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Overview

The general DSEM model and estimation

DIC

Model estimated means and variances

DSEM output options

DSEM plots

Centering

Subject-specific variances

Unevenly spaced and individual-specific times of observations

Three level AR(1) models: within day v.s. between day
autoregressive modeling

Reference for this talk is the ”Dynamic Structural Equation Models”
paper available online http://statmodel.com/download/DSEM.pdf
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The general DSEM model

Merge ”time series”, ”structural equation”, ”multilevel” and
”TVEM(time varying effect modeling)” concepts in a
generalized modeling framework in Mplus V8

Yit, ηit and Xit - are the observed dependent variables, latent
factors and predictors for individual i at time t

Four distinct sources of correlation in such observed data:
- correlation due to individual specific effects (multilevel)
- correlation due to proximity of observations (time series)
- correlation between different variables (SEM)
- correlation due to the same stage of evolution (TVEM)

DSEM finds these correlations
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DSEM model

Includes three separate models: single level, twolevel ,
cross-classified

Main decomposition equation

Yit = Y1,it +Y2,i +Y3,t

Y2,i, Y3,t are the ”individual” and ”time” specific contribution.
These are latent variables. Y1,it is the residual.
Includes three separate models:

single level DSEM: type=general, N=1, Y2,i, Y3,t are removed
two-level DSEM: type=twolevel, Y3,t is removed
cross-classified DSEM: type=cross, full version

We describe the cross-classified DSEM as it is the most general
model, however ....
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DSEM model

Cross-classified DSEM requires that the time scale is aligned for
all individuals - not every data set is applicable, ex. observational
studies. Time t specific random effect apply for all individuals so
time t has to mean the same thing, ex second grade.
The two-level DSEM much simpler formulation
The two-level DSEM is the most common and introductory
model for applications
The two-level DSEM can be estimated with less data, fewer
requirements for size of N and T as compared to cross-classified
DSEM, for example unbalanced designs
The two-level DSEM easier to estimate as compared to
cross-classified DSEM: much fewer number of random effects
Mplus 8 speed for two-level DSEM always acceptable, Mplus 8
speed for cross-classified DSEM: depends on the model, some
models acceptable, models with random variances or random
autoregressive parameters can be very slow
Single level model - one individual modeled separately
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DSEM model

The within level model includes latent variables and observed
variables from the previous L (lag) periods

Y1,it = ν1 +
L

∑
l=0

Λ1,lη1,i,t−l +
L

∑
l=0

RlY1,i,t−l +
L

∑
l=0

K1,lX1,i,t−l + ε1,it

η1,it = α1 +
L

∑
l=0

B1,lη1,i,t−l +
L

∑
l=0

QlY1,i,t−l +
L

∑
l=0

Γ1,lX1,i,t−l +ξ1,it.

Note that all predictors are centered i.e. Y1,i,t−l is not Yi,t−l
(covariates X are optional)
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DSEM model

The usual structural equations at level 2 and 3.

Y2,i = ν2 +Λ2η2,i + ε2,i

η2,i = α2 +B2η2,i +Γ2x2,i +ξ2,i

Y3,t = ν3 +Λ3η3,t + ε3,t

η3,t = α3 +B3η3,t +Γ3xt +ξ3,t

These include not just between parts of Yit but also observed
between level variables
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DSEM model

Random parameters on within level
intercepts
slopes
loadings
auto-regressive parameters
variances - new V8 feature available for DSEM and non-DSEM
random covariance? Only via random factor variances

We have not found an easy to interpret, random covariance
model, that is based on normally distributed random effects
which can be used in linear equations as predictors or to be
predicted by other variables
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DSEM model

Every within level random parameter s has an individual specific
part s2,i and time specific part s3,t

s = s2,i + s3,t

s2,i, s3,t are normally distributed random effects which are a part
of the between level latent variable vectors η2,i and η3,t

Random variances are special

s = Exp(s2,i + s3,t)

This way we always keep these positive
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DSEM model

The general model on the within level can now also be written
with indices i and t for all the possible random parameters

Y1,it = ν1 +
L

∑
l=0

Λ1,litη1,i,t−l +
L

∑
l=0

RlitY1,i,t−l +
L

∑
l=0

K1,litX1,i,t−l + ε1,it

η1,it = α1,it +
L

∑
l=0

B1,litη1,i,t−l +
L

∑
l=0

QlitY1,i,t−l +
L

∑
l=0

Γ1,litX1,i,t−l +ξ1,it
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DSEM model

The above model assumes conditional normality

Ordered polytomous and binary dependent variables using the
underlying Y∗ approach

Missing data: MAR likelihood based treatment via MCMC
estimation. If there is autocorrelation in the data the missing data
will be imputed from the neighbouring observations rather than
from the average for the person! Note that standard econometrics
methodology even for single level models does not include
missing data. Even for single level data with missing
observations this is new.
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Residual DSEM model (available in future Mplus release)

No change in the between level model. The within level model further
splits the autoregressive and the structural part

Y1,it = Y0,it + Ŷ1,it

η1,it = η0,it + η̂1,it

The variables Y0,it and η0,it represent the linear predictor part (no
random element)

The variables Ŷ1,it and η̂1,it represent the auto-regressive part and
can be thought of as being the residuals
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Residual DSEM model

The linear predictor model for Y0,it and η0,it

Y0,it = ν1 +
L

∑
l=0

K1,litX1,i,t−l

η0,it = α1,it +
L

∑
l=0

Γ1,litX1,i,t−l

The auto-regressive model for Ŷ1,it and η̂1,it

Ŷ1,it =
L

∑
l=0

Λ1,litη̂1,i,t−l +
L

∑
l=0

RlitŶ1,i,t−l + ε1,it

η̂1,it =
L

∑
l=0

B1,litη̂1,i,t−l +
L

∑
l=0

QlitŶ1,i,t−l +ξ1,it
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DSEM Initial Conditions

At time t = 1, ...,L the DSEM model uses predictors with
negative time indices such as ηi,t=0, ηi,t=−1, Y1,i,t=0, Y1,i,t=−1,
Xi,t=0, Xi,t=−1. We treat these as auxiliary parameters with their
own prior.

If sequences are long such as T > 50 the prior does not affect the
results. For smaller time-series the priors may have minor effect.

Mplus implements 2 options

A. Mplus default: automatic priors, in the first 100 burnin
MCMC iterations we update the priors from the sample statistics
of ηit, Y1,it, or Xi,t, then we discard those 100 MCMC iteration,
and retain the constructed priors. Works quite well even for
small T .
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DSEM Initial Conditions

B. Specify a normal prior for these auxiliary parameters in model
prior. Difficult to use in practice especially when variables are
not standardized.
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DSEM Estimation

MCMC with Gibbs sampler. All latent variables, missing values,
initial conditions, random effects and model parameters, i.e., all
unknown quantities are placed in one of 13 blocks:

B1: Y2,i
B2: All random slopes s2,i
B3: Y3,t
B4: All random slopes s3,t
B5: Other latent variables η2,i and η3,t
B6: Latent variables η1,it, including initial conditions where t ≤ 0
B7: Missing variables Yit
B8: Initial conditions Y1,it and X1,it for t ≤ 0
B9: Threshold parameters for all categorical variables θ3
B10: Underlying variables Y∗it for all categorical variables
B11: Non-random intercepts, slope and loadings parameters θ1
B12: Non-random variance, covariance and correlation
parameters θ2
B13: Random variance parameters
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DSEM Estimation

Determine each block conditional distribution, given all other
blocks and the data

Update (generate new values for) each block from that
conditional distribution

Repeat cycling between the blocks until convergence and use the
generated values as the posterior distribution, point estimates, SE

Mplus mini-max strategy for block formation: minimize the
number of block while keeping conditional distributions explicit,
i.e., maximizing the blocks. Each block is further split into the
sub-blocks that are conditionally independent and update these
separately. Strategy for most efficient computation and mixing.
Blocks 3,6,7 sequentially updated.

Bayes estimation inheritance: DSEM algorithm is an extension
of Mplus 7.4, i.e., not developed from scratch.

All conditional distribution are described in the DSEM paper
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DIC

DIC can be used to compare DSEM models. Implemented for
models with all continuous dependent variable (no categorical).

D(θ) =−2log(p(Y|θ))

pD = D̄−D(θ̄)

DIC = D(θ̄)+2pD

Despite the clear definition with the above formulas, there is
substantial variation in what DIC actually is. The source of the
variation is the definition of θ , and if it includes the latent
variables or not.
Different definitions of DIC are not comparable. You can
compare only if they are using the same likelihood [Y|θ ]
DIC most likely can not be used to compare models if the two
models use different θ
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DIC

In DSEM the following are used in the θ vector in addition to all
model parameters

Y2,i and all random effects s2,i
Y3,t and all random effects s3,t
Initial conditions
Latent variables η1,it if their lagged variables are used in the
model
Missing variables Yit if their lagged variable is used in the model

To compare two models with DIC all you need to verify is that θ

between the two models is ”the same”. Random effect with zero
variance is OK.
This list makes easy the computation of [Y|θ ]
pD - estimated number of parameters should generally be near
the size of the vector θ , i.e., should be near the count of the
above list
In DSEM pD is large and needs extra long MCMC sequence for
stable estimate
ARMA(1,1) model not comparable to AR(1) with DIC for V8.
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Model fit evaluation based on comparing sample and model
estimated statistics

Assuming stationarity of the autoregressive part of the DSEM
model we compute subject specific model estimated mean,
variances, autocorrelations of lag L. These can be compared to
their sample counterparts.

Model fit evaluation using MSE and correlation between sample
v.s. model estimated. For example, means.

R = Cor(µi,Yi∗)

MSE =
N

∑
i=1

(µi−Yi∗)
2/N.

The correlation is available in the Mplus plot utilities. MSE
requires saving the plot data and computing it separately.

Tihomir Asparouhov, Bengt Muthén and Ellen Hamaker Part 4 Muthén & Muthén 20/ 59



Time-series model estimated means, variance, correlations
using Yule-Walker assuming stationarity

Zt = µ +
L

∑
l=1

AlZt−l +ζ

Σ = Var(ζ )

E(Zt) =

(
I−

L

∑
l=1

Al

)−1

µ

Γj = Cov(Zt,Zt−j)


Γ0 ΓT

1 ΓT
2 ... ΓT
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Γ1 Γ0 ΓT
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DSEM output options

residual option: model estimated means, variance and
autocorrelations for the observed variables
residual(cluster) option: model estimated and cluster/subject
specific means, variance and autocorrelations for the observed
variables
tech4 and tech4(cluster) options: model estimated quantities for
the latent variables
stand and stand(cluster) options: standardized model estimates
and standardized cluster specific model estimates
The option with (cluster) also provides the average across cluster
quantities for the cluster specific estimates - applies for
residual/tech4/stand
The (cluster) option new also for none-DSEM models
All of the above are based on Yule-Walker and require
stationarity of the autoregressive part of the model
HTML clickable output
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DSEM output example
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DSEM output example: htm output

Tihomir Asparouhov, Bengt Muthén and Ellen Hamaker Part 4 Muthén & Muthén 24/ 59



DSEM output example: standardized results
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DSEM output example: cluster specific standardized results
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DSEM plots: plot menu
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DSEM plots: plotting model estimated v.s. observed cluster
specific statistic
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DSEM plots: plotting model estimated v.s. observed cluster
specific variances
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DSEM plots: cluster specific plots
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DSEM plots: subject specific partial autocorrelation
function
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DSEM plots: subject specific time series plots
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Simulation studies: Centering

Simulation example using two-level random autoregressive
AR(1) model

Mplus latent centering

Yit = µi + ri(Yi,t−1−µi)+ξit.

Observed centering

Yit = µi + ri(Yi,t−1−Yi∗)+ξit

Uncentered
Yit = µi + riYi,t−1 +ξit
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Centering

Nickell, S. (1981). Biases in dynamic models with fixed effects.
Econometrica: Journal of the Econometric Society, 1417-1426.

Hamaker E.L. and Grasman R.P.P.P. (2015) To center or not to
center? Investigating inertia with a multilevel autoregressive
model. Front. Psychol., 5, 1492.

Ludtke, O., Marsh, H.W., Robitzsch, A., Trautwein, U.,
Asparouhov, T., & Muthén, B. (2008). The multilevel latent
covariate model: A new, more reliable approach to group-level
effects in contextual studies. Psychological Methods,13,203-29.

Asparouhov, T. & Muthén, B. (2006). Constructing covariates in
multilevel regression. Mplus Web Notes: No. 11.
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Centering

Ludtke bias is for two-level models, involves 2 different
variables, and the bias is on the between

(βw−βb)ψw

Tψb +ψw

Nickell bias is for DSEM, involves 1 variable, and the bias is on
the within

− 1+ r
T−1

Both stem from not accounting for the error in the sample mean
estimate of the mean

Both disappear when cluster sample size T increases

Both can appear in parallel in the same example
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Centering

Note that observed centering or uncentered do not exist in case
there is missing data - listwise deletion is not an option

Hamaker and Grasman (2015) show that the uncentered method
eliminates Nickell’s bias. It does create other bias however, ex
for σ11

Hamaker and Grasman (2015) show that using the true mean to
center still creates bias
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Centering - results

Table: Nickell’s bias for r=0.3

T N Latent centering Observed centering Nickell’s formula
10 100 0.025 -0.140 -0.144
20 50 0.006 -0.070 -0.068
30 30 0.008 -0.042 -0.045
50 50 0.000 -0.029 -0.027
100 100 -0.001 -0.014 -0.013

Nickell’s formula is very accurate. Latent centering eliminates
Nickell’s bias.
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Centering - results

Table: Bias for Var(µi) = 3

T N latent centering Uncentered
10 100 -0.015 -1.637
20 50 0.217 -1.483
30 30 0.645 -1.256
50 50 0.378 -1.361
100 100 0.096 -1.508

For latent centering bias on Var(µi) as N increases (or with using
weakly informative priors). For the uncentered method in will not
disappear even asymptotically as the fundamentals of the model are
wrong.
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Centering - comparison of latent centering and uncentered

Mplus latent centering

Yit = µi + ri(Yi,t−1−µi)+ξit.

Yit = µi(1− ri)+ riYi,t−1 +ξit.

Uncentered
Yit = µi + riYi,t−1 +ξit

The uncentered and the latent centering are reparameterizations
of each other. To obtain the correct µi we need to divide by 1− ri

The latent centering has the advantage of obtaining µi directly
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Centering - comparison of latent centering and uncentered
with subject specific covariate X

Mplus latent centering

Yit = µi +βXi + ri(Yi,t−1−µi−βXi)+ξit.

Yit = µi(1− ri)+β (1− ri)Xi + riYi,t−1 +ξit.

Uncentered
Yit = µi +βXi + riYi,t−1 +ξit

The uncentered and the latent centering are NOT
reparameterizations of each other as the Xi effect is random in
the latent centering.
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Subject specific variance

Jongerling J, Laurenceau J.P., Hamaker E. (2015). A Multilevel
AR(1) Model: Allowing for Inter-Individual Differences in
Trait-Scores, Inertia, and Innovation Variance. Multivariate
Behav Res. 50(3), 334-349.

In this paper it is shown that if subject specific variances are
ignored - the structural parameters can be slightly biased. This
does not happen in regular two-level models.

Yit = µi + εit

εit = riεi,t−1 +ξit

vi = Log(Var(ξit))

The bias depends on how high the correlation is between ri and vi
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Subject specific variance -results

Table: Comparing the estimation with random variance and without random
variance (invariant variance): Bias(coverage)

parameter Cov(ri,vi) random variance invariant variance
E(ri) high .001(.97) .040(.35)
E(ri) medium .001(.98) .028(.65)
E(ri) low .001(.97) .017(.83)
E(ri) none .001(.96) .007(.92)

Var(ri) high .001(.97) -.012(.47)
Var(ri) medium .001(.93) -.007(.78)
Var(ri) low .001(.93) -.004(.88)
Var(ri) none .001(.94) -.001(.91)
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Subject specific variance - results

More detailed method for evaluation of model estimation

SMSE =
√
(1/N)∑

i
(r̂i− ri)2

Cov(ri,vi) random variance invariant variance
high .255 .346

medium .293 .329
low .300 .316
none .300 .310
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Subject specific variance - conclusions

Looking at the parameter estimates alone may not be enough
when comparing estimation methods. Distortion of structural
parameters due to ignoring subject specific variance is not simple
shift in the autoregressive parameter. Error is actually doubled
when looking at the random effects SMSE.

Even in standard two-level models, using cluster specific
variance is important if we use SMSE as a criterion

Subject specific variance extracts more information from the
data, yields more accurate estimation

More simulations are needed to evaluate this issue in multivariate
setting - study the effect of subject specific covariance.
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Subject-specific times of observations

The basic model assumes that observations are taken at equally
spaced time.

If times are subject-specific we slice the time grid in sufficiently
refined grid and enter missing data for the times where
observation is not taken.

For example if several observations are taken during the day, and
at different times for each individual, we slice the day in 24 hour
periods and place the corresponding observations in the hour
slots.

Data from the next simulation looks like this for day 1 for
individual 1.
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Subject-specific times of observations: subject 1 day 1
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Subject-specific times of observations - simulation study
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Table: Two-level DAFS AR(1) with subject-specific times - simulation study
results

percentage missing φ̂ (coverage) convergence comp time per
values φ = 0.4 rate replication in min

.80 .39(.95) 100% 1.5

.85 .39(.90) 95% 2.5

.90 .35(.46) 55% 10

.95 .34(.55) 55% 18

Quality of the estimation deteriorates as the amount of inserted
missing data exceeds 90%. Note that this missing data is imputed by
the MCMC estimation, leading to large amount of imputed quantities.
It works well with 80% and 85% missing data.
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Subject-specific times of observations

Information contained in the unequal distances in the
observations would be extracted well using the 80% to 85%
missing values, eliminating the need for continuous time
modeling

Tinterval command will setup the missing data for you, given the
precise times of observations and an approximation value δ

Tinterval = t(δ ) means that the continuous time variable t is
replaced by the nearest integer [t/δ ]. There are complications if
the nearest integers is the same for two or more different
observations times t. Special algorithm to resolve this issue.
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Subject-specific times of observations

Split the time axis in bins of size δ . Then place each observation
in the correct bin. Repeat these steps until each bin contains no
more than 1 observation

find a bin with more than 1 observations
locate the nearest empty bin (look up or down)
move one of the extra observation to fill in the the empty bin but
keep order of the observations so the extra observation bumps the
rest of the observations towards the empty bin

Mplus will warn you if the shifting process yields a discrepancy
between t/δ and new time bigger than 5. Lower the δ value to
resolve this.

Fill in the remaining bins with missing values and set the time as
T=1,2, ... and T is the bin number.

Other algorithms are possible. Make your own discritzation
algorithm and use Mplus with integer times.
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Tinterval command comparison

Tinterval(0.05) v.s. Tinterval(0.08), Blue=true times, Red=Mplus
generated times
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Simulation study with varying δ

Table: Two-level AR(1) with subject-specific times. Estimates and coverage
for φ and amount of missing data m2 during the analysis, tinterval=δ

m δ φ = 0.8 m2

.80 1 .80(.91) .80

.80 2 .81(.31) .58

.80 3 .83(.00) .38

.80 4 .84(.00) .18

.80 5 .86(.00) .05

.80 10 .92(.00) .00

.95 1 .80(.85) .95

.95 2 .81(.57) .90

.95 3 .82(.20) .85

.95 4 .83(.00) .80

.95 5 .84(.00) .74

.95 10 .88(.00) .49
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Subject-specific times of observations

Tinterval command is not perfect. It is an approximate solution
for the continuous process.

The main question is how to choose δ . Three considerations:

Choose scale that is natural to help with interpretation of model
and results - hour, day, week
Choose scale that does not produce more than 90% missing data,
around 80% unless lower is appropriate
Smaller values yield better approximations but also more missing
data
TVEM models / Cross-classified DSEM: small δ will lead to too
many time specific random effects
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Three-level AR(1) model

Yidt is the observed value for individual i on day d at time t

Yidt = µ +Yi +Eit +Fid +Gidt

Gidt = ρ1Gid,t−1 + ε1,idt

Fid = ρ2Fi,d−1 + ε2,id

Two type of autocorrelation parameter, ρ1 is the autocorrelation
within the day, ρ2 is the autocorrelation between the days

Maybe take out Eit?

Model has 7 parameters: 4 variances, 2 autocorrelations, 1
intercept

Data consists of 100 individuals, observed for 100 days, with 10
observations per day
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Three-level AR(1) model - simulation study

Tihomir Asparouhov, Bengt Muthén and Ellen Hamaker Part 4 Muthén & Muthén 56/ 59



Three-level AR(1) model - simulation study results
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Three-level AR(1) model with subject-specific times of
observations

Using 50% missing data. Approximately 5 randomly spaced
times of observations per day

5 observations a bit too low to obtain good autocorrelation
parameter. Sequence is too short? Mixing estimation?

Add the commands:
missing=y1-y10;
model missing: [y1-y10*0];
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Three-level AR(1) model with subject-specific times of
observations - simulation results
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