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Abstract

This paper uses a series of examples to give an introduction to how Bayesian analysis

is carried out in Mplus. The examples are a mediation model with estimation of an

indirect effect, a structural equation model, a two-level regression model with estimation

of a random intercept variance, a multiple-indicator binary growth model with a large

number of latent variables, a two-part growth model, and a mixture model. It is shown

how the use of Mplus graphics provides information on estimates, convergence, and model

fit. Comparisons are made with frequentist estimation using maximum likelihood and

weighted least squares. Data and Mplus scripts are available on the Mplus website.
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1 Introduction

Frequentist (e.g., maximum likelihood) and Bayesian analysis differ by the former viewing

parameters as constants and the latter as variables. Maximum likelihood (ML) finds

estimates by maximizing a likelihood computed for the data. Bayes combines prior

distributions for parameters with the data likelihood to form posterior distributions for

the parameter estimates. The priors can be diffuse (non-informative) or informative where

the information may come from previous studies. The posterior provides an estimate in

the form of a mean, median, or mode of the posterior distribution.

There are many books on Bayesian analysis and most are quite technical. Gelman

et al. (2004) provides a good general statistical description, whereas Lynch (2010)

gives a somewhat more introductory account. Lee (2007) gives a discussion from a

structural equation modeling perspective. Schafer (1997) gives a statistical discussion

from a missing data and multiple imputation perspective, whereas Enders (2010) gives an

applied discussion of these same topics. Statistical overview articles include Gelfand et al.

(1990) and Casella and George (1992). Overview articles of an applied nature and with

a latent variable focus include Scheines et al. (1999), Rupp et al. (2004), and Yuan and

MacKinnon (2009).

Bayesian analysis is firmly established in mainstream statistics. Its popularity is

growing and currently appears to be featured at least half as often as frequentist analysis.

Part of the reason for the increased use of Bayesian analysis is the success of new

computational algorithms referred to as Markov chain Monte Carlo (MCMC) methods.

Outside of statistics, however, application of Bayesian analysis lags behind. One possible

reason is that Bayesian analysis is perceived as difficult to do, requiring complex statistical

specifications such as those used in the flexible, but technically-oriented general Bayes

program WinBUGS. These observations were the background for developing Bayesian

analysis in Mplus (Muthén & Muthén, 1998-2010). In Mplus, simple analysis specifications
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with convenient defaults allow easy access to a rich set of analysis possibilities. Diffuse

priors are used as the default with the possibility of specifying informative priors. A range

of graphics options are available to easily provide information on estimates, convergence,

and model fit.

Three key points motivate taking an interest in Bayesian analysis:

1. More can be learned about parameter estimates and model fit

2. Analyses can be made less computationally demanding

3. New types of models can be analyzed

Point 1 is illustrated by parameter estimates that do not have a normal distribution.

ML gives a parameter estimate and its standard error and assumes that the distribution of

the parameter estimate is normal based on asymptotic (large-sample) theory. In contrast,

Bayes does not rely on large-sample theory and provides the whole distribution not

assuming that it is normal. The ML confidence interval Estimate± 1.96× SE assumes a

symmetric distribution, whereas the Bayesian credibility interval based on the percentiles

of the posterior allows for a strongly skewed distribution. Bayesian exploration of model fit

can be done in a flexible way using Posterior predictive checking (PPC; see, e.g., Gelman

et al., 2004, Chapter 6; Lee, 2007, Chapter 5; Scheines et al., 1999). Any suitable

test statistics for the observed data can be compared to statistics based on simulated

data obtained via draws of parameter values from the posterior distribution, avoiding

statistical assumptions about the distribution of the test statistics. Examples of non-

normal posteriors are presented in Section 2 for single-level models as well as in Section 4

for multilevel models. Examples of PPC are given in Section 3.

Point 2 may be of interest for an analyst who is hesitant to move from ML estimation

to Bayesian estimation. Many models are computationally cumbersome or impossible

using ML, such as with categorical outcomes and many latent variables resulting in many

dimensions of numerical integration. Such an analyst may view the Bayesian analysis

4



simply as a computational tool for getting estimates that are analogous to what would

have been obtained by ML had it been feasible. This is obtained with diffuse priors, in

which case ML and Bayesian results are expected to be close in large samples (Browne &

Draper, 2006; p. 505). Examples of this are presented in Section 5.

Point 3 is exemplified by models with a very large number of parameters or where ML

does not provide a natural approach. Examples of the former include image analysis (see,

e.g., Green, 1996)) and examples of the latter include random change-point analysis (see,

e.g., Dominicus et al., 2008).

This paper gives a brief introduction to Bayesian analysis as implemented in Mplus. For

a technical discussion of this implementation, see Asparouhov and Muthén (2010). Section

2 provides two mediation modeling examples which illustrate a non-normal posterior, how

to use priors, and how to do a basic Bayes analysis in Mplus. Section 3 uses an SEM

example to illustrate PPC. Section 4 uses two-level regression to illustrate how to test

significance of a skewed random effect variance estimate and intraclass correlation. Section

5 uses multiple-indicator growth for binary items to illustrate high-dimensional analysis.

Section 6 uses a two-part growth model to illustrate Bayes speed advantage over ML

with many dimensions. Section 7 uses a mixture model to illustrate how to handle label

switching. Section 8 discusses alternative approaches to missing data modeling. Data and

Mplus scripts are available on the Mplus web site under Mplus Examples, Applications

using Mplus.

2 Two mediation modeling examples

Two mediation modeling examples are considered. The first example uses the ATLAS data

of MacKinnon et al. (2004) and illustrates how different conclusions about the intervention

effect are arrived at using ML versus Bayes. The second example uses the firefighter data
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of Yuan and MacKinnon (2009) to illustrate the use of priors based on information from

previous studies to shorten the credibility interval (the Bayesian counterpart to confidence

intervals) for the intervention effect.

2.1 The ATLAS example - different conclusions using Bayes

vs ML

The mediational model in Figure 1 was considered in MacKinnon et al. (2004). The

intervention program ATLAS (Adolescent Training and Learning to Avoid Steroids) was

administered to high school football players to prevent use of anabolic steroids. MacKinnon

et al. (2004) used a sample of n = 861 with complete data from 15 treatment schools and

16 control schools (the multilevel nature of the data was ignored and is ignored here as

well; multilevel Bayesian mediational modeling is, however, available in Mplus). One part

of the intervention aimed at increasing perceived severity of using steroids. This in turn

was hypothesized to increase good nutrition behaviors. In Figure 1 these three variables

are denoted tx, steroid, and nutrition, respectively.

Figure 1: Mediation model for the ATLAS example

 

A key parameter is the indirect effect of intervention on the nutrition outcome, a× b.
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Table 1: Input for Bayes analysis of the Atlas example

TITLE: ATLAS, Step 1
DATA: FILE = mbr2004atlas.txt;
VARIABLE: NAMES = obs group severity nutrit;

USEV = group - nutrit;
ANALYSIS: ESTIMATOR = BAYES;

PROCESS = 2;
MODEL: severity ON group (a);

nutrit ON severity (b)
group;

MODEL CONSTRAINT:
NEW (indirect);
indirect = a*b;

OUTPUT: TECH1 TECH8 STANDARDIZED;
PLOT: TYPE = PLOT2;

The ML point estimate (SE) for this is 0.020 (0.011) with an asymptotically-normal z

test value of 1.913. Because this z value is not greater than 1.96, the indirect effect of

the intervention is not deemed significant at the 5% level. Correspondingly, the ML 95%

confidence interval obtained by the CINTERVAL option of the OUTPUT command is

0− 0.041, that is, not excluding zero.

The Mplus input for the corresponding Bayesian analysis is shown in Table 1. The

only change is to replace ESTIMATOR = ML with ESTIMATOR = BAYES. When two

processors are used faster computations are obtained with the default of two MCMC chains

to be discussed below. Note that the indirect effect is defined as the NEW parameter

”indirect” in MODEL CONSTRAINT. Bayesian graphics are obtained with the option

TYPE = PLOT2.

The analysis results are shown in Table 2. The first column gives the point estimate,

which by default is the median of the posterior distribution. The mean or mode can be

obtained using the POINT option of the ANALYSIS command. The second column gives
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the standard deviation of the posterior distribution. A normally distributed z ratio is

not used in Bayesian analysis. The third column gives a one-tailed p-value based on the

posterior distribution. For a positive estimate, the p-value is the proportion of the posterior

distribution that is below zero. For a negative estimate, the p-value is the proportion of

the posterior distribution that is above zero. The fourth and fifth columns give the 2.5

and 97.5 percentiles in the posterior distribution, resulting in a 95% Bayesian credibility

interval.

Using the default posterior median point estimate, the indirect effect estimate is 0.016,

that is, slightly lower than the ML value with a slightly higher posterior distribution

standard deviation of 0.013. Unlike the ML confidence interval, the Bayesian 95%

credibility interval of 0.002− 0.052 does not include zero, implying a positive intervention

effect. The reason for this ML-Bayes discrepancy is found when studying the posterior

distribution of the indirect effect.

View Graphs is used to open the Bayes graphs. The first menu item is Bayesian

posterior parameter distributions. Staying in histogram mode and selecting Parameter 8,

indirect shows a skewed distribution for the indirect effect with a median of 0.01644; see

Figure 2. A smoother picture of the posterior distribution is obtained by requesting the

Kernel density (Botev et al., 2010) option instead of histogram; see Figure 3. The mean,

median, and mode are marked as vertical lines in the distribution and are different due

to the skewness of the distribution. It is clear that the ML normality assumption is not

suitable for the indirect effect parameter (for technical arguments, see also MacKinnon,

2008). Therefore, the symmetric confidence interval that ML uses is not appropriate.

Instead, the Bayesian credibility interval uses the 2.5 and 97.5 percentiles of the posterior

distribution, allowing for skewness.

It is important to carefully consider convergence in Bayesian analysis. The default

convergence criterion is that a Proportional Scale Reduction (PSR) factor is close enough
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Table 2: Output excerpts for Bayes analysis of the Atlas example

Posterior One-Tailed 95% C.I.
Parameter Estimate S.D. P-Value Lower 2.5% Upper 2.5%

severity ON

group 0.282 0.106 0.010 0.095 0.486

nutrit ON

severity 0.067 0.031 0.000 0.015 0.125
group -0.011 0.089 0.440 -0.180 0.155

Intercepts

severity 5.641 0.072 0.000 5.513 5.779
nutrit 3.698 0.191 0.000 3.309 4.108

Residual Variances

severity 1.722 0.072 0.000 1.614 1.868
nutrit 1.331 0.070 0.000 1.198 1.468

New/Additional Parameters

indirect 0.016 0.013 0.010 0.002 0.052
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Figure 2: Indirect effect posterior distribution for the ATLAS example

 

to 1 for each parameter. For a technical definition, see Gelman and Rubin (1992), Gelman

et al. (2004), and Asparouhov and Muthén (2010). Briefly stated, Bayesian analysis uses

Markov chain Monte Carlo (MCMC) algorithms to iteratively obtain an approximation

to the posterior distributions of the parameters from which the estimates are obtained as

means, medians, or modes. Such iterations are referred to as a chain. In Mplus several

such chains are carried out in parallel when using multiple processors. The PSR approach

to determining convergence compares the parameter variation within each chain to that

across chains to make sure that the different chains do not converge to different values. The

PSR criterion essentially requires the between-chain variation to be small relative to the

total of between- and within-chain variation. Mplus uses the default of two chains which

usually gives good PSR information that compares well with using more chains. The first

half of the iterations are considered as a ”burn-in” phase and are not used to represent the

posterior distribution.

Figure 4 shows a trace plot of the two chains for the residual variance of the severity
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Figure 3: Kernel density estimate of indirect effect posterior distribution for the ATLAS example

 

variable. It is seen how a starting value is improved in a few iterations. A total of 100

iterations are used at which point the convergence criterion is fulfilled. The TECH8 output

shown on the screen and printed at the end of the output shows that for this example the

largest PSR value at 100 iterations is 1.037. In the trace plot the burn-in phase is denoted

by a vertical line at 50 iterations. The last 50 iterations appear to show a stable process

with no upward or downward trend with the two chains overlapping in their variation. The

posterior distribution shown in Figure 2 is determined by the remaining 50 values for each

of the two chains, resulting in a distribution based on 100 points.

A good approach to gain evidence of convergence is to run longer chains and check

that the parameter values have not changed in important ways and that the PSR still

remains close to 1. The Mplus option FBITERATIONS in the ANALYSIS command can

be used to request a fixed number of Bayes iterations. Requesting 10, 000 iterations gives

the progression of PSR values in TECH8 seen in Table 3. Only the first 1000 iterations
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Figure 4: Trace plot of severity residual variance for the ATLAS example

 

are shown.

When FBITERATIONS is used the PSR convergence criterion is not applied by Mplus.

Although Mplus prints THE MODEL ESTIMATION TERMINATED NORMALLY

convergence has to be verified by the user when using FBITERATIONS. The results are

shown in Table 4. The estimates are rather close to those shown earlier for 100 iterations

in Table 2.

Figure 5 shows the posterior distribution for the indirect effect. It is now smoother

than in Figure 2 due to using longer chains, but still shows the skewness.

A further check of the posterior distributions is obtained by an autocorrelation plot.

Figure 6 shows this for the indirect effect in the 10, 000 iteration analysis. Autocorrelations

show the degree of correlatedness of parameter values across iterations for different lags

(intervals in the chain). A small value is desirable to obtain approximately independent

draws from the posterior. A value of 0.1 or lower has been suggested. If the autocorrelation

is high for small lags but decreases with increasing lags, using only every kth iteration can
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Table 3: TECH8 iterations with PSR for the first 1000 iterations of the 10,000 iterations analysis
of the ATLAS example

Potential Parameter With
Iteration Scale Reduction Highest PSR

100 1.037 2
200 1.014 4
300 1.002 2
400 1.003 3
500 1.002 7
600 1.002 6
700 1.000 6
800 1.003 1
900 1.002 1
1000 1.002 1

Figure 5: Indirect effect posterior distribution from 10,000 iterations for the ATLAS example
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Table 4: Output excerpts from Bayesian analysis using 10,000 iterations for the ATLAS example

Posterior One-Tailed 95% C.I.
Parameter Estimate S.D. P-Value Lower 2.5% Upper 2.5%

severity ON

group 0.272 0.089 0.001 0.098 0.448

nutrit ON

severity 0.074 0.030 0.008 0.014 0.133
group -0.018 0.080 0.408 -0.177 0.140

Intercepts

severity 5.648 0.062 0.000 5.525 5.768
nutrit 3.663 0.177 0.000 3.313 4.014

Residual Variances

severity 1.719 0.083 0.000 1.566 1.895
nutrit 1.333 0.065 0.000 1.215 1.467

New/Additional Parameters

indirect 0.019 0.011 0.009 0.003 0.045
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Figure 6: Autocorrelation plot for indirect effect from 10,000 iterations for the ATLAS example

 

be accomplished by thinning using the THIN option of the ANALYSIS command. Thinning

is also useful when a large number of iterations is needed for convergence, but a smaller

number is desired for displaying the posterior distributions to reduce computer storage

(this influences the size of the Mplus .gph file).

2.2 The firefighter example - using informative priors

Yuan and MacKinnon (2004) discusses the benefits of Bayesian analysis for mediational

analysis. Here it is shown how their firefighter example is carried out in Mplus. The

example uses x to represent exposure to the randomized experiment, m to represent change

in knowledge of the benefits of eating fruit and vegetables, and y to represent reported

eating of fruits and vegetables. The model diagram is analogous to Figure 1. The sample

size is n = 354. The focus is on the indirect effect a× b. This example illustrates the use

of priors. As a first step the analysis is done using the default of diffuse priors. The Mplus
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Table 5: Input for Bayesian analysis of Firefighter example

TITLE: Yuan and MacKinnon firefighters mediation using
Bayesian analysis
Elliot DL, Goldberg L, Kuehl KS, et al. The PHLAME
Study: process and outcomes of 2 models of behavior
change. J Occup Environ Med. 2007; 49(2): 204-213.

DATA: FILE = fire.dat;
VARIABLE: NAMES = y m x;
MODEL: m ON x (a);

y ON m (b)
x;

ANALYSIS: ESTIMATOR = BAYES;
PROCESS = 2 ;
FBITER = 10000;

MODEL CONSTRAINT:
NEW(indirect);
indirect = a*b;

OUTPUT: TECH1 TECH8;
PLOT: TYPE = PLOT2;

input is shown in Table 5 and the output in Table 6. Yuan and MacKinnon (2009) give the

corresponding WinBUGS code in their appendix. Table 6 shows a positive indirect effect

with 95% credibility interval 0.011− 0.117.

The firefighter example is used to illustrate the benefit of informative priors. Yuan and

MacKinnon (2009, p. 311) put priors on the a and b slopes based on previous studies to

show how this can reduce the width of the credibility interval for the indirect effect of the

intervention. A normal prior is used for both slopes. For a the prior has mean 0.35 and

variance 0.04 and for b the prior has mean 0.1 and variance 0.01. The prior variances are

four times larger than what had been observed in previous studies in order to take into

account possible differences in the current study. The Mplus input is shown in Table 7.

The MODEL PRIORS command uses the labels a and b to apply the normal priors.
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Table 6: Output excerpts for Bayesian analysis of Firefighter example

Posterior One-Tailed 95% C.I.
Parameter Estimate S.D. P-Value Lower 2.5% Upper 2.5%

m ON

x 0.395 0.121 0.000 0.160 0.634

y ON

m 0.142 0.052 0.003 0.040 0.243
x 0.108 0.117 0.176 -0.127 0.339

Intercepts

y 0.418 0.057 0.000 0.308 0.530
m 0.000 0.059 0.499 -0.115 0.116

Residual Variances

y 1.144 0.089 0.000 0.987 1.338
m 1.218 0.093 0.000 1.054 1.419

New/Additional Parameters

indirect 0.053 0.028 0.004 0.011 0.117
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Table 7: Input for Bayesian analysis with priors for Firefighter example

TITLE: Yuan and MacKinnon firefighters mediation using
Bayesian analysis
Elliot DL, Goldberg L, Kuehl KS, et al. The PHLAME
Study: process and outcomes of 2 models of behavior
change. J Occup Environ Med. 2007; 49(2): 204-213.

DATA: FILE = fire.dat;
VARIABLE: NAMES = y m x;
MODEL: m ON x (a);

y ON m (b)
x;

ANALYSIS: ESTIMATOR = BAYES;
PROCESS = 2;
FBITER = 10000;

MODEL PRIORS:
a ∼ N (0.35, 0.04);
b ∼ N (0.1, 0.01);

MODEL CONSTRAINT:
NEW(indirect);
indirect = a*b;

OUTPUT: TECH1 TECH8;
PLOT: TYPE = PLOT2;
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The output given in Table 8 shows a 95% credibility interval of 0.012−0.102. Compared

to the Table 6 analysis with the default diffuse priors, this represents a 16% shortening

of the credibility interval. The results agree with those of Yuan and MacKinnon (2009).

With a smaller sample, the prior has a stronger effect. Figure 7 shows that the indirect

effect has a skewed posterior distribution.

Figure 7: Indirect effect posterior from 10,000 iterations for the Firefighter example

 

19



Table 8: Output excerpts for Bayesian analysis with priors for Firefighter example

Posterior One-Tailed 95% C.I.
Parameter Estimate S.D. P-Value Lower 2.5% Upper 2.5%

m ON

x 0.383 0.104 0.000 0.182 0.588

y ON

m 0.133 0.046 0.003 0.042 0.223
x 0.112 0.117 0.169 -0.124 0.341

Intercepts

y 0.418 0.056 0.000 0.308 0.530
m 0.000 0.059 0.499 -0.115 0.116

Residual Variances

y 1.143 0.089 0.000 0.986 1.338
m 1.218 0.093 0.000 1.053 1.418

New/Additional Parameters

indirect 0.049 0.023 0.003 0.012 0.102
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