1 Discrete Time Survival Analysis

Discrete time survival analysis is used to model survival variables T that take only integer values $1, 2, \ldots, L$. If C is a censoring indicator, then if $T_i = t$ and $C_i = 1$, individual i survived until time t but was not observed beyond that point. If $T_i = t$ and $C_i = 0$, individual i died at time t.

The data used for the analysis is represented by binary indicators U_{ij} where $i = 1, \ldots, N$ and $j = 1, \ldots, L$ (N is the sample size)

$$U_{ij} = \begin{cases} 1 & \text{if } T_i > j \text{ or } T_i = j, C_i = 1 \\ 0 & \text{if } T_i = j, C_i = 0 \\ * & \text{if } T_i < j \end{cases}$$

where $*$ represents the missing value symbol. The interpretation of U_{ij} is that when the binary indicator is 1, individual i survived period j; when it is 0, individual i died in period j; and when it is missing, individual i was not observed in period j. A basic survival model that estimates the survival probabilities in each period is then given by the equation

$$P(U_{ij} = 1) = \frac{1}{1 + \exp(\tau_j)}.$$

If we add a covariate X to this model, we can estimate the discrete time survival model where the effect of X varies with time

$$P(U_{ij} = 1) = \frac{1}{1 + \exp(\tau_j - \beta_j X_i)}.$$

Mplus user’s guide example 6.19 shows another discrete time survival model.
2 Multilevel Discrete Time Survival Analysis

When individuals are grouped in clusters, we can estimate the following multilevel discrete time survival analysis

\[
P(U_{ijk} = 1) = \frac{1}{1 + \exp(\tau_j - f_k - \beta_j X_{ik})}
\]

where \(U_{ijk}\) is the binary indicator for individual \(i\) in cluster \(k\) for period \(j\) and \(f_k\) is a cluster-specific frailty random effect. Such a model can be specified in Mplus as in Figure 1. The loadings on the between level can be freed as well. This will create a time-specific effect for the cluster-specific frailty \(f_k\)

\[
P(U_{ijk} = 1) = \frac{1}{1 + \exp(\tau_j - \lambda_j f_k - \beta_j X_{ik})}
\]

Furthermore, the parameters \(\tau_j\) can be estimated as cluster specific random parameters. To obtain such a model the variances of \(U_1,..., U_4\) would be estimated on the between level.