference in the time shift transformation is that in the
cross-classified model we shift the time uniformly across all individuals while
in the two-level model the time scale is shifted for each individual separately.

7.3 How to choose δ

The transformation is determined by time interval δ. The smaller this value
is, the more precise the approximation. However, the smaller the value is the
more missing data will be interspersed between the observed data. This will
cause the MCMC sequence to converge slower. It will also cause the model
to lose some precision. Consider for example trying to estimate the daily
autocorrelation φd by first estimating the hourly autocorrelation φh using an
AR(1) model. The relationship between the two is given by φd = φ24

h . If
φd = 0.75 then φh = 0.988. A small error in the estimation of φh, say 0.987,
results in bigger error for φd as it will be estimated to 0.73. Thus model
imprecision is amplified for smaller δ.

The selection of δ should be driven by three principles. First is the inter-
pretability. Using natural δ values such as an hour, a day, a 2-day interval, a
week, a month would improve the interpretability as supposed to say a time
metric such as 1.3 days. The second consideration is the amount of missing
data resulting in this process. The missing data should be no more than
90% to 95% of the data. More missing data than that will likely yield a slow
converging MCMC estimation which potentially can produce bigger error in
the estimation than the discrete time approximation for larger δ values. The
third consideration should be that δ needs to be small enough so that the
original times are well approximated. Using a large value of δ will result

in ˆ̂tij = j in two-level DSEM models, that is, the information in the origi-
nal times tij is completely ignored and all observations are assumed equally
spaced.

There is one further consideration that applies only to the cross-classified
DSEM model. The smaller the δ value is the more time periods there will
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be. Since the DSEM model estimates time-specific random effects for each
interval, it is desirable that each period has at least several observations,
which act as measurements for the time-specific effects. A simple rule of
thumb would be to have at least 3 observations per random effect at each
time point. Thus the δ value should not be chosen to be so small as to reduce
the number of observations below that level.

8 Appendix B: DSEM model estimation

Here we describe the conditional distributions for each of the 13 blocks given
in Section 3. These are used in the MCMC estimation to update each block.
The conditional distributions we are interested in are the conditional distri-
butions for each block conditional on all other blocks and the data.

Consider the conditional distribution of B1. Given that we condition
on B3 the variables Y3,t are considered known. All other random and non-
random slopes and loadings are also considered known. Let Y ′1,it = Yit− Y3,t.
Equation (6) can be expressed as

Y ′1,it − Y2,i = (I −R0)
−1ν1 +

L∑
l=0

(I −R0)
−1Λ1,lη1,i,t−l+

L∑
l=1

(I −R0)
−1Rl(Y

′
1,i,t−l−Y2,i) +

L∑
l=0

(I −R0)
−1K1,lX1,i,t−l + (I −R0)

−1ε1,it

(92)

or equivalently

Y ′1,it− (I−
L∑
l=1

(I−R0)
−1Rl)Y2,i = (I−R0)

−1ν1 +
L∑
l=0

(I−R0)
−1Λ1,lη1,i,t−l+

L∑
l=1

(I −R0)
−1RlY

′
1,i,t−l +

L∑
l=0

(I −R0)
−1K1,lX1,i,t−l + (I −R0)

−1ε1,it (93)

where I denotes the identity matrix. The conditional distribution of Y2,i is
now determined by the log-likelihood of the above equation in conjunction
with Equation (2). Denote F (Y2,i)

F (Y2,i) =
∑
t

L(Y ′1,it|∗) + L(Y2,i|∗), (94)
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where L(Y ′1,it|∗) is the log-likelihood expression of Equation (93) and L(Y2,i|∗)
is the likelihood expression of Equation (2). Since all these equations are for
normal distributions, the conditional distribution of Y2,i is given by

Y2,i ∼ N(F ′′−1F ′(0), F ′′−1), (95)

where F ′ and F ′′ denote the first and the second derivative of the log-
likelihood function F . Note that since F is a quadratic function of Y2,i the sec-
ond derivative is a constant matrix that does not depend on the value of Y2,i.

Another way to compute this is as follows. Let M = (I−
∑L

l=1(I−R0)
−1Rl).

The conditional distribution of MY2,i can be computed as follows. The vari-
able MY2,i is the random intercept of a two-level model where the within-level
model is given by (93) and the between-level model is given by (2) multiplied
by M so that MY2,i is the dependent variable on the between-level as well.
The conditional distribution of the random intercept in a standard two-level
model is well-known. If the conditional distribution of MY2,i is N(m, v) then
the conditional distribution of Y2,i is N(M−1m,M−1v(M−1)T ).

The conditional distribution of B2 is similar. Conditional on all other
blocks, Y2,i and Y3,t are considered known, which means that Y1,it is known, as
well as η1,it. The joint conditional distribution of all s2,i come from Equations
(9) and (10) as well as a reformulation of Equation (3) which expresses s2,i
as a dependent variable on the left hand side and other variables on the right
hand side. Denote again by F the log-likelihood function

F (s2,i) =
∑
t

L(Y1,it|∗) +
∑
t

L(η1,it|∗) + L(s2,i|∗), (96)

where L(Y1,it|∗) is the log-likelihood contribution of Equation (9), written
directly as it is expressed in that equation, L(η1,it|∗) is the log-likelihood
contribution of Equation (10), also written directly as it is expressed in that
equation and L(s2,i|∗) is the log-likelihood contribution of Equation (3). All
these distributions are normal and thus the function F is again a quadratic
function of s2,i and the conditional distribution can be obtained as in (95)

s2,i ∼ N(F ′′−1F ′(0), F ′′−1). (97)

There is a key assumption in this procedure, which can be viewed also as
a model restriction. Equations (9) and (10) can be used directly to write
the likelihood only under the assumption that there are no non-recursive in-
teractions in the model. That is to say that the dependent variables Y1,it
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can not appear in a cyclical fashion in these equations, i.e., no two compo-
nents of that vector, say, Y1,it1 and Y1,it2 can simultaneously be predictors
of each other. Also longer cyclical regressions involving 3 or more variables
can not appear in the model. Such a restriction is needed to preserve the
quadratic form of F and to preserve the integrity of the likelihood obtained
directly from these equations. If the equations are non-recursive then F is
not quadratic and those equations can not be used directly to write the log-
likelihood. When the equations are recursive they can be ordered in such a
way that the [Y1,it1|Y1,it2, Y1,it3...][Y1,it2|Y1,it3...]... conditional distributions are
expressed precisely by Equation (9). The same applies to Equation (10).

The conditional distribution of block B3 is slightly more complicated than
the conditional distribution of block B1. Let Y ′1,it = Yit − Y2,i Equation (6)
can be expressed as

Y ′1,it − Y3,t = (I −R0)
−1ν1 +

L∑
l=0

(I −R0)
−1Λ1,lη1,i,t−l+

L∑
l=1

(I−R0)
−1Rl(Y

′
1,i,t−l−Y3,t−l)+

L∑
l=0

(I−R0)
−1K1,lX1,i,t−l+(I−R0)

−1ε1,it

(98)

or equivalently

Y ′1,it−(Y3,t−
L∑
l=1

(I−R0)
−1RlY3,t−l) = (I−R0)

−1ν1+
L∑
l=0

(I−R0)
−1Λ1,lη1,i,t−l+

L∑
l=1

(I −R0)
−1RlY

′
1,i,t−l +

L∑
l=0

(I −R0)
−1K1,lX1,i,t−l + (I −R0)

−1ε1,it (99)

It is clear from this equation that the conditional distribution of Y3,t is de-
termined not just by the above equation at time t, i.e., the level 3 cluster
at time t but also by the above equation at times t + 1, ..., t + L. It is
also clear that the conditional distribution of Y3,t1 is not independent of the
conditional distribution of Y3,t2 . Therefore computing the joint distribution
of all Y3,t becomes computationally infeasible. We resolve this problem by
breaking down block B3 into separate blocks, one for each time t and we
consider the conditional distribution of Y3,t not just conditioned on all other
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blocks but also on all other Y3,t′ where t′ 6= t. Denote by F (Y3,t)

F (Y3,t) =
L∑
l=0

∑
i

L(Y ′1,i,t+l|∗) + L(Y3,t|∗), (100)

where L(Y ′1,it|∗) is the log-likelihood expression of Equation (99) and L(Y3,t|∗)
is the likelihood expression of Equation (4). Since all these equations are for
normal distributions the conditional distribution of Y3,t is given by

Y3,t ∼ N(F ′′−1F ′(0), F ′′−1), (101)

where F ′ and F ′′ denote the first and the second derivative of the log-
likelihood function F .

Another way to compute this posterior distribution is as follows. De-
note by B0 = I, Bl = −(I − R0)

−1Rl. The random intercept of (99) is
At =

∑L
l=0BlY3,t−l. Suppose that the conditional distribution of that random

intercept At computed from the data in that cluster is N(mt, vt), excluding
a between-level model. The conditional distribution of Y3,t, conditional on
all other Y3,t′ where t′ 6= t is given by

Y3,t ∼ N(Dd,D), (102)

where

D =

(
Σ−13 +

L∑
l=0

BT
l v
−1
t+lBl

)−1
(103)

d = Σ−13 µ3 +
L∑
l=0

BT
l v
−1
t+l

(
mt+l −

L∑
n=0,n6=l

BlY3,t+l−n

)
, (104)

where N(µ3,Σ3) is the implied distribution for Y3,t from Equation (4). The
above equations apply for t ≤ T − L where T = max(Ti). When t > T − L
the equations get reduced by L − T + t because the index of the equation
is greater than the largest t in the model, i.e., equations with time index
greater than T do not exist as no data is observed beyond time T .

The conditional distributions of block B4 is obtained the same way as
the conditional distribution of block B2. Level 2 and level 3 simply reverse
roles. The conditional distribution of block B5 is as in Step 1 in Section 2.4
in Asparouhov and Muthén (2010). Conditional on blocks B1-B4 and the
generated values for these variables, the level 2 and level 3 models become
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essentially like multiple groups in single-level modeling. The two levels are
independent of each other, the within-level model, and the observed data
Yit. Therefore the single-level approach in Asparouhov and Muthén (2010)
applies. We reproduce this step here for completeness. Consider the single-
level SEM model

y = ν + Λη +Kx+ ε (105)

η = α +Bη + Γx+ ζ (106)

The conditional distribution is given by

[η|∗] ∼ N(Dd,D), (107)

where

D =

(
ΛTΘ−1Λ + Ψ−10

)−1
(108)

d = ΛTΘ−1(y − ν −Kx) + Ψ−10 B−10 (α + Γx), (109)

where B0 = I − B, I is the identity matrix, Θ = V ar(ε), and Ψ0 =
B−10 V ar(ζ)(B−10 )T .

The conditional distribution of block B6 requires some additional com-
putations. Because η1,it are not independent across time they can not be
generated simultaneously in an efficient manner as that will require comput-
ing the large joint conditional distribution of η1,it for all t. Therefore block B6
is essentially split into separate blocks, one for each t. Thus we update the
within-level latent variable one at a time starting at η1,i,1−L, η1,i,2−L,...,η1,i,Ti ,
where Ti is the last observation for individual i. We need to construct the
conditional distribution of η1,it conditional on all the other blocks and all
the other η1,it, for times different from t. Given all the other blocks, Y1,it is
observed. The conditional distribution of η1,it is somewhat different at the
end and at the beginning of that sequence so first we consider the case where
t is in the middle, more specifically 0 < t < Ti − L. The latent variable
η1,it conditional distribution is determined by Equation (6) and (7) at time t,
t+ 1, ..., t+L. In total there are 2L+ 2 equations that affect the conditional
distribution. We combine all these equations into one big model for η1,it, that
consists of one structural equation: (7) at time t, and 2L + 1 measurement
equations for η1,it: Equation (6) at time t and Equations (6) and (7) at times
t + 1, ..., t + L. Using this larger model the conditional distribution is ob-
tained again as in Equation (107). For t > Ti−L the conditional distribution
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is obtained similarly. However, since there are no observations beyond time
Ti there will be only 2(Ti − t + 1) equations in the enlarged model, again
one structural equation and 2(Ti − t) + 1 measurement equations. For t ≤ 0
we also have fewer equations due to the fact that there are no observations
before t = 1. There are only 2(L + t) measurement equations in the model,
and the prior specification for η1,it for t ≤ 0 takes the role of the structural
equation.

In block B7 similar considerations are taken into account. Missing values
are imputed one at a time and in a sequential order. Block B8 is actually
done at the same time as block B7 because one can interpret the initial con-
ditions as missing values, i.e., at times t ≤ 0, Y1,it and X1,it can be viewed as
missing values. Note here that conditional on all other blocks, the missing
values of Yit are essentially the missing values of Y1,it, that is once the missing
values for Y1,it are imputed, the values of Yit are obtained by (1) since Y2,i and
Y3,t are known, i.e., are conditioned on. Let’s first consider the missing value
Y1,it in the middle of the sequence 0 < t < Ti−L. In non-time series analysis
we impute the missing value from the univariate conditional normal distribu-
tion obtained from the within-level model, see Section 4 in Asparouhov and
Muthén (2010). Since conditional on X1,it the multivariate joint distribution
of Y1,it and η1,it is normal then one of these variables conditional on all other
variables has a univariate normal distribution, and that distribution is used
for missing value imputation. However, in the time-series model we consider
here Y1,it variable is used in 2L+2 Equations (6) and (7) at times t, t+1, ...,
t+ L. A missing variable in this context is nothing more than a unobserved
latent variable. Therefore the procedure we outlined above for conditional
distribution for block B6 applies here as well. As in block B6 at the end of
the sequence for t > Ti − L or at the beginning of the sequence for t ≤ 0
the number of equations used for the computation decreases and for t ≤ 0
the structural equation, where the missing value is the dependent variable is
replaced by the prior specification. This applies both for Y1,it and X1,it when
t ≤ 0. Note that the missing data treatment is likelihood based and thus will
guarantee consistent estimation as long as the missing data is MAR.

Blocks B9-B12 are all implemented as in Asparouhov and Muthén (2010).
Conditional on all latent variable the DSEM model is essentially a 3-group
single-level SEM and the procedures for single-level SEM apply directly. Fi-
nally let’s consider block B13. The conditional distribution of the random ef-
fects from Equation (11) are not explicit and we use the Metropolis-Hastings
algorithm to generate values from that distribution. Suppose that Y1,it1 has a
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random residual variance σi = Exp(s2,i), where s2,i is a normally distributed
random effect. Suppose that the current value of that random effect is s0. A
new proposed value s1 is drawn from a normal distribution N(s0, V ) where
V is referred to as the proposal distribution variance. We then compute the
acceptance ratio as follows

R =
P (s2,i = s1|∗)

∏
t P (Y1,it1|σi = Exp(s1))

P (s2,i = s0|∗)
∏

t P (Y1,it1|σi = Exp(s0))
, (110)

where P (s2,i = sj|∗) is the likelihood of s2,i obtained from Equation (3) con-
ditional on all other variables in that equation and P (Y1,it1|σi = Exp(sj)) is
the likelihood of Y1,it1 obtained from Equation (6) conditional on all other
variables in that equation. The proposed value s1 is accepted with proba-
bility min(1, R). If the value is rejected the old value s0 is retained. The
proposal distribution variance V is chosen to be a small value such as 0.1 and
is adjusted during a burnin stage of the estimation to obtain optimal mix-
ing, i.e., optimal acceptance rate in the Metropolis-Hastings algorithm. The
optimal acceptance rate is considered to be between .25 and 0.50. To pre-
serve the integrity of the MCMC chain the jumping distribution variance is
not changed beyond the burnin iterations and those iterations are discarded
and not used in the posterior distribution. Under these conditions the above
Metropolis-Hastings algorithm generates s2,i from the correct conditional dis-
tribution. Random variances for latent factors are estimated similarly. This
concludes the description of the MCMC estimation of the DSEM model.

What is hidden in the above description of the estimation is the compu-
tational times to estimate the model. Depending on the particular details of
the model, the conditional distributions may or may not be invariant across
subject or invariant across time. The more random structural parameters
there are that vary across subject and time, the less invariance there is in the
conditional distributions described above. Generally speaking for the two-
level DSEM model most of the conditional distributions are invariant across
time. Thus the conditional means and variances depend only on sufficient
statistics of the data and are easily computed. For the cross-classified DSEM
model even when a single structural parameter varies across time and sub-
ject, the structural SEM model given in Equations (9) and (10) changes for
every i and t and a separate computation is required. This generally results
in substantial increase in the computational time. Paired with the slower
convergence, that stems from the fact that the model is more flexible and
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the cross-classified DSEM model can become substantially more computa-
tionally intensive than a two-level DSEM model.

9 Appendix C. Computing the model-estimated

subject-specific means and variances

In this section we provide details on how model-estimated subject-specific
means and variances can be computed for the DSEM model. The main
assumption in such a computation is the assumption of stationarity. Any
autoregressive process in the model has to be stationary, that is, over time
the distribution of the variables in the autoregressive process stabilizes.

To compute the subject-specific model-estimated mean and variance im-
plied by the two-level DSEM model we start with Equation (1) assuming no
time-specific component Y3,t, that is,

E(Yit|i) = E(Y1,it|i) + Y2,i (111)

V ar(Yit|i) = V ar(Y1,it|i). (112)

The estimated subject-specific variance is simply the estimated within-level
subject-specific variance while the estimated subject-specific mean is the sum
of Y2,i, which is estimated within the MCMC estimation, and the within-level
estimated mean. Thus, we can focus on Equation (6) and (7).

Let Z represent the variables in these equations that are involved in an
autoregressive model. Let’s assume the following autoregressive model for Zt

Zt = µ+
L∑
l=1

AlZt−l + ζ, (113)

where Σ = V ar(ζ). Assuming stationarity of this model, the mean of Zt is

E(Zt) =

(
I −

L∑
l=1

Al

)−1
µ (114)

Let Γj = Cov(Zt, Zt−j). The variance of Zt, Γ0, is computed from the Yule-
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Walker equations, see Greene (2014)
Γ0 ΓT1 ΓT2 ... ΓTL
Γ1 Γ0 ΓT1 ... ΓTL−1
Γ2 Γ1 Γ0 ... ΓTL−2
... ... ... ... ...
ΓL ΓL−1 ΓL−2 ... Γ0




I
−AT1
−AT2
...
−ATL

 =


Σ
0
0
...
0

 (115)

These equations can been used to compute the model parameters Aj from
the sample autocovariances Γj, however, we do the opposite. As the model
parameters are known, we solve these equations for the model-implied Γj,
which have a total of Lp2 + p(p+ 1)/2 parameters, where p is the size of the
vector Z. The above system is over identified as it has (L+1)p2 equations. To
make it just identified we remove the p(p−1)/2 upper diagonal of the first row.
Note that this method yields not just the model-estimated variance for the
dependent and latent variables but also the model-estimated autocorrelations
of lags 1, ..., L.

If there is a trend in the data it should be modeled outside of the au-
toregressive process for the Yule-Walker computations to apply. In Mplus
the Yule-Walker computation is done within the residual output option. To
be more clear, model estimation does not require the trend to be modeled
outside of the autoregressive process. In fact in some cases, such as linear
growth, modeling the trend within the autoregressive process or outside of
the autoregressive process make no difference, see Section 5.4, and the mod-
els are equivalent reparameterizations of each other. But the Yule-Walker
computation outlined above does require model trends to be outside of the
autoregressive process because the autoregressive part of the DSEM model
is assumed stationary.

Three Mplus output options are based on the Yule-Walker equations:
tech4, residual and standardization, and therefore are only valid when the
autoregressive part of the model is stationary. In some cases the Mplus
program will automatically detect and report non-stationarity for some of
the subjects in the population simply because the model-implied subject-
specific variance estimates are negative or the model-implied subject-specific
variance-covariance matrices are not positive definite. Even if the Yule-
Walker equations produce positive definite variance-covariance matrices and
the Mplus program does not produce non-stationarity warnings, the sta-
tionarity assumption may still not hold and that could results in incorrect

66



model-implied estimates for the means and variances. Thus stationarity as-
sumption should be carefully inspected before the model-implied estimates
are used.
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