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Growth mixture modeling, a combination of growth modeling and finite mixture
modeling, is a flexible, exploratory method for identifying and describing between-
person heterogeneity in change. In this article we introduce a second-order growth
mixture model that combines a longitudinal common factor model, measurement
invariance constraints, latent growth model, and mixture model. This approach cap-
italizes on the benefits of multivariate measurement and the flexibility of mixtures
for representing heterogeneity. We describe the model and illustrate its use with
multi-reporter longitudinal data from the National Institute of Child Health and
Human Development (NICHD) Study of Early Child Care and Youth Development
tracking the development of children’s externalizing behaviors through elementary
school.

Developmental researchers are concerned with how individuals change. Whether the
changes are quantitative or qualitative, the study is longitudinal or cross-sectional,
observational or experimental, developmentalists seek to implicitly or explicitly
describe and understand how individuals change over time. Even though within-
person change is often approximated by between-person differences in cross-
sectional studies, longitudinal (i.e., repeated measures) studies are necessary for
describing how people actually change (i.e., identification of intraindividual
change; Baltes & Nesselroade, 1979). An additional important aspect of studying
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122 GRIMM AND RAM

change is describing and understanding heterogeneity in change and determining
what constructs are related to that heterogeneity (i.e., determinants of between-
person differences in change; Baltes & Nesselroade, 1979). The primary analytic
techniques for examining how people change, how people differ in change, and
the determinants of change has become the latent growth curve model (McArdle &
Epstein, 1987; Meredith & Tisak, 1990; Preacher, Wichman, MacCallum, & Briggs,
2008; Rogosa & Willet, 1985).

The latent growth curve has roots in the 1950s (Rao, 1958; Tucker, 1958)
and became a mainstay in longitudinal research when Meredith and Tisak
(1990) showed how the latent growth curve could be fit as a restricted com-
mon factor model using available structural equation modeling software. The
latent growth curve was an improvement over repeated measures ANOVA
and difference score analysis largely because change variance could be dis-
tinguished from error variance—an issue that had been raised with difference
scores (Cronbach & Furby, 1970; Nesselroade & Cable, 1974). In addition to
structural equation modeling (SEM) programs, the latent growth curve model
can be fit using multilevel (e.g., mixed-effects, random coefficient) model-
ing programs under the logic that the repeated observations are nested within
participants (see Bryk & Raudenbush, 1992). The multilevel and SEM
approaches to growth modeling have advantages and disadvantages
(Ghisletta & Lindenberger, 2004), and identical models can be constructed
using both approaches (Ferrer, Hamagami, & McArdle, 2004). Since its
introduction, the latent growth curve model has been extended in a variety of
ways to handle nonlinear patterns of development (Browne, 1993; Grimm &
Ram, in press; Ram & Grimm, 2007), multiple groups (McArdle & Hamagami,
1996), changes in multiple variables (McArdle, 1988), lead–lag associations
in multivariate change (McArdle, 2001), and mixture distributions (B. O.
Muthén & Shedden, 1999). As we describe, the growth model has also been
extended to include a lower-order factor model (Hancock, Kuo, & Lawrence,
2001; McArdle, 1988) or item response model (Curran, Edwards, Wirth,
Hussong, Chassin, 2007; McArdle, Grimm, Hamagami, Bowles, & Meredith,
in press).

Although very useful, the basic latent growth curve has some limitations
for describing between-person differences in change. In particular, two key
assumptions of the model may be restrictive. First, between-person differ-
ences change are assumed to be normally distributed. Second, it is assumed
that all individuals follow the same pattern of change (e.g., all individuals
exhibit linear change). The growth mixture model (GMM: Muthén, 2004;
B. O. Muthén & Shedden, 1999; B. O. Muthén & Muthén, 2000), a finite
mixture extension of the latent growth curve, can allow for greater flexibility
in if and how these assumptions about the organization of between-person
differences are invoked.
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GROWTH MIXTURE MODELS 123

THE GROWTH MIXTURE MODEL

In brief, growth mixture modeling is a method for identifying multiple unob-
served subsamples, describing longitudinal change within each unobserved
subsample, and examining differences in change between and within unobserved
subsamples (see Connell & Frye, 2006; B. O. Muthén & Muthén, 2000; Ram &
Grimm, 2009, for an introduction). By allowing for the possibility that individuals
belong to one of multiple unobserved groups (i.e., classes), the GMM does not
restrict the between-person differences in change to follow a continuous normal
distribution. Additionally, because these unobserved groups can have fundamen-
tally different change patterns (e.g., one class exhibiting linear change, and another
class exhibiting exponential change) the GMM is an important innovation that
can be used to locate, describe, and understand additional sources of heterogene-
ity. For example, Odgers et al. (2008) examined trajectories of antisocial behaviors
for males and females and found a four-class GMM to be the best representation
of the data. The four classes had different levels of antisocial behavior at age 7 and
different trajectories. The classes were indicative of (1) children with persistently
low levels of antisocial behavior (persistent low), (2) children with high levels of
antisocial behavior and a decreasing trajectory (childhood limited), (3) children
with low levels of antisocial behavior and an increasing trajectory (adolescent
onset), and (4) children with high levels of antisocial behavior and a flat trajec-
tory (early onset persistent). Similarly, Small and Bäckman (2007) examined changes
in the Mini-Mental Status Examination (MMSE) in a sample of older adults
using GMMs. Small and Bäckman settled on a two-class model with quadratic
trends. The two classes showed small initial differences, but one class (n = 112)
showed sharp declines in the MMSE during the subsequent 7 years, whereas the
second class (n = 416) showed significant, but comparatively small declines in
the MMSE during the follow-up period.

Of course, the additional flexibility the GMM provides for modeling change
must be carefully used. As pointed out by several authors, without good theory
and thoughtful application, the benefits of the GMM might be overshadowed by
inappropriate use (e.g., Bauer, 2007; Bauer & Curran, 2003, Hipp & Bauer,
2006). The questions raised about the GMM stem from five issues: (1) the possi-
bility of incorrect solutions due to convergence at local, as opposed to global,
maxima in the likelihood function; (2) lack of clearly defined rules for assessing
model fit and making model comparisons (i.e., deciding on the appropriate number
of latent classes); (3) the exploratory nature of the model; (4) how and when
covariates are included in the model; and (5) the possibility that non-normal
distributions in the outcome measure are incorrectly interpreted as arising from
multiple populations.

Our primary interest is to propose the second-order growth mixture model
(SOGMM) to take advantage of multivariate assessment (e.g., multiple reporters)
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124 GRIMM AND RAM

when examining heterogeneity of developmental trajectories. This model may help
to address the fifth issue. Before proceeding, though, we briefly mention some of
the strategies that have been developed to help deal with the other four issues.

The estimation of GMMs is sensitive to starting values, and the estimation
algorithm may converge on a local rather than the global (i.e., best) solution. To
combat the possibility of not ending up at the optimal solution, is it recom-
mended that the algorithm for estimating parameters and maximizing the likeli-
hood function be started multiple times, beginning its search from different
places in the parameter space. Replication of the solution with multiple sets of
random starting values provides confidence in the obtained solution (see Hipp &
Bauer, 2006; McLachlan & Peel, 2000; Muthén, 2004).

The second concern deals with model section. GMMs are not nested under
growth models or other GMMs. With the usual indices for making nested model
comparisons not available, researchers must use non-nested comparative fit indi-
ces (e.g., Akaike Information Criteria [AIC]; Bayesian Information Criteria
[BIC]) for model selection, which may be highly sensitive to sample size. Addi-
tional indices that have been proposed (and evaluated with promising results)
include the Lo-Mendell-Rubin Likelihood Ratio Test and Bootstrap Likelihood
Ratio Test (see Muthén, 2004; Nylund, Asparouhov, & Muthén, 2007).

Growth mixture modeling is an exploratory, data-driven technique, and thus
highly subject to the chance relationships existing in a particular set of data.
Thus, replication of solutions across multiple studies is important for establishing
confidence in and generalizability of results. In the absence of data drawn from
multiple sources, users should consider attempting to replicate the findings using
independent or random subsets of the available data (e.g., Bootstrap) as well as
check results against theoretically based expectations regarding the number and
characteristics of latent classes.

When and how covariates are included in the model is a tricky issue. On the
one hand, covariates are important indicators of the substantive validity of the
obtained classes. Demonstrating that the classifications map onto covariates in
the expected manner or are predictive of important outcomes confirms their util-
ity. On the other hand, when estimated simultaneously, these additional predictor
or outcome variables can fundamentally affect the latent classes such that they
(and which individuals are within them) are substantially different from the latent
classes obtained without covariates. Additionally, covariates can be added as pre-
dictors of the latent classes and/or included within the class-specific models as
predictors of the intercept and slope with any of these effects either differing or
being constrained to be invariant among latent classes—all of which leads to
different interpretations and implications (see Bauer & Curran, 2003; Lubke &
Muthén, 2007; B. O. Muthén & Muthén, 2000).

Bauer and Curran (2003) highlighted concerns about the interpretation of results
obtained via growth mixture modeling. Specifically, they cogently demonstrated
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GROWTH MIXTURE MODELS 125

the effects non-normality has on model selection when comparing GMMs with
growth models. Bauer and Curran simulated normally distributed longitudinal
data from a single population, transformed the data to be slightly skewed and
kurtotic, and fit a series of growth and GMMs. The fit statistics universally
favored the GMM over the growth model demonstrating how small deviations
from normality can lead to the conclusion that multiple latent classes underlie the
data even though the data generating mechanism was a single population. Non-
normality (skew, kurtosis) may arise for many different reasons—not just from
the mixing of multiple populations. Consider the possibility that the construct of
interest is normally distributed in the population, but ceiling, floor, or other mea-
surement anomalies have led to observed data that is non-normal. As Bauer and
Curran demonstrated, the GMM will accommodate the non-normality by finding
unobserved groups. The concern is that the GMM, by itself, does not distinguish
among the reasons for non-normality. It simply fits the data as best it can—adding
as many groups as necessary to represent the skew and kurtosis of the data. Non-
normality resulting from measurement or other anomalies masquerades as latent
classes with no red flags ever being raised.

As a consequence, it is imperative to take advantage of measurement models
and multivariate assessment to provide a cleaner basis for the GMM. One
approach is to make use of the benefits provided by multivariate assessments. As
detailed by Edwards and Wirth (this issue), multiple measures and factor analytic
models can be used to separate common variance from specific and error variance.
The true score (e.g., factor score) distributions obtained from such models may
provide a more precise and clear picture of how the construct is distributed in the
sample (and population) and provide a stronger foundation for the GMM. For
example, reports of externalizing behavior obtained from multiple sources (e.g.,
mother, father, and teacher) can be used in conjunction with factor or item
response models to obtain a more reliable picture of a child’s level of externaliz-
ing behavior. Similarly, models that specifically acknowledge and accommodate
censored (ceilings or floors), zero-inflated, Poisson, Bernoulli, or other distribu-
tions can be used to obtain more precise estimates of the true distribution or fre-
quencies of individuals’ behavior. As has been done for the growth model (e.g.,
Hancock et al., 2001; McArdle, 1988), we propose taking advantage of the bene-
fits of multivariate and other measurement models as one way to help deal with
data anomalies that might inappropriately masquerade as multiple classes.

A SECOND-ORDER GROWTH MIXTURE MODEL

A SOGMM takes the benefits of multivariate measurement models and combines
them with the GMM. Our purposes here are to introduce the model, as built from
the longitudinal common factor model, measurement invariance constraints,
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126 GRIMM AND RAM

second-order growth model, and the GMM, and to demonstrate its application to
developmental data. First, we provide background on the context of our
inquiry—between-child differences in change in externalizing behavior during
childhood. Next, we present the model, its components, and illustrate how the
model can be fit and evaluated using data from the NICHD Study of Early Child
Care and Youth Development. Working knowledge of factor and growth models
is assumed in the presentation of details, but not necessary for obtaining a broad
overview of the method. Finally, we highlight some possible extensions of the
SOGMM and reiterate that care and caution should be taken when using and
interpreting GMMs.

RESEARCH ON INTRAINDIVIDUAL CHANGE 
IN EXTERNALIZING BEHAVIORS

Several studies have used growth curve modeling techniques to examine individual
change in externalizing problems through early and middle childhood, adoles-
cence, and emerging adulthood (Bongers, Koot, van der Ende & Verhulst, 2004;
Bub, McCartney & Willett, 2007; Curran et al., 2007; Dekovic, Buist, & Reitz,
2004; Gilliom & Shaw, 2004; Keiley, Bates, Dodge & Pettit, 2000; Leve, Kim, &
Pears, 2005; Miner & Clarke-Stewart, 2008). Prototypically, whether reported by
parents, teachers, or other caregivers, studies have found significant decreases in
externalizing behaviors over time and significant between-person variation in inter-
cepts and linear slopes (rates of change). As applications of growth models, these
studies investigated individual changes and between-person differences in change
under the assumption that the samples were drawn from a single population.

Other studies have used group-based approaches (e.g., latent class, latent pro-
file, & mixture models) that explicitly allow for multiple populations (e.g., Hill,
Degnan, Calkins, & Keane, 2006; Moffitt, 1993; Moffitt, Caspi, Dickson, Silva, &
Stanton, 1996; NICHD Early Child Care Research Network [ECCRN], 2004;
Shaw, Gilliom, Ingoldsby, & Nagin, 2003). We selectively highlight a few of the
findings as they might be used to form some preliminary views on how many and
what types of change patterns might be expected in the forthcoming data example.

Hill et al. (2006) fit latent profile models to longitudinal data collected during
early childhood (i.e., ages 2 to 5). Heterogeneity of across-time profiles was
described using four patterns: high-chronic (11% for girls, 9% of boys), high-
decreasing (22% for girls, 39% for boys), moderate-decreasing (51% for girls,
41% for boys), and persistent-low (16% for girls, 11% for boys). Shaw et al.
(2003) fit a semiparametric mixture model (e.g., Nagin, 1999) to longitudinal data
on conduct problems obtained from children from ages 2 to 8. Heterogeneity was
again described by four patterns of change: high-chronic (6 % of sample), high-
decreasing (38%), moderate-decreasing (42%), and persistent low (14%). Using a
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GROWTH MIXTURE MODELS 127

similar approach, the NICHD ECCRN (2004) described heterogeneity of change
in mother-rated aggressive behavior across repeated assessments from ages 2 to 9
using a five-class typology: two groups with low levels of aggression at age 2 and
subsequent decreases (70% of sample), two groups with moderate levels of
aggression at age 2 and subsequent decreases (27%,), and a small group that
exhibited a high level of aggression at age 2 that stayed high to age 9 (3%). In all
three studies there was a high-chronic class that exhibited stability and one or
more classes whose problem behavior, although starting off with low, moderate,
or high levels of problem behavior, decreased systematically with age. These
empirical results suggest the possibility of multiple populations of children. Parsi-
moniously, and highlighting change more than level, the classes might represent a
normative population whose problem behaviors decrease during childhood (from
whatever level when first observed), and a relatively small clinical population
who persistently exhibit high levels of problem behavior.

METHOD

Example Data

To illustrate the application and interpretation of a SOGMM we make use of
multivariate-multioccasion data drawn from the National Institute of Child
Health and Human Development Study of Early Child Care and Youth Develop-
ment (NICHD-SECCYD). Briefly, SECCYD families were recruited through
hospital visits to mothers shortly after the birth of a child in 1991 in 10 locations
in the United States. During selected 24-hour intervals, all women giving birth
(N = 8,986) were screened for eligibility. From that group, 1,364 families
completed a home interview when the infant was 1 month old and became study
participants (see e.g., NICHD ECCRN, 2002, for details). The analysis sample
for the current study consisted of the 1,135 children for whom mother, father,
and/or teacher reports of externalizing behavior were available for at least one of
the grade 1, 3, 4, or 5 assessments.

Measures. Reports of externalizing behavior problems were obtained from
mothers, fathers, and teachers during Grades 1, 3, 4, and 5 (coded 0, 2, 3, 4,
respectively). At each occasion the child’s mother and father completed the Child
Behavior Checklist (CBCL/4-18; Achenbach, 1991a), a 118-item scale on which
parents rate aspects of their child’s behavior during the last 6 months on a 3-point
scale (i.e., not true, somewhat or sometimes true, very true or often true). In
parallel, the child’s teacher completed the Achenbach’s Teacher Report Form
(TRF: Achenbach, 1991b), a 118-item scale on which the teacher rated aspects of
the child’s behavior. Ninety-three items on the TRF have direct counterparts on
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128 GRIMM AND RAM

the CBCL/4-18 (the remaining items deal with situations specific to the school
environment). Here we use the raw externalizing (i.e., sum) scores of the CBCL/
4-18 (33 items) and the TRF (34 items), which have been shown to have good
test-retest reliability and internal consistency (Achenbach, 1991a, 1991b). In sum,
measures of the child’s externalizing behavior were obtained at four occasions
(i.e., Grades 1, 3, 4, 5) from three reporters (i.e., mother, father, & teacher).

Descriptive statistics. Summary statistics for the externalizing behavior
scores are contained in Table 1. To accommodate missing data, the estimated
means, standard deviations, and correlations were generated using full informa-
tion maximum likelihood and are considered representative under missing at
random conditions (Little & Rubin, 1987). Examining Table 1, it can be seen that
the reports of externalizing behavior were strongly correlated within and across
grades. The across-grade correlations were especially strong for reports obtained
from the same informant (e.g., mother to mother, father to father, & teacher to

TABLE 1
Descriptive Statistics for the Externalizing Score from the Child Behavior Checklist in First, 

Third, Fourth and Fifth Grades

Correlations

First Grade Third Grade Fourth Grade Fifth Grade

1 2 3 4 5 6 7 8 9 10 11 12

N 1009 668 1008 1007 637 982 992 611 914 993 631 927
First 

grade
1. Mother 1.00
2. Father .51 1.00
3. Teacher .34 .37 1.00

Third 
grade

4. Mother .74 .46 .34 1.00
5. Father .52 .70 .35 .60 1.00
6. Teacher .38 .41 .53 .40 .44 1.00

Fourth 
grade

7. Mother .72 .46 .30 .80 .59 .37 1.00
8. Father .51 .71 .36 .54 .79 .38 .62 1.00
9. Teacher .40 .33 .54 .39 .39 .64 .38 .42 1.00

Fifth 
grade

10. Mother .69 .44 .33 .73 .51 .34 .80 .55 .38 1.00
11. Father .48 .66 .30 .53 .72 .40 .57 .77 .36 .60 1.00
12. Teacher .30 .32 .49 .29 .31 .53 .31 .35 .60 .32 .34 1.00

Mean 8.31 8.70 5.84 7.44 7.35 6.48 6.93 7.07 5.92 6.62 6.28 6.21
Standard 

Deviation
6.65 6.49 8.32 6.37 5.82 9.39 6.20 6.56 8.99 6.35 6.48 9.25

Skewa 1.23 1.11 2.07 1.23 1.14 2.22 1.40 1.88 2.38 1.55 1.94 2.23
Kurtosisa 2.19 1.25 4.27 1.56 1.96 5.44 2.68 6.16 6.17 3.39 4.92 5.36
Modea 4 2 0 2 1 0 0 0 0 0 0 0

Note. Full information maximum likelihood estimates.
aEstimates were obtained from the sample with available data at each occasion.
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GROWTH MIXTURE MODELS 129

teacher). The means tend to decrease across time, with the exception of the
teacher reports, which remain relatively stable. Overall, though, the pattern
suggests the possibility of normative decline. Additionally, skew and kurtosis
were calculated using the subsample of children for whom data were available at
each occasion. All scores were positively skewed and kurtotic—indicating
non-normality was present in all measures.

Second-Order Growth Mixture Model

The SOGMM is built by combining (1) a longitudinal common factor model,
(2) measurement invariance constraints, (3) a latent growth model, and (4) a mixture
model. For clarity, we build the model in steps and attempt to explain the matrix
algebra by highlighting the substantive implications of each component.

Longitudinal factor model. The longitudinal common factor model can be
written as

where yit is a p × 1 vector of observed variables for individual i at time t, nt is a
p × 1 vector of observed variable intercepts at time t, Lt is a p × q matrix of factor
loadings at time t, hit is a q × 1 vector of latent factor scores for individual i at
time t, and eit is a p × 1 vector of residual scores for individual i at time t. The
purpose of this component is to invoke the benefits of multivariate measurement
to obtain a true representation of individuals’ scores on the underlying construct.
In our example, the multiple reports of children’s externalizing behaviors are
used to separate unique variance (eit; specific + measurement error) from children’s
true level of externalizing behavior (hit) at each occasion. Mother, father, and
teacher reports obtained in Grades 1, 3, 4, and 5 serve as the observed scores, yit.
The factor scores, hit, represent the children’s true level of externalizing behavior
at each grade and become our primary interest.

Measurement invariance constraints. The common factor model provides
a framework for establishing or obtaining the distribution of scores on the latent
construct of interest. In the longitudinal setting it is important to establish that the
same construct has been measured at each occasion in the same metric. Tests of
factorial invariance (Meredith, 1993; Meredith & Horn, 2001; Widaman & Reise,
1997) enable researchers to determine whether the same construct was measured in
the same metric at each occasion. This is done by testing whether the relationships
between the observed variables and the latent factor are the same at each occasion
and whether changes in the observed measures can be carried by changes in the
factor scores. Specifically, weak factorial invariance is established by imposing

yit t t it it= + +n h eL , (1)
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130 GRIMM AND RAM

equality constraints on the factor loadings so that Lt = L for all t. Strong factorial
invariance, a necessary condition to examine change at the factor level (however,
see Edwards & Wirth, this issue, for another view on measurement invariance con-
straints), adds equality constraints on the observed variable intercept so that nt = n
for all t. The means of the factor scores can be estimated under the strong factorial
invariance model. When strong invariance holds, Equation 1 simplifies to

This first-order portion of the model insures that the measurement instrument was
calibrated properly at each occasion and establishes a viable foundation on which
to examine within-person changes and between-person differences in change.

Latent growth model. Having established a common and invariant measure-
ment framework that takes advantage of multivariate measurement, we can begin
examining how individuals’ externalizing behavior changes across time and the
between-child differences in those changes. Within-person change and between-
person differences in change in the factor scores, hit , can be examined using a
second-order growth model (Ferrer, Balluerka, & Widaman, 2008; Hancock
et al., 2001; McArdle, 1988). The second-order nature of the model means that a
second layer of factors is built on the first layer given by the first-order longitudi-
nal factor model given above (as opposed to growth models built on observed
variables). Using the common factor approach (see Meredith & Tisak, 1990), a
second-order latent growth curve can be written as

where G is a q × r matrix of second-order factor loadings, xi is an r × 1 vector of
second-order factor scores (e.g., intercept and slope), and zit is a q × 1 vector of
latent variable disturbance scores. The second-order factor scores (intercepts and
slopes) can be written as deviations from the group mean, such as

where k is an r × 1 vector of latent factor means and wi is a r × 1 vector of individ-
ual mean deviations. In our example, changes in the externalizing behavior factor
(hit), indicated by the mother, father, and teacher-reported observed externalizing
scores at the first-order level, are modeled by second-order growth factors (xi),
typically, an intercept factor capturing between-person differences at the begin-
ning (or any specific point) of the observation period, and a slope factor(s)
capturing between-person differences in the rate of change across the series of

yit it it= + +n hL e . (2)

h x zit i it= G + , (3)

x k wi i= + , (4)
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GROWTH MIXTURE MODELS 131

measurements. These second-order growth factors are composed of means (k)
and individual deviations (wi) about the mean. Combining Equations 2, 3, and 4
we can write the second-order growth model as

The expectations of the population mean vector, m, and covariance matrix, S,
based on the second-order growth model are

where Y is a q × q first-order latent variable residual covariance matrix, F is an
r × r second-order latent variable covariance matrix, and q is a p × p matrix of
observed variable residual covariances. In the second-order growth modeling
framework, Y is diagonal (first-order factor covariances are modeled by second-
order growth model) with equivalent values in the diagonal following the
homogeneity of variance assumption of latent growth modeling. An additional
technical detail is the mean of the intercept factor is not identified (as the scale of
the first-order factors is arbitrary). The needed identification constraint is
obtained by fixing the mean of the intercept factor to 0.

Figure 1 is a path diagram of a second-order growth model with four occasions
of measurement and three observed variables at each measurement occasion. The
labels in the path diagram represent the matrices of Equation 6, and invariance
constraints are indicated by common labels. For clarity, the observed variable
intercepts, v (that are invariant across time), and unique covariances (e.g., q1,4,
q1,7, q1,10, q4,7, q4,10, q7,10) are not shown in the path diagram. At the first-order
level, the observed variables (squares) are indicators of factors (circles) using the
longitudinal factor model and strong measurement invariant constraints. At the
second-order level, the two factors represent an intercept (h1) with unit loadings
and a linear slope (h2) with factor loadings following a linear change pattern with
respect to measurement occasion (occasions 0, 2, 3, & 4). The mean of the linear
slope (k2), variances of the intercept and slope (Φ1,1 & Φ2,2), and a covariance
between the intercept and slope (Φ1,2) provide the model based description of the
between-person differences in within-person change. Overall, the growth model
is extremely flexible and allows for description and examination of a wide variety
and types of linear and nonlinear change (see Grimm & Ram, in press; Ram &
Grimm, 2007). Although not yet in widespread use, this second-order version
has additional advantages, including the benefits of multivariate measurement
(Hancock et al., 2001; McArdle, 1988) and increased statistical power (see
Hertzog, Lindenberger, Ghisletta, von Oertzen, 2006).

yit = + + + +n k w z eLG LG Li it it . (5)

          m n k=
= + +

+
′ ′
LG

S L GFG Y L q( ) (6)
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132 GRIMM AND RAM

Growth mixture model. The GMM (B. O. Muthén & Muthén, 2000;
B. O. Muthén & Shedden, 1999) is a combination of the growth model and the
finite mixture model (McLachlan & Peel, 2000). The idea is that the observed
sample was drawn from K subpopulations. The problem is that it is not known
who belongs to each class or subpopulation, each of which follows its own
growth model. Interindividual differences within each class are normally distrib-
uted, but when combined or mixed together they appear as a single non-normal
distribution. The GMM incorporates a categorical latent variable into the growth
model that allows for a probabilistic separation of individuals into K classes.

Mathematically, the expectations from the second-order growth model in
Equation 6 are written at the class level, such as

FIGURE 1 Path diagram of a second-order latent growth curve with four occasions of
measurement of an unobserved factor indicated by three observed variables at each occasion.

Note. Intercepts for observed variables (one-headed arrows from the constant to the observed
variables) and correlated uniquenesses were omitted for clarity. Invariance constraints are
noted by a common label. Lower and upper dotted boxes represent the first- and second-order
levels, respectively.

               m n kk k k k k

k k k k k k k

= + L G
S L G F G L L Y L q= ′ ′ + ′ +( ) .k k k

(7)
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GROWTH MIXTURE MODELS 133

Each matrix is subscripted by k to denote class specific parameters. The GMM
described above is general such that every matrix is subscripted by k to denote
class noninvariance. However, several constraints can be imposed for interpret-
ability. At the first-order, nk = n, Lk = L, Yk = Y, and qk = q for all k to denote the
observed variable intercepts, the factor loadings for the measurement model, the
latent variable disturbances, and the residual variances of the observed variables
are invariant over latent classes (e.g., measurement invariance constraints). In
principle, these constraints are not necessary, in that classes can differ in any aspect
of the model but make interpretation of the differences in change more straightfor-
ward and estimation simpler. Here we examine mean (kk), covariance (Fk), and struc-
ture (Gk) differences across latent classes (i.e., in the parameters most relevant for
representing growth).

Model Fitting

Elsewhere we have outlined four steps for conducting growth mixture modeling anal-
yses (1) problem definition, (2) model specification, (3) model estimation, and
(4) model selection and interpretation (see Ram & Grimm, 2009). Our main purpose
here has been to present the second-order growth model. Thus, we provide only
abbreviated descriptions of how these steps were implemented in the current analysis.

Problem definition. Using the empirical findings reviewed here, we formu-
lated some initial GMM hypotheses. Specifically, we expect there would be two
or three latent classes. The classes could differ in the mean amount of change, the
extent of between-person difference in change, and in the pattern of change.
Specifically, a two-class representation might distinguish a relatively heteroge-
neous group with a normative linear decline pattern, and a relatively homogenous
clinical group with high scores that remain stable over time. Alternatively, a
three-class model might additionally identify another group with low and stable
levels of externalizing behavior.

Model specification, estimation, & selection. A series of two- and three-
class SOGMMs were specified with different between-class equality constraints
(kk, Fk, & Gk). As can be seen in the details described in Table 2, the models dif-
fered in the parameters that were invariant over classes. Model M12 (subscript 2
for two classes) allowed for between-class differences in the means of the growth
factors; Model M22 allowed for between-class differences in the means and in the
variance/covariance matrix of the growth factors; Model M32 allowed for
between-class differences in the means and variance/covariance matrix of the
growth factors as well as the pattern of change. In particular, the pattern of
change for one class was defined to capture stability (i.e., intercept-only model;
expected clinical stability), whereas the pattern of change for the other class was
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134 GRIMM AND RAM

defined to capture linear change (e.g., expected normative decline). The series of
three-class SOGMMs allowed for differences among classes in similar manner.

The goal of the model selection step is to determine which model provides the
best and most reasonable representation of the observed data. Given the exploratory
nature of the GMM, this is often an iterative process guided by consideration of
statistical fit and theoretical expectations. The statistical criteria included a
collection of information regarding fit (e.g., BIC, Lo-Mendell-Rubin Likelihood
Ratio Test), the separability of the latent classes (e.g., entropy, average latent
class probabilities for most likely latent class membership), and the percentage of
participants categorized into each class.

All models were fit to data using Mplus 5.0 (L. K. Muthén & Muthén, 2007),
and GMMs were fit using ten sets of random starting values. An annotated selec-
tion of programming scripts can be found at http://psychology.ucdavis.edu/labs/
Grimm/personal/downloads.html.

RESULTS

The results are presented in four sections corresponding to the parts from which
the model was built: longitudinal factor model, measurement invariance
constraints, second-order growth modeling, and second-order growth mixture

TABLE 2
Second-Order Growth Mixture Models fit to the Externalizing Factors

Model

Linear Growth Model

Growth Mixture Models

Two-Class Models

M01 M12 M22 M32

k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

Latent variable means
Intercept Mean  = 0 k1  = 0 k1  = 0 k1  = 0
Slope Mean k2 k2 k2 k2 k2  = 0 k2

Slope loadings
Grade 1  = 0  = 0

 = 2
 = 3
 = 4

 = 0
 = 2
 = 3
 = 4

 = 0  = 0
Grade 3  = 2  = 0  = 2
Grade 4  = 3  = 0  = 3
Grade 5  = 4  = 0  = 4

Latent variable covariances
Intercept variance Φ1,1 Φ1,1

Φ2,2
Φ1,2

Φ1,1 Φ1,1 Φ1,1 Φ1,1
Slope variance Φ2,2 Φ2,2 Φ2,2 =0 Φ2,2
Intercept-slope covariance Φ1,2 Φ1,2 Φ1,2 =0 Φ1,2

Residual factor variance y y y y
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GROWTH MIXTURE MODELS 135

modeling. The first three sections are brief because they represent necessary
precursors to second-order growth mixture modeling but were not the primary
focus. Here we state what was found and concluded. In the last section, we
describe the fit statistics, model choice decisions for the SOGMMs, and the
chosen model.

Longitudinal Factor Model

The mother, father, and teacher reports of externalizing behavior were moder-
ately to strongly related to the latent construct with standardized factor loadings
ranging from .43 to .81. The factor loadings for teacher-reported behavior were
lower than those for the mother- and father-reported externalizing behaviors,
which may be due to the context of the measurement (e.g., school vs. home). The
externalizing behavior factors were strongly correlated across elementary school
with between-occasion correlations ranging between .86 and .93. The correla-
tions among the uniquenesses were moderate to strong, ranging from .38 to .64,
suggesting that a sizable part of the unique variance was specific variance as
opposed to error variance.

Measurement Invariance Constraints

A series of longitudinal factor models were fit to test whether the relationship
between the latent factor and the observed mother, father, and teacher reports
held at all occasions and whether changes in the observed means could be carried
by changes at the factor level. Without substantial loss of fit compared to the
baseline (free) model, the strong invariance model fit the data well (c2 = 137,
df = 48, CFI = .985, TLI = .976, RMSEA = .045 (.036 – .053)). Thus, we obtained
confidence that the same latent construct had been measured at each occasion in
the same metric.

Second-Order Growth Model

The second-order latent growth models were fit to establish a baseline model
for comparison with the SOGMMs. Across a series of second-order growth
models (e.g., intercept only, intercept plus linear slope, intercept plus latent
basis slope) we found the linear growth model to be the best fitting (see
Table 3 Model M01; c2 = 155, df = 40, CFI = .983, TLI = .978, RMSEA =
.043 (.035 – .051), AIC = 64,929, BIC = 64,129, Adjusted BIC = 64,003, #
of parameters = 40). The linear model had a significant decreasing trajectory
(k2 = –.41) with significant between-child differences in the intercept (Φ1,1 =
18.88) and slope (Φ2,2 = .22).
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136 GRIMM AND RAM

Second-Order Growth Mixture Model

Iterative fitting and examination of statistical fit criteria for the baseline, two-,
and three-class models, as well as theoretical expectations, suggested the presence of
multiple classes (see Table 3). This process included wrestling with convergence
issues (i.e., negative variances & correlations > |1|) and implications for model
selection (issues 1 and 2 above). Model M12, a two-class model with class
differences in the mean of the intercept and linear slope, was chosen as the best
representation of the within-person changes in externalizing behaviors and the
between-person differences therein. Among our considerations were that: M12
had a lower BIC than the one-class model, M01; the Bootstrap likelihood ratio
test (p value < .001) favored M12 over M01, the entropy of M12 was high (.883),
there was convergence and replication of the solution across multiple sets of
random starting values, and the substantive interpretation of the parameters was
acceptable.

Model M12 describes two classes. One class (k = 2) contained the vast major-
ity (91%; n = 1030.64) of the sample. The average pattern of change of this nor-
mative group was characterized by a lower level of externalizing behavior in
first grade, arbitrarily located at k1 = 0 for model identification purposes, that
decreased significantly across time, k2 = −.47. The other class, k = 1, contained

TABLE 3
Fit Statistics for the Second-Order Linear Growth Model (M01) and Second-Order Growth 

Mixture Models (M12 – M33)

M01 M12 M22
a M32

a,b,c M13
c M23

a M33
a

Sample size
N1 1135 104.36 574.40 563.66 104.36 540.87 562.95
N2 — 1030.64 560.60 571.34 341.24 221.13 282.68
N3 — — — — 689.40 373.00 289.37

Fit statistics
Parameters 40 43 46 43 46 52 48
AIC 63,929 63,682 62,572 62,747 63,688 63,252 63,349
BIC 64,130 63,898 62,803 62,964 63,920 63,514 63,590
ABIC 64,003 63,762 62,657 62,827 63,773 63,348 63,437
Entropy — .883 .817 .812 .401 .576 .518

Note. AIC = Akaike Information Criteria; BIC = Bayesian Information Criteria; ABIC = sample-
size Adjusted Bayesian Information Criteria. Sample sizes are the final class counts and proportions
for the latent classes based on the estimated model.

aConvergence issues (e.g., negative variances, correlations > |1|) were encountered.
bLog likelihood was not replicated.
cStandard errors were not trustworthy.  
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GROWTH MIXTURE MODELS 137

approximately 9% of the sample (n = 104.36). This class was characterized by a
higher level of externalizing behavior at the first-grade observation, k1 = 8.22,
and a stable, or nonsignificantly increasing trajectory across time k2 = .68. This
class contained children with high and stable trajectories. Note that, although
fixed around an arbitrary zero point given by the first class’ mean, these
parameters are in the metric of the original externalizing behavior measure,
specifically the mothers’ reports on the CBCL/4-18. The variance components
of the model indicate that, within-class, there were significant between-person
variance in the intercept, Φ1,1 = 10.20, but relative homogeneity in the rate of
change—decreasing for the normative class, and stability for the high stable
class, Φ2,2 = .10. These variance components and the nonsignificant negative
correlation between the intercept and linear slope were invariant across latent
classes. The expected mean trajectories (bold lines), and the 95% confidence
intervals for the within-class between-person differences in change (shaded
areas) are plotted in Figure 2. Through the visual representation it is possible to
see the overlap between the latent classes present in first grade, and the emer-
gence of normative and high stable groups as the children progressed through
elementary school.

FIGURE 2 Expected mean trajectories and 95% confidence boundaries of expected within-
class between-person differences for the two-class second-order growth mixture model, M12. 
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138 GRIMM AND RAM

One way to help understand the classes obtained from a mixture model is to
examine how they are related to other variables. Thus, child-level covariates were
added to the model as predictors of class membership. These covariates included
gender, maternal education, income status, maternal depression, and maternal
sensitivity (measured when the child was 54 months old). Males, children whose
mothers obtained less education, children whose mothers were less sensitive, and
low-income children were more likely to be in the high stable class. Males were
134% more likely to be in the high stable class; low-income children were 36%
more likely to be in the high stable class. Further class membership was associated
with level of mother’s education and sensitivity, such that additional units (years)
of maternal education or maternal sensitivity were associated with a 20%
and 12%, respectively, reduction in the odds of being in the high-stable class.
Maternal depression was not significantly predictive of class membership.

DISCUSSION

Second-Order Growth Mixture Model and Developmental Science

Studying developmental change is complicated. Measurement of unobservable
constructs is difficult, change patterns are unknown, and people differ from one
another in unknown ways. We have proposed the SOGMM as useful tool for
describing within-person change and between-person differences in change
(cf. Baltes & Nesselroade, 1979). The model combines the benefits provided by
the longitudinal common factor model, measurement invariance constraints, the
latent growth model, and the mixture model. First, the longitudinal factor model
allows for simultaneous use of information from multiple measures and allows
for the separation of error/specific variance from true/common variance
(Equation 1). Second, adding measurement invariance constraints allows for
greater confidence that the same construct has been measured at all occasions
and protects against changes in the meaning and scale of the factor across time
(Equation 2). These portions of the model provide access to the many benefits
derived from psychometric precision. Third, the latent growth model provides a
framework for modeling of within-person change and the between-person
differences therein (Equation 3). Finally, the mixture model allows greater flex-
ibility for modeling the heterogeneity in change by incorporating a categorical
latent variable (Equation 7) into the model. Specifically, the mixture allows for
and accommodates more of the nonlinearity and non-normality present in many
developmental processes (see also Masyn, this issue). Brought together, the
components of the model provide immense flexibility in how within-person
change and between-person differences in change can be examined and
described.
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GROWTH MIXTURE MODELS 139

Model Components

We presented and illustrated the application of the SOGMM as a combination of
four specific model components. At the first-order level these included a longitu-
dinal confirmatory factor model with three indicator variables assumed to be
normally distributed along a continuous scale, and strong measurement invari-
ance constraints. At the second-order level, we made use of a linear growth
model and two- and three-class GMMs. For simplicity of presentation and in pur-
suing our analysis objectives we used only one of many possible combinations.
As mentioned by Ram and Gerstorf (this issue) researchers may consider how
each component could be replaced with other models of the same type. For
example, rather than using a common factor model in the first-order level, other
measurement models could be considered (e.g., item response model) as appropri-
ate, depending on the distributions of the measured variables (e.g., dichotomous,
polytomous, censored, ordinal, binary, count, zero-inflated Poisson, etc.). At the
second-order level other types of change models could be invoked (Hoffman &
Stawski, this issue; Masyn, this issue; Selig & Preacher, this issue). All such pos-
sibilities for extending the multi-component SOGMM should be explored and
put to use.

Cautions and Caveats

Although the flexibility and possibilities provided by growth mixture modeling
seem great, it is important to reiterate that these benefits come with a set of
cautions and concerns that should not be ignored. As noted at the outset, GMMs,
second-order or otherwise, should not be fit haphazardly without direction. The
search for heterogeneity should be conducted in a principled and disciplined way.
Sets of models and logical alternatives should be formulated and interpreted
carefully. Even still, as noted in our model selection process, issues must be
wrestled with and borderline decisions made.

At present, it is unknown how robust the SOGMM is to assumption violations.
Simulation studies are necessary to identify the particular data conditions and
circumstances that bound its use. However, comparing the results described here
with results from fitting (first-order) GMMs directly to the three observed
externalizing behavior scores (mother, father, & teacher reports) suggest that the
second-order model is more conservative than the first-order model—fewer
groups were obtained when using the SOGMM. Our cautious interpretation is
that the first-order factor model and invariance constraints were able to help deal
with some of the anomalies that might have masqueraded as groups in the usual
application of growth mixtures to observed data.

One major concern with the use of GMMs is that they always identify
groups. As illustrated and highlighted by Bauer and Curran (2003), even if the
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140 GRIMM AND RAM

data have not been collected from or generated by multiple unobserved classes,
the GMM can provide evidence of multiple groups. Pushing beyond the usual
fitting of the means, variances, and covariances of the observed data (first- and
second-order moments), GMMs allows for description of higher order
moments: skew and kurtosis. This is appealing: The models can provide more
complete descriptions of additional aspects of the data. On their own, though,
better descriptions of the data do not necessarily bring us closer to the underly-
ing mechanisms that caused the data. Of particular concern is the possibility
that the skew and kurtosis being described by GMMs may in reality be the
result of measurement or other anomalies and incorrectly attributed to a
typology of individuals.

CONCLUDING REMARKS

We forward the SOGMM as a promising possibility for examining developmen-
tal change, one that capitalizes on the benefits of multivariate assessment and
enables researchers to relax (and test) some of the assumptions underlying the
usual applications of growth curve models, in particular, that all participants
have the same change pattern and that the between-person differences in change
are continuous and normally distributed. We are confident that, by focusing on
measurement issues and dealing with them at the first-order level, the SOGMM
can do its job better—helping developmentalists untangle the mechanisms and
processes that underlie how and why individuals change in different and inter-
esting ways.
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