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Abstract

This paper demonstrates that the regular LTA model is unnecessarily restrictive

and that an alternative model is readily available that typically fits the data

much better, leads to better estimates of the transition probabilities, and extracts

new information from the data. By allowing random intercept variation in the

model, between-subject variation is separated from the within-subject latent class

transitions over time allowing a clearer interpretation of the data. Analysis of two

examples from the literature demonstrates the advantages of random intercept

LTA. Model variations include Mover-Stayer analysis, measurement invariance

analysis, and analysis with covariates.

Key words: Hidden Markov, mixtures, transition probabilities, latent trait-

state, measurement non-invariance.

Translational abstract

Modeling with latent classes over time is a common approach in Psychology when

studying the development of for example mental states of happiness or depression

over time. Latent transition analysis is a well-known approach for this purpose.

A better statistical approach is presented here which represents the data better

and more correctly assesses change and stability over time. Interpretations of

psychological change processes are changed by this new methodology. Earlier

LTA findings need to be revisited.
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1 Introduction

Latent transition analysis (LTA) is frequently used in longitudinal studies to

characterize changes over time in latent discrete states, also referred to as latent

classes (see, e.g. Graham et al., 1991; Collins et al. 1992; Mooijaart, 1998;

Reboussin et al. 1998; Langeheine & van de Pol, 2002; Kaplan, 2008; Lanza &

Collins, 2008; and Collins & Lanza, 2010). The regular LTA model is, however,

unnecessarily restrictive and an alternative model is readily available that typically

fits the data much better, leads to better estimates of the transition probabilities,

and extracts new information from the data.

The regular LTA is represented as a single-level, wide-format model. The

alternative LTA model draws on the multilevel modeling idea of separating

between-subject variation from within-subject variation. From a multilevel

perspective, viewing time as the within level and subject as the between level, the

latent class transitions are represented on the within level whereas the between

level captures the variability across subjects. Essential parts of this multilevel

idea, however, can be represented in a single-level model in line with the regular

LTA model. Such an alternative single-level LTA model will be referred to as

random intercept LTA (RI-LTA) because a key focus is allowing for variation

across subjects represented by random intercepts.

The paper is structured as follows. Section 2 describes the regular single-level

LTA model and gives a critique of it. Section 3 proposes the RI-LTA model.

Section 4 places the proposed model in the context of other multilevel models

with multiple indicators of latent variables. Section 5 provides a Monte Carlo

study to investigate estimation of the new model. Section 6 shows applications of
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Figure 1: LTA for 1 binary item at 5 time points (squares denote observed variables
and circles latent variables).
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Figure 2: LTA for 2 binary items at 3 time points
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RI-LTA to two data sets. Section 7 concludes with a discussion of computational

aspects, other model variations, and the need for further research.

2 Regular LTA

Figure 1 and Figure 2 show model diagrams for two types of regular LTA models.

In Figure 1 there is one binary indicator measured at five time points and in

Figure 2 there are two binary indicators measured at three time points.

The regular LTA model has three parts. (1) The part for the latent class
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variable Ct at the first time point describes the initial status probabilities

for the time 1 latent classes, P (C1). (2) The transition part describes the

conditional probabilities of the latent class variable Ct at time t given the

latent classes at time t-1, P (C2|C1), P (C3|C2), etc. Note that regular LTA

allows only lag-1 relationships among the latent class variables, that is, Ct is

influenced only by Ct−1, not C at any earlier time point. This is known as the

Markov property. Stationarity, that is, invariance across time of the transition

probabilities, is sometimes imposed. (3) The measurement part specifies the

conditional probabilities P (Ut|Ct) of the categorical latent class indicators Ut given

the latent classes of Ct where the different latent class indicators Ut at time point t

are independent conditioned on their respective latent class variable Ct. The latent

class indicators Ut are typically assumed to be influenced only by Ct, the latent

class variable at the same time point. Furthermore, measurement invariance for

all latent class indicators is typically applied across all the time points. The model

implies that the correlations across time for the latent class indicators are fully

explained by the correlations among the latent class variables. Regular LTA is

typically estimated using maximum-likelihood (ML) although Bayesian estimation

can also be used.

Consider the parameters of the model represented in Figure 1. With 2 latent

classes, this model has 5 parameters for the stationary version and 11 for the

non-stationary version: 1 initial status parameter P (C1 = 1) with 2 transition

parameters for the stationary model; P (Ct = 1|Ct−1 = 1), P (Ct = 1|Ct−1 = 2),

and with 8 transition parameters for the non-stationary model, obtained as 2 times

the 4 transitions; and 2 measurement parameters corresponding to the conditional

probabilities P (Ut = 1|Ct = 1) and P (Ut = 1|Ct = 2). The 5 binary outcomes
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contribute 25 − 1 = 31 pieces of information, that is, the unrestricted model for

the 5 binary outcomes has 25 − 1 = 31 parameters. With a large enough sample

and a small enough total number of latent class indicators, it is possible to test fit

between the observed and estimated frequency tables. This uses a likelihood-ratio

or a Pearson chi-square test of the LTA model against the unrestricted model

with degrees of freedom equal to the difference in the number of parameters for

the unrestricted model and the LTA model. In other cases, model fit has to be

assessed in more limited ways, e.g. via univariate and bivariate marginal frequency

tables. The decision on the number of latent classes to use is typically based on

BIC (Schwarz, 1978).

As an example, Table 1 gives the estimates for a life satisfaction example

of Langeheine and van de Pol (2002) which corresponds to the Figure 1 model.

Survey respondents were asked “How satisfied are you on the whole with your

life” with answer categories unsatisfied and satisified. A two-class model was

considered with classes labeled the same way as the answer categories.

The top part of the table shows the measurement parameters as the con-

ditional probabilities of an unsatisfied/satisfied answer given membership in

an unsatisfied/satisfied latent class. Each row shows the probabilities for the

observed responses for the two latent classes. For each row, the large difference

in these probabilities shows that the latent class indicators clearly discriminate

between the two latent classes. The off-diagonal probabilities can be seen in the

context of ”measurement error” in that membership in a certain class does not

necessitate an answer in the corresponding response category (Wiggins, 1973) but

the probabilities are less than one. This discrepancy between latent and observed

categories is a key feature of LTA and has given rise to the name hidden Markov
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modeling (see, e.g., MacDonald & Zucchini, 1997).

The bottom parts of the table show estimates for the latent classes. The

latent class probabilities at the initial time point are estimated as 0.395 for the

unsatisfied class and 0.605 for the satisfied class. The probability of staying in the

same class between time 1 and time 2 is high, estimated as 1.000 and 0.874 for

the unsatisfied and satisfied class, respectively. The latent class probabilities at

the second time point are obtained as follows from the latent class probabilities

at the first time point and the transition probabilities.

Unsatisfied : 0.395× 1.000 + 0.605× 0.126 = 0.471 (1)

Satisfied : 0.605× 0.874 + 0.395× 0.000 = 0.529. (2)

The transition probabilities for the other three transitions are of similar

magnitude (although a test rejects invariance/stationarity).

2.1 A critique of the regular LTA model

The regular LTA model is analyzed in a single-level, wide format. It can,

however, be viewed as a two-level model where time represents the within level

(level 1) and subject represents the between level (level 2). In line with general

two-level modeling, it is therefore important to separate between-level variation

across subjects from within-level, across-time latent transitions. It is essential

to remove between-subject differences that are stable over time from the within-

subject process which is of primary interest. This general idea appears in several

contexts with continuous observed and latent variables. For example, latent

trait-state modeling (see, e.g., Kenny & Zautra, 1995; Cole et al., 2005; Eid
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Table 1: LTA estimates for the Life satisfaction example

Measurement probabilities

Observed Latent class
response Unsatisfied Satisfied

Unsatisfied 0.855 0.163
Satisfied 0.145 0.837

Time 1 latent class probabilities

Unsatisfied: 0.395 Satisfied: 0.605

Transition probabilities for Time 1 (rows) to Time 2 (columns)

Unsatisfied Satisfied

Unsatisfied 1.000 0.000
Satisfied 0.126 0.874
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et al., 2017) refers to the stable between-subject differences as a latent trait,

a continuous latent variable. A related example is cross-lagged panel modeling

(CLPM) where Hamaker et al. (2015) strongly advocates for separating out the

stable between-subject differences referred to as random intercepts so that the

cross-lagged relationships across time can be studied without interference of those

between-subject differences. This is named the RI-CLPM approach and is the

inspiration for the current paper. The idea of separating trait and states can

be clearly seen in the Kenny-Zautra model shown in Figure 3. The latent trait

is referred to as “T” and the latent states as “S” while the observed outcomes

are denoted “Y ” (other literature refers to this modeling as latent state-trait and

defines states as the sum of the trait and the occasion-specific latent variables;

see, e.g., Eid & Langeheine, 1999). Each observed outcome is the sum of trait,

state, and a residual seen as measurement error. The key feature is that the latent

trait influences the observed outcomes and not the latent states. In this way, the

states are free of trait influence which means that the relationships between the

states are not affected by stable differences between subjects.

The aim of the current paper is similar to the literature just cited, building

on the idea of a stable trait in Kenny and Zautra (1995) and extracting between-

subject variation in Hamaker et al. (2015). These two articles discuss continuous

outcomes where you can split each outcome into a between and a within

component of variation. This paper considers categorical variables where this

split is more challenging. The split of the variation in the continuous-outcome

case, however, is the same as using random intercept modeling and it is the

random intercept idea that connects the continuous and categorical cases. The

random intercept idea is common in the statistics and econometrics literature as
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Figure 3: Kenny & Zautra (1995) latent trait-state model (t represents a latent
trait variable, y1-y5 represent observed variables, s1-s5 represent continuous latent
state variables).
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a general way of representing unobserved heterogeneity (see, e.g., Fitzmaurice

et al., 2011; Wooldridge, 2002). For categorical latent and observed variables,

Eid and Langeheine (1999; 2003) consider latent trait-state modeling with a lag-

1 structure for occasion-specific latent class variables which together with latent

class variable traits contribute to the categorical outcomes. This is a type of latent

transition model that uses a random intercept notion although not portrayed as

such. Judging from the last two decades of applied LTA articles, however, the

Eid-Langeheine model appears to have been overlooked and not adopted in latent

transition analysis practice but will be one of the models studied here.

This paper focuses on the following two key aspects. First, it is of interest

to study how much the latent transition probabilities are distorted in regular

LTA when stable between-subject differences are ignored. Second, because LTA

typically considers several indicators of the latent class variables, it is important
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to correctly assess the measurement quality of the indicators.

To summarize, because regular LTA does not separate out stable between-

subject differences, it suffers from the risk of distorted estimates of the model’s

parameters, especially the transition probabilites. The alternative of random

intercept LTA aims to avoid this distortion while staying in the single-level, wide

analysis format.

3 Random intercept LTA (RI-LTA)

3.1 Continuous random intercept

Figure 4 shows two versions of continuous random intercept LTA (RI-LTA) for

2 binary latent class indicators measured at 3 time points. Here, f1, f2, and

f are continuous latent variables (factors) where the loadings λ capture their

different influence on the 2 latent class indicators. Each indicator’s loading is held

equal across time. In the top part of Figure 4, each latent class indicator has its

own random intercept, f1, and f2, whereas in the bottom part of the figure, the

indicators share the same random intercept factor f that has different effects on

the two indicators. With many indicators, allowing each indicator to have its own

random intercept makes the model unnecessarily complex and computationally

cumbersome. This is discussed further in Section 4.

The focus of the paper is the proposed single-factor model in the bottom part

of Figure 4. It is in the spirit of the Kenny-Zautra latent trait-state model for

continuous observed and latent variables shown in Figure 3. Between-subject

variation in the u outcomes is represented by a random interept factor and the
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c1 − c3 model part represents the within-subject variation across time.

Formally presented, a single-factor continuous random intercept model version

expressed in logit terms uses the following parameterization for a binary latent

class indicator Urit for indicator r, subject i, and time t measuring the latent class

variable Cit for subject i and time t for class j,

logit[P (Urit = 1|Cit = j, fi)] = αrj + λr fi, (3)

where αrj represent parameters that vary over latent class indicators and latent

classes and fi represent a subject-specific random intercept factor that does not

vary across time point with factor loadings λr that vary across the latent class

indicators. The factor is assumed to be distributed as N(0, 1). Alternatively, each

latent class indicator can have its own factor fri as in the top part of Figure 4 but

this extension did not improve fit in the examples studied and the extension is not

considered further here. The single random intercept factor version for R latent

class indicators per time point adds only R parameters to regular LTA namely

the factor loadings λr for each latent class indicator held equal across time. Note

that in line with the concept of a random intercept, the factor loadings should

not be different across time points because then the intercept factor does not

reflect stable (time-invariant) individual differences (in contrast, latent trait-state

modeling sometimes let loadings for traits be different across time). For simplicity,

the factor loadings are also not allowed to change across the latent classes.

The factor fi in equation (3) can be viewed as the trait of subject i, that is, a

stable, time-invariant tendency where the λ factor loadings allow different effects

of this trait on the different latent class indicators. For example, continuing the
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Figure 4: RI-LTA for 2 binary latent class indicators at 3 time points with a
random intercept: 2 continuous random intercept factors versus 1 (f denotes
factors, u denotes observed binary variables, and c denotes latent class variables).
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life satisfaction example and assuming a positive factor loading, a subject with

a higher positive factor value has higher trait satisfaction and a subject with a

higher negative factor value has lower trait satisfaction. If U is a binary latent

class indicator where U = 1 represents satisfaction, a higher positive factor value

means that the probability is higher of answering in the satisfied category and

a higher negative value means that the probability is higher of answering in the

unsatisfied category. In this way, large positive or negative factor values capture

a tendency to not transition over time. This also implies that analysis using

regular LTA of data generated by a RI-LTA model will tend to over-estimate the

probabilities of staying in the same class.

Note also that the factor effect is specified to be the same for all latent classes

which means that if there are two classes representing unsatisfied versus satisfied,

the probability of answering in the satisfied category is increased for both classes.

This results in the latent class indicator being somewhat less discriminating

between the two classes in the sense that the U = 1 probabilities for the two

classes are closer to each other. Typically, this effect is small and at the factor

mean of zero, there is no such effect. Nevertheless, if the model fits better than

regular LTA, this implies that regular LTA gives an inflated view of the class

separation.

In regular LTA, the measurement part of the model considers the probability

of a latent class indicator conditional on latent class, P (Urt = 1|Ct = j). For

RI-LTA, this probability cannot be expressed in an explicit form but is obtained

from equation (3) by integration over the factor. It is, however, possible to use
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the approximate logit to probit transformation obtained as

P (U = 1|C = j) = Φ[αj/
√

(3.2865 + λ2 V (f)], (4)

where Φ is the standard normal distribution function and 3.2865 = π2/3, the

variance of the logistic density1. Setting the metric of the factor as V (f) = 1, this

shows that the larger the factor loading λ, the smaller the argument of Φ, that is,

the closer the probability is to 0.5. This is another way to look at the lower latent

class discrimination when the continuous random intercept factor is called for.

As equation (3) shows, different response probabilities are obtained for subjects

with different fi values. Because of this, the RI-LTA model allows for a certain

form of measurement non-invariance across subjects (see also the discussion of

related multilevel models in Section 4). In contrast, regular LTA implicitly

imposes measurement invariance across subjects and this may be a too strict

assumption.

3.2 Binary random intercept

Consider next the version of RI-LTA that has a binary random intercept

represented by a latent class variable. This model also corresponds to the bottom

part of Figure 4 but where f is a binary latent variable, here referred to as I. A

simple model version expressed in logit terms uses the following parameterization

for a binary latent class indicator Urt for indicator r, time t, measuring the latent

class variable Ct with latent class j and the single random intercept latent class

1Other transformations are also used in the literature, e.g. replacing the constant 3.2865 by
1.72. It is also possible to use a probit link in which case the Φ approximation using the constant
1 is exact.
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variable I with latent class k ,

logit[P (Urt = 1|Ct = j, I = k)] = αr + βrj + γrk, (5)

where βr1 = 0, γr1 = 0 for identification purposes. Here, αr is a parameter

representing the effect of the latent class indicator r, βrj is a parameter

representing the effect of the latent class indicator r in combination with the

latent class j of C, and γrk is a parameter representing the effect of the latent

class indicator r in combination with the latent class k of I. An interaction term

for the combination of j and k classes is omitted to keep the model parsimonious.

As an example for 3 C classes and 2 I classes, the logits for a binary latent class

indicator Urt at time t are

logit[P (Urt = 1|Ct = 1, I = 1)] = αr (6)

logit[P (Urt = 1|Ct = 2, I = 1)] = αr + βr2, (7)

logit[P (Urt = 1|Ct = 3, I = 1)] = αr + βr3, (8)

logit[P (Urt = 1|Ct = 1, I = 2)] = αr + γr2, (9)

logit[P (Urt = 1|Ct = 2, I = 2)] = αr + βr2 + γr2, (10)

logit[P (Urt = 1|Ct = 3, I = 2)] = αr + βr3 + γr2. (11)

It is seen that the 6 logits are expressed in terms of 4 parameters. The parameters

do not change over time. For the case of R latent class indicators per time point,

J latent classes for C, and only 2 latent classes for I, this binary random intercept

model has R + R(J − 1) + R + 1 parameters beyond those of the C part of the

model: R α parameters, R(J − 1) β parameters, R γ parameters, and 1 latent
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class parameter for I. The regular LTA model has R J parameters beyond those

of the C part of the model. This means that R + 1 parameters are added to

the regular LTA model when using 2 latent classes for I. This is irrespective of

the number of response categories for U due to assuming a common shift for all

response categories. Although not portrayed as a random intercept model, this

is the parameterization used in the Eid and Langeheine (1999, 2003) studies of

longitudinal mixture models.

3.3 Estimation and modeling considerations

Both the continuous and the binary random intercept models involve more heavy

computations than regular LTA. Using maximum-likelihood estimation, the single

continuous random intercept version leads to computations with one dimension

of numerical integration. The binary random intercept version does not involve

numerical integration but leads to one more latent class variable than regular LTA.

Both the continuous and binary random intercept model versions of RI-LTA can

be estimated using Mplus (Muthén & Muthén, 1998-2017). This draws on the

general modeling framework described e.g. in Muthén and Asparouhov (2009).

The analyses in this paper use maximum-likelihood estimation. Models cannot

be compared using regular likelihood-ratio chi-square difference testing when they

differ in the number of latent classes and/or when one model contains a continuous

random intercept factor and the other does not. Also, due to having many cells in

the frequency table for all the categorical outcomes, frequency table chi-square is

not possible due to too many low frequency cells. The choice of model will instead
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be based on BIC (Schwarz, 1978) where smaller values are better,

BIC = −2 loglikelihood+ p ln N, (12)

where p is the number of parameters, ln is the natural (e) log, and N is the sample

size. BIC was found to perform well in Nylund et al. (2007) for related models with

the large sample sizes usually encountered in latent transition analysis settings.

It should be noted that the regular LTA model is a special case of the RI-LTA

model. In situations where there are no stable between-subject differences, the

continuous random intercept model obtains zero factor loadings while the binary

random intercept model does not find a latent intercept class.

It is clear from Figure 4 that the random intercept variable allows the indicators

to correlate across time beyond what is captured by the latent class variables

Ct being correlated across time in the latent transition part of the model. The

indicator correlation across time is not a typical auto-regressive feature in that the

correlation does not diminish with increasing time distance but is constant in line

with representing a stable, time-constant, between-subject difference. Because it

accounts for some of the correlation across time, it is clear that introducing this

random intercept will affect the estimates of the latent transition probabilities,

especially with respect to staying in the same latent class over time, that is, the

diagonals of the transition probability matrices.

To some extent, random intercept modeling also relaxes the latent class

assumption of conditional independence among the latent class indicators at a

given time point. In this way, the continuous random intercept version is related to

factor mixture modeling (see, e.g., Lubke & Muthén, 2005, Muthén & Asparouhov,
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2006). The random intercept model does not, however, specify a factor for each

time point but a factor that is in common for all time points. Using a factor

mixture model for each time point as the measurement model may reduce the

number of latent classes at each time point but is unlikely to reduce the number

of latent classes in the analysis of all time points due to a one-factor construct

being more restrictive than multiple latent classes in how across-time correlation

is captured.

Unobserved heterogeneity in the form of between-subject variation in the latent

class variable part of the model can be represented by adding a binary latent class

variable where the two classes have different transition matrices. For each class,

transitions can be viewed as a within-subject process using an RI-LTA model. The

Mover-Stayer model (see, e.g. Langeheine & van der Pol, 2002) is an example of

this where a latent class of Stayers is specified to stay in their time 1 latent

class membership throughout all time points with probability 1. This attempt

at capturing between-subject heterogeneity is in line with the random intercept

theme of this paper, here applied to the latent class part of the model. The Mover-

Stayer latent class variable can also be regressed on covariates. In the examples of

Section 6, regular LTA with a Mover-Stayer addition is compared to the RI-LTA

models with and without a Mover-Stayer addition.

Observed between-subject heterogeneity can be studied using groups and

covariates and is discussed next.
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3.4 Groups and covariates

3.4.1 Regular LTA

In regular LTA, it is possible to study group differences in the model parameters in

line with Clogg and Goodman (1985) who presented an approach to a simultanous

analysis of several groups. A strength of the multiple-group approach is its

generality which allows any parameter to be equal or different across the groups.

An example is the exploration of gender differences in the Lanza and Collins (2008)

dating and sexual risk behavior study. The multiple-group approach can be used

to test for measurement invariance across groups, that is, equality across time

of latent class indicator probabilities conditional on latent class. An alternative

approach is to let covariates representing subject characteristics such as gender,

ethnicity, ses, and age influence the latent class indicators directly to thereby

change their probabilities.

Covariates can also influence the latent class variables as well as their transition

probabilities. This is carried out using the logit parameterizations shown in

Table 2 for two latent class variables C1 and C2 where C2 is regressed on C1 and

a covariate X. The regression is expressed as a multinomial logistic regression

where

P (C2 = c|C1 = k,X = x) = eαc+βck+γckx/
J∑
j=1

eαj+βjk+γjkx, (13)

with αJ = 0, βJk = 0, βc,J = 0, γJk = 0. Here, α represents the intercepts

for C2, β represents the regression coefficients of C2 regressed on C1, and γ

represents the regression coefficients of C2 regressed on X. This translates the
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Table 2: Logit parameterizations for C2 regressed on C1 and X: Interaction and
main effect model versions

Interaction model

C2

1 2 3

1 α1 + β11 + γ11x α2 + β21 + γ21x 0

C1 2 α1 + β12 + γ12x α2 + β22 + γ22x 0

3 α1 + γ13x α2 + γ23x 0

Main effect model

C2

1 2 3

1 α1 + β11 + γ1x α2 + β21 + γ2x 0

C1 2 α1 + β12 + γ1x α2 + β22 + γ2x 0

3 α1 + γ1x α2 + γ2x 0
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logit parameters into transition probabilities. Equation (13) model implies that

the log odds comparing a certain C2 category c to the last C2 category J , is

obtained as

log[P (C2 = c|C1 = k,X = x)/P (C2 = J |C1 = k,X = x)] = αc + βck + γck x.

(14)

Exponentation gives the odds. The log odds and odds can also be computed with

the diagonal of the transition table as the reference category showing the odds of

transitioning relative to staying in the same class.

Table 2 shows two model variations. In the most general case shown at the

top, an interaction is allowed between the X variable and the latent class variable

C1 so that the γ parameters vary across the different rows, that is the classes of

C1. Not allowing interactions but only main effects, the bottom part of the table

shows that the γ parameters describing the influence of X are held equal across

the C1 classes. In this way, α1+γ1x and α2+γ2x can be seen as intercepts that are

different for the C2 classes whereas the regressions of C2 on C1 are not affected.

3.4.2 RI-LTA

With RI-LTA, the intent is to represent between-subject variation by random

intercepts so that the relationships between the latent class variables are based on

within-subject variation only. Because a random intercept of RI-LTA represents

between-subject variation, it is therefore natural to let the random intercept have

different means across groups in a multiple-group approach or be regressed on

covariates in the covariate approach. The multiple-group approach, allowing
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for group specific transition probabilities in addition to group specific random

intercept means, is suitable for the RI-LTA purpose because within each group, it

can still be assumed that there is no between-subject variation in the relationships

among the latent class variables. The covariate approach captures observed

heterogeneity among subjects so that conditioning on the covariate values, the

relationships among the latent class variables can be seen as within-subject

relationships.

The next section places the proposed RI-LTA model in the context of other

multiple indicator models with latent variables. This section is followed by a

Monte Carlo simulation study of the proposed model. Readers more interested in

applications can proceed directly to Section 6.

4 Related models: A multilevel perspective

Because LTA can be viewed as a model with variation across time and variation

across subjects, it can be described as a two-level model. In this way, random

intercept LTA can be related to other multiple-indicator latent variable models

namely two-level factor analysis and two-level latent class analysis. This places

the proposed random intercept LTA in a broader perspective.

A key modeling choice is if the random intercepts appear for the observed

indicators of the latent variables or for the latent variables themselves. When the

two-level modeling is applied to longitudinal data, this determines if the within-

level relationships across time refer to within-level parts of the variables or to

the combination of within- and between-level parts of the variables (the whole

variables). The former approach is chosen in this paper as it gives a clearer
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representation of the data. The choice between the two modeling approaches is

discussed below. The concept of measurement non-invariance expressed as random

intercepts for the observed indicators is also emphasized.

4.1 Random intercepts in multilevel factor analysis

Consider a binary outcome Uij for subject i in cluster j which is an indicator of

a factor fij using e.g. logistic regression. A typical example is measurement of

student performance in schools. Denoting the within- and between-level factors

as fWij
and fBj

, the model can be expressed by the two equations

logit[P (Uij = 1|fWij
)] = νj + λWfWij

, (15)

νj = ν + λBfBj
+ εBj, (16)

corresponding to the within- and between-level parts of a two-level model. This is

in line with two-level regression where the intercept νj is random, varying across

schools. The fact that the intercept νj is not the same for all schools can be

seen as a type of measurement non-invariance (Jak et al. 2013, 2014; Muthén

and Asparouhov, 2018). The model is shown in Panel (a) of Figure 5 for five

factor indicators u1−u5 where in line with Muthén and Muthén (1998-2017), the

filled circles for the factor indicators on the within level show that their intercepts

are random. On the between level, the random intercepts are shown as circles

representing continuous latent variables (u in the figure corresponds to ν in (15) -

(16)). The εB residuals on the between level are left out in the figure because they

are often close to zero. Leaving them out typically has little consequence for the

rest of the model. The extraction of between-level variation ensures that using
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fW as a predictor on the within level does not confound its effect by between-level

variation.

Although the random intercept values are different for different clusters, the

clusters are assumed to belong to the same population with the same mean and

variance for the random intercepts. This view of measurement invariance/non-

invariance is discussed in Asparouhov and Muthén (2016) and Muthén and

Asparouhov (2018) and also relates to two-level modeling with random item

parameters in Item Response Theory (see, e.g., de Jong, Steenkamp, and Fox

2007; de Jong & Steenkamp, 2010; Fox 2010).

4.2 Random intercepts in multilevel latent class analysis

Latent class analysis (LCA) has typically taken a different approach to multilevel

modeling than factor analysis. As shown in Panel (b) of Figure 5, the variation

across clusters is expressed via random intercepts/means for the classes of the

latent class variable c instead of its indicators. This implies that cluster variation

in the latent class indicators is sufficiently well accounted for by cluster variation

in their underlying latent class variables. On the between level, the random

intercepts/means c#1 and c#2 are continuous latent variables and are typically

correlated as indicated by the double-headed arrow. The statistical underpinnings

of multilevel latent class and latent transition analysis are discussed in e.g. Altman

(2007), Asparouhov and Muthén (2008), Henry and Muthén (2010), and Vermunt

(2003, 2008). The latent class variable c in Panel (b) contains both within-level

and between-level variation. Using c as a predictor therefore confounds the two

sources of variation. This modeling approach is therefore not suitable for latent
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Figure 5: Panel (a) shows multilevel factor analysis and panels (b) - (d) show
multilevel latent class analysis (squares represent observed u variables and circles
represent latent variables; filled circles on the within level show that the variables
have random intercepts; on the between level, the random intercept variables
are latent variables; fw and fb represent factors on the two levels; c# variables
represent the between-level random intercepts of the latent class variable c).
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transition modeling with random intercepts.

The current paper draws on another multilevel LCA model that is in line with

the multilevel factor analysis model presented earlier. The random intercepts

will be specified for the latent class indicators instead of the latent classes as has

been discussed in Asparouhov and Muthén (2008) and Henry and Muthén (2010).

Consider a binary latent class indicator Uij observed for student i in school j

where the latent class variable Cij represents different latent classes of students.

Considering one of the five latent class indicators U , the random measurement

intercept αcj can be expressed via the logit of the conditional probability for Uij

given the latent class variable Cij as

logitP (Uij = 1|Cij = c) = αcj = αc + εj, (17)

where the intercept αc varies across the classes c and ε is a normally distributed

random effect with mean zero and a variance that represents across-school

variation.

This model is shown in Panel (c) of Figure 5. The filled circles at the bottom

of the u boxes represent random measurement intercepts. On the between level,

the random measurement intercept for each latent class indicator is shown as a

circle u representing a continuous latent variable that varies across the between-

level units, in this case schools. The random intercepts for the different items may

correlate as indicated by the double-headed arrows. With a polytomous ordinal

indicator, one can still specify a single random intercept shifting the probabilities

of all response categories.

The model with random intercepts for the latent class indicators presents com-
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putational difficulties using maximum-likelihood estimation. With 5 indicators,

it requires 5 dimensions of numerical integration corresponding to the 5 latent

variables on the between level and this leads to very slow computations with low

precision. A common solution to this problem is to place an intercept factor (a

continuous latent variable) behind the set of latent variables as shown by the

f intercept factor on the between level in Panel (d) of Figure 5. With zero

residuals, this reduces the numerical integration to 1 dimension while allowing

the random intercepts to correlate and estimating their factor loadings. A non-

parametric version of this solution replaces the continuous intercept factors with a

latent class variable to eliminate the numerical integration altogether and avoid a

normality assumption for the factor. For example, a continuous factor can be seen

as approximated by e.g. a 3-class latent class variable where the class proportions

allow a non-symmetric distribution. In this paper, both the parametric approach

using continuous factors and the non-parametric approach using latent classes are

referred to as using random intercepts. The model in Panel (d) of Figure 5 is

the latent class counterpart to the factor analysis model of Panel (a). The Panel

(d) model is also the two-level representation of the model in the bottom part of

Figure 4. In this context, the within level represents time and the between level

represents subject.

Henry and Muthén (2010) provides an example of two-level LCA analyzing

smoking behavior for 10,772 9th grade females in 206 rural communities across

the United States. Six categorical latent class indicators measure three latent

classes of student smoking behavior. Using random intercepts for the latent class

indicators, they found significant variation across communities in the response

probabilities for several of the indicators where the variation across communities
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was related to the proportion of youth living in poverty. For example, the

indicator ”Most friends are smokers” had a much larger probablity of being

endorsed in communities with a large poverty proportion. In contrast, no

significant differences across communities were found for the indicators ”Parents

would try to stop me from smoking” and ”Smoking harms health”. Using

random intercepts/means for the latent classes, they also found differences

across communities where communities in tobacco-growing states had a higher

probability of being in the heavy smoking latent class.

As suggested by the Henry and Muthén (2010) smoking example, random

intercept variation for the latent class indicators can be seen as a type of

measurement non-invariance. In the LTA context, this non-invariance refers to

different subjects having different response probabilities for a given latent class

indicator.

5 Monte Carlo simulation

A small simulation study is carried out to assess the performance of RI-LTA

at different sample sizes and number of time points. This is compared to the

performance of regular LTA, both when data have been generated by a regular

LTA model and when the data have been generated by an RI-LTA model.

The study uses 5 binary indicators to represent a situation with a moderate

number of latent class indicators. Two latent classes are used where the indicators

have the same logit values of 1 for class 1 and -1 for class 2. This translates to an

indicator probability of 0.731 conditional on class 1 and an indicator probability

of 0.269 conditional on class 2 when the regular LTA is considered. The large
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difference in probability means that the latent class indicators discriminate well

between the classes. For RI-LTA, the indicators all have a factor loading of 2

which is of a magnitude seen in real data. The factor mean is zero and the factor

variance is 1 (these are fixed parameters). By integrating over the factor, this

corresponds to conditional probabilities of 0.644 for class 1 and 0.356 for class

2, that is, the indicators discriminate somewhat less well between the classes in

the RI-LTA setup. The probabilities of class membership at the first time point

are chosen as 0.5, 0.5. The transition probabilities are chosen as (rows represent

starting class and columns ending class):

Class 1 Class 2

Class 1 0.622 0.378

Class 2 0.500 0.500

This means that starting in class 1, it is more likely for a subject to stay in class

1 while starting in class 2, the subject is equally likely to stay as to change class.

For simplicity in reporting, the study will focus on the 1, 1 diagonal element with

population value 0.622 and the 2, 1 off-diagonal element with population value

0.500. These parameters are referred to as TRANS11 and TRANS21, respectively

in the result tables. The Monte Carlo study uses sample sizes of 500, 1000, 2000,

and 4000. Two and three time points are studied. With three time points the

transition probabilities are the same for the last two time points as for the first

two time points, reflecting a stationary LTA. Stationarity is not, however, imposed

in the analysis. 500 replications are used. The simulations use Mplus where

the Monte Carlo reporting gives the population value, the estimate mean over
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replications, the estimate standard deviation across replications (referred to as

SD), the average standard error across replications (referred to as Ave SE), the

mean square error, the 95% coverage, and the power to reject that the parameter is

zero computed as the proportion of the replications where the confidence interval

does not include zero. Bias in each estimated transition probability is reported as

estimate minus population value. Key evaluation criteria are bias in the estimates;

agreement between SD and Ave SE; and coverage.

5.1 Performance of regular LTA

A useful first step is to study the performance of regular LTA when data have

been generated by a regular LTA so that the analysis model is correctly specified.

The results are shown in the top part of Table 3. Only the case of N=500 is shown

because the performance is good already at this sample size. For both T=2 and

T=3, the bias is negligible, SD and Ave SE agree, and coverage is close to 0.95.

The bottom part of Table 3 shows the performance of regular LTA when data

have been generated by the RI-LTA model with a continuous random intercept

factor. It is seen that the performance is not acceptable because of the large bias

which is 40% and 68% of the population probabilities, respectively. There is a

strong over-estimation of the probabilities representing staying in the same class

which is to be expected as discussed in Section 3.1. There is no improvement

increasing from 2 to 3 time points. Increasing the sample size also does not help

(results not shown).
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Table 3: Analysis using regular LTA on data generated by regular LTA and by
RI-LTA

Data generated by LTA
T=2, N=500

Parameter Est-pop bias SD Ave SE MSE Coverage Power

TRANS11 0.003 0.052 0.052 0.003 0.940 1.000
TRANS21 0.001 0.054 0.054 0.003 0.948 1.000

T=3, N=500

TRANS11 0.003 0.051 0.050 0.003 0.948 1.000
TRANS21 0.001 0.049 0.051 0.002 0.962 1.000

Data generated by RI-LTA
T=2, N=500

TRANS11 0.251 0.030 0.029 0.064 0.000 1.000
TRANS21 -0.328 0.030 0.032 0.108 0.000 1.000

T=3, N=500

TRANS11 0.261 0.028 0.028 0.069 0.000 1.000
TRANS21 -0.341 0.030 0.031 0.117 0.000 1.000
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5.2 Performance of RI-LTA

Table 4 shows the results when data are generated by RI-LTA with a continuous

random intercept factor and analyzed with this model. The top and bottom

parts of the table shows the results for T=2 and T=3, respectively. For T=2,

the parameter bias is large and the overall performance in terms of standard

errors and coverage is not quite acceptable even for N=4000. The poor results for

T=2, N=500 are in contrast with the Table 3 results for regular LTA when data

are generated by a regular LTA. Note, however, that when data are generated

by RI-LTA, the T=2, N=500 results in Table 4 for analysis using RI-LTA are

considerably better in terms of both bias and coverage than those at the bottom

of Table 3 using regular LTA.

For T=3, acceptable results are obtained already at N=500 and are very good

for N=1000 and above. Further increasing the number of time points gives a

small but practically negligible improvement of performance (not shown). A large

sample size is most important.

6 Analysis of two examples

As a first step, analyses of two examples are described in terms of model fit,

comparing regular LTA with RI-LTA using both a continuous random intercept

and a binary random intercept. Next, estimates are presented and compared

between regular LTA and RI-LTA.

The RI-LTA with a continuous random intercept factor uses the simple one-

factor model version shown in equation (3) and in the bottom part of Figure 4.

This is the same model as used in the Monte Carlo simulations. For the RI-LTA
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Table 4: Analysis using RI-LTA on data generated by RI-LTA (population value
for TRANS11=0.622, TRANS21=0.500)

T=2

Parameter Est-pop bias SD Ave SE MSE Coverage Power

N=500

TRANS11 0.121 0.335 0.358 0.127 0.576 0.514
TRANS21 -0.072 0.316 0.269 0.105 0.522 0.618

N=1000

TRANS11 0.122 0.307 0.277 0.109 0.664 0.558
TRANS21 -0.058 0.275 0.275 0.079 0.642 0.652

N=2000

TRANS11 0.090 0.251 0.243 0.071 0.764 0.656
TRANS21 -0.066 0.239 0.221 0.061 0.756 0.768

N=4000

TRANS11 0.050 0.172 0.159 0.032 0.860 0.820
TRANS21 -0.044 0.182 0.174 0.035 0.850 0.910

T=3

Parameter Est-pop bias SD Ave SE MSE Coverage Power

N=500

TRANS11 0.021 0.141 0.147 0.020 0.924 0.914
TRANS21 -0.005 0.137 0.146 0.019 0.904 0.932

N=1000

TRANS11 0.012 0.095 0.098 0.009 0.936 1.000
TRANS21 -0.002 0.101 0.101 0.010 0.920 0.992

N=2000

TRANS11 0.006 0.068 0.068 0.005 0.926 1.000
TRANS21 -0.002 0.068 0.071 0.005 0.948 1.000

N=4000

TRANS11 0.000 0.048 0.047 0.002 0.942 1.000
TRANS21 -0.003 0.048 0.050 0.002 0.946 1.000
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with a binary random intercept, the parameterization of (6) - (11) is used. The

Mover-Stayer models use one parameter more than the standard models with only

movers due to adding a binary latent class variable of movers and stayers. All

analyses are carried out using Mplus (Muthén & Muthén, 1998-2017) and scripts

are available from the first author as well as at http://www.statmodel.com/

RI-LTA.shtml

6.1 Analysis of the Mood data

The first example concerns ratings of mood. The data set is from a longitudinal

study with N=494, 4 time points 3 weeks apart, and 2 binary latent class

indicators measuring 2 latent classes at each time point (Eid & Langeheine, 2003).

Participants rated their momentary sadness and unhappiness on a 5-point scale

ranging from 1 (not at all) to 5 (very much). A dichotomized version of the two

items was used in Eid and Langeheine (2003) as well as here (first category versus

the other categories). A stationary model is chosen for this example because this

is the model considered in Eid and Langeheine (2003).

6.1.1 Model fitting results for the Mood data

Table 5 compares the model fitting results of regular LTA with those of RI-LTA

with a continuous and a binary random intercept. Models 1-3 in the top part

of the table show standard analysis whereas models 4-6 in the bottom part show

Mover-Stayer analysis. Model 2 is the same as model 2 in Table 1 of Eid and

Langeheine (2003). The RI-LTA models are clearly better than the regular LTA

both in terms of higher loglikelihood and lower BIC. BIC of the RI-LTA model 2
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Table 5: Model fitting results for the Mood data

Model # parameters loglikelihood BIC

Standard

1 Regular LTA 7 -2053 4150
2 RI-LTA, binary RI1 10 -2028 4118
3 RI-LTA, continuous RI 9 -2019 4093

Mover-Stayer

4 Regular LTA 8 -2037 4123
5 RI-LTA, binary RI2 11 -2017 4101
6 RI-LTA, continuous RI 10 -2017 4096

1 Model 2 is model 2 in Table 1 of Eid and Langeheine (2003).
2 Model 5 is model 5 in Table 1 of Eid and Langeheine (2003).

is better than that of the regular LTA model 1 and the RI-LTA model 3 with a

continuous random intercept factor further improves on BIC. Model 3 in fact has

a better loglikelihood value than model 2 despite having 1 parameter less.

Models 4-6 in the bottom part of Table 5 have the same BIC rank ordering as

in the top part. For regular LTA, the Mover-Stayer version of model 4 is preferred

over the regular LTA model 1 due to the better BIC. Similarly, using a binary

random intercept, the Mover-Stayer RI-LTA model 5 is preferred over the RI-LTA

model 2. Model 5 is model 5 of Table 1 of Eid and Langeheine (2003) and is the

preferred model in that article. In contrast, using a continuous random intercept,

the RI-LTA model 6 has a worse BIC than that of model 3 indicating no need for

Mover-Stayer modeling.

36



6.1.2 Model estimates for the Mood data

It is interesting to compare the model estimates for some key models of Table 5,

both in terms of measurement probabilities and transition probabilities. Table 6

shows estimates from regular LTA (model 1), regular LTA with a Mover-Stayer

component (model 4), and the continuous version of RI-LTA without a Mover-

Stayer component (model 3). Regular LTA gives quite different results than the

better-fitting RI-LTA both in terms of measurement parameters and transition

parameters.

The measurement parameter estimates of the two regular LTA models suggest

that the two indicators Sad and Unhappy discriminate well between the two

classes, labelled as Not sad/Happy and Sad/Unhappy. The probabilities are very

low in the first class and very high in the second class. For the better-fitting RI-

LTA model, the class differences in probabilities are smaller showing that regular

LTA gives an inflated view of class separation as discussed in Section 3.1.

The factor loadings of the continuous version of RI-LTA are significant

with estimates (SEs) 2.805 (0.251) and 6.775 (2.135). The larger loading

for the unhappiness indicator compared to the sadness indicator suggests that

unhappiness shows a higher degree of stability over time.

The estimated transition probabilities of regular LTA have higher diagonal

values suggesting more stability in class membership over time than with RI-

LTA. This is in line with the Monte Carlo simulation findings of over-estimated

diagonal values with regular LTA shown in the bottom part of Table 3.

For RI-LTA, transitioning from the Sad/Unhappy class to the Not sad/Happy

class is almost as likely as staying in the same class. The Mover-Stayer version
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Table 6: Mood data estimates

Regular LTA

Measurement probabilities
Classes

Indicator Not sad/Happy Sad/Unhappy
Sad 0.089 0.902
Unhappy 0.038 0.857

Transition probabilities

Not sad/Happy Sad/Unhappy
Not sad/Happy 0.803 0.197
Sad/Unhappy 0.248 0.752

Mover-Stayer LTA: Movers

Measurement probabilities

Iindicator Not sad/Happy Sad/Unhappy
Sad 0.089 0.898
Unhappy 0.031 0.860

Transition probabilities

Not sad/Happy Sad/Unhappy
Not sad/Happy 0.664 0.336
Sad/Unhappy 0.446 0.554

RI-LTA, continuous RI

Measurement probabilities

Indicator Not sad/Happy Sad/Unhappy
Sad 0.286 0.748
Unhappy 0.164 0.804

Transition probabilities

Not sad/Happy Sad/Unhappy
Not sad/Happy 0.691 0.309
Sad/Unhappy 0.486 0.514
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of the regular LTA has similar transition probabilities but they are valid for only

the movers, estimated as 61%; this model also has worse log likelihood and BIC.

Further insight into the RI-LTA model can be obtained by taking a closer

look at the stayers in the Mood data. Of the N=494 subjects, 96 (19%) give

the same Not sad/Happy answer to both latent class indicators at all four time

points and 62 (13%) give the same Sad/Unhappy answer. In other words, about a

third of the sample consists of stayers. The RI-LTA model captures the stayers by

assigning large factor values to them. To see this, factor values can be estimated

by the usual maximum a priori method. With the 0, 1 metric of the factor, the

96 consistently happy subjects have the by far lowest factor score estimate of

-1.157 and the 62 consistently unhappy subjects have the by far highest factor

score of 1.420. As discussed in Section 3.1, the large negative estimate implies a

high probability of answering in the Not sad/Happy category (U = 0) at all time

points and the large positive estimate implies a high probability of answering in

the Sad/Unhappy category (U = 1) at all time points. Rather than the regular

LTA categorization into movers and stayers, the random intercept factor of RI-

LTA provides a continuum of more or less movement over time.

6.2 Analysis of the Dating data

The second example concerns dating and sexual risk behavior. The data set is

from the National Longitudinal Survey of Youth (NLSY97) with N=2937, 3 time

points one year apart, and 4 ordinal and binary items measuring 5 latent classes at

each time point. An LTA analysis of these data appeared in an influential article

by Lanza and Collins (2008), introducing SAS PROC LTA. The items are past-
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year number of dating partners (0, 1, 2 or more), past-year sex (no, yes), past-year

number of sexual partners (0, 1, 2 or more), and exposed to STD in past year

(no, yes). Covariates are gender and whether the respondent has used cigarettes,

been drunk, or used marijuana in the past year. In the current analyses, the item

Had sex in past year is dropped due to a no response necessitating a zero answer

to the item Number of sexual partners, thereby avoiding an unnecessary violation

of conditional independence. The regular LTA analyses still produce the same 5-

class interpretation as in Lanza and Collins (2008). A stationary model is chosen

for the Dating and sexual risk behavior example because unlike regular LTA as in

Lanza and Collins (2008), stationarity cannot be rejected for the RI-LTA models.

6.2.1 Model fitting results for the Dating data

Table 7 compares the model fitting results of regular LTA with those of RI-LTA

with a continuous and a binary random intercept. Models 1-3 in the top part

of the table show standard analysis whereas models 4-6 in the bottom part show

Mover-Stayer analysis. The RI-LTA models are clearly better than the regular

LTA both in term of higher loglikelihood and lower BIC. For regular LTA, BIC

points to a Mover-Stayer model whereas for the RI-LTA models it does not.

6.2.2 Model estimates for the Dating data

It is interesting to compare the model estimates for some key models of Table 7,

both in terms of measurement probabilities and transition probabilities. Table 8

shows estimates from regular LTA (model 1) used in Lanza and Collins (2008)

and the continuous version of RI-LTA without a Mover-Stayer component (model

3). Regular LTA gives quite different results than the better-fitting RI-LTA both
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Table 7: Model fitting results for the Dating data

Model # parameters loglikelihood BIC

Standard

1 Regular LTA 49 -16202 32796
2 RI-LTA, binary RI 53 -16056 32535
3 RI-LTA, continuous RI 52 -16043 32502

Mover-Stayer

4 Regular LTA 50 -16194 32787
5 RI-LTA, binary RI 54 -16053 32536
6 RI-LTA, continuous RI 53 -16041 32506

in terms of measurement parameters and transition parameters.

For the regular LTA, the measurement parameter estimates show a pattern

of probabilities that is very similar to that of Lanza and Collins (2008) with

latent class described as Nondaters, Daters, Monogamous, Multipartner safe, and

Multipartner exposed where exposed refers to being exposed to STD in the past

year. In parts, the RI-LTA model has a similar pattern of probabilities where

the latent classes of Nondaters, Daters, and Multi-exposed can be seen. The

Monogamous class is however somewhat different in that having 2 or more dating

partners is a bit more likely than having 1 partner. Also, the Multi-safe class is

not found but instead a class that can be described as Monogamous exposed.

The factor loadings for the continuous random intercept version of the RI-

LTA model are significant with estimates (SEs) 1.574 (0.152), 4.194 (0.504), 1.507
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Table 8: Dating data estimates

Regular LTA

Nondaters Daters Monogamous Multi-safe Multi-exposed

Measurement Probabilities:

# dating partners in past year
0 0.789 0.008 0.096 0.031 0.025
1 0.166 0.214 0.641 0.026 0.044

>=2 0.045 0.778 0.262 0.943 0.932

# sex partners in past year
0 0.975 0.948 0.000 0.104 0.000
1 0.014 0.048 0.961 0.258 0.118

>=2 0.011 0.004 0.039 0.638 0.882

Exposed to STD in past year
No 1.000 1.000 0.385 1.000 0.187
Yes 0.000 0.000 0.615 0.000 0.813

Transition probabilities

Non-daters 0.627 0.197 0.096 0.038 0.042
Daters 0.023 0.626 0.173 0.086 0.091

Monogamous 0.034 0.032 0.679 0.056 0.199
Multi-safe 0.036 0.000 0.177 0.584 0.203

Multi-exposed 0.021 0.033 0.201 0.055 0.690

RI-LTA, continuous RI

Nondaters Daters Monogamous? Mono-exposed Multi-exposed

Measurement Probabilities:

# dating partners in past year
0 0.861 0.039 0.000 0.193 0.057
1 0.041 0.192 0.457 0.708 0.048

>=2 0.098 0.770 0.543 0.100 0.895

# sex partners in past year
0 0.922 0.789 0.026 0.000 0.017
1 0.033 0.075 0.883 0.898 0.099

>=2 0.045 0.136 0.091 0.102 0.884

Exposed to STD in past year
No 1.000 1.000 0.485 0.113 0.398
Yes 0.000 0.000 0.515 0.887 0.602

Transition probabilities

Non-daters 0.583 0.264 0.029 0.058 0.067
Daters 0.014 0.660 0.183 0.013 0.130

Monogamous 0.008 0.067 0.405 0.200 0.320
Multi-safe 0.071 0.007 0.040 0.639 0.243

Multi-exposed 0.031 0.050 0.172 0.127 0.619
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(0.246). The larger loading for the latent class indicator Number of sexual partners

in the last year suggests that this indicator has a higher degree of stability over

time. Viewed from the perspective of measurement non-invariance discussed in

Section 3.1, it also indicates that this latent class indicator shows a larger amount

of measurement non-invariance across subjects.

The difference in estimated transition probabilities do now show a clear

pattern in the difference between regular LTA and RI-LTA. For the three latent

classes with the same interpretation by the two models, the estimated transition

probabilities show larger diagonal elements for regular LTA as compared to RI-

LTA in two out of the three classes.

6.2.3 Measurement invariance testing for the Dating data

Lanza and Collins (2008) studied differences in LTA parameters for males and

females. A first such analysis concerns measurement invariance across gender.

This can be done using a multiple-group approach or equivalently by using a

gender covariate that influences all latent class indicators directly. The latter

approach is used here because it is more efficient computationally. To reduce

the risk of distorting the measurement invariance testing, a reasonably flexible

structural model for the latent class part is used here, namely, the main effect

model described in the bottom part of Table 2.

Table 9 shows the model testing results for regular LTA and RI-LTA with

a continuous random intercept factor. Measurement invariance can be checked

using likelihood-ratio chi-square testing, in this case with 15 degrees of freedom

corresponding to 3 latent class indicators and 5 latent classes for which there are

gender differences. For these data, regular LTA and RI-LTA agree that invariance
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Table 9: Measurement invariance testing for the Dating data: Males vs females

Model #par’s LL BIC Test(df) x2

1 Regular LTA, invariance 61 -16123 32733
2 Regular LTA, non-invariance 76 -16097 32800 1 vs 2(15) 52

3 RI-LTA, continuous RI, invariance 64 -15977 32465
4 RI-LTA, continuous RI, non-invariance 79 -15951 32532 3 vs 4(15) 56

is rejected with p < 0.005. BIC, however, points to measurement invariance in

both cases and for simplicity this model will used when adding other covariates.

6.2.4 Covariate influence for the Dating data

The Dating example has four binary covariates, gender and whether the respon-

dent has used cigarettes, been drunk, or used marijuana in the past year. Table 10

shows the results of a second set of analyses that explores the influence of these

covariates on the latent class variables and the transitions.

The regular LTA model 1 uses the main effect model shown at the bottom

of Table 2. Model 2 uses the interaction effect model for regular LTA shown at

the top of Table 2 but where the interaction is only with respect to gender and

not the other three covariates. This interaction model was chosen because the

possible gender effect on transitions was mentioned in Lanza and Collins (2008).

Contrasting the models, both BIC and chi-square testing indicate that males and

females do not have different transitions.

In the RI-LTA model 3, the covariates are allowed to influence the continuous

44



Table 10: Model testing using covariate analysis for the Dating and sexual risk
behavior example: Regular LTA compared to RI-LTA with a continuous random
intercept

Model Covariate influence # par’s LL BIC Test (df) χ2

1. Regular LTA Main effects 81 -15630 31906
2. Regular LTA Main effects and

gender interaction
effects 97 -15621 32016 1 vs 2 (16) 18

3. RI-LTA Continuous RI 56 -15653 31753
4. RI-LTA Continuous RI

and main effects 88 -15461 31624 3 vs 4 (32) 384
5. RI-LTA Continuous RI,

main effects, and
gender interaction
effects 104 -15454 31738 4 vs 5 (16) 14
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random intercept factor while in the RI-LTA model 4, the covariates also influence

the latent class variables using the main effect parameterization shown at the

bottom of Table 2. Comparing models 3 and 4 shows that the covariate influence

on the latent class variables needs to be included in the model. Model 5

is the RI-LTA counterpart to the regular LTA model 2 which allows gender

interaction effects on the transitions. This indicates that males and females do

not have different transitions so in this case there is agreement with regular LTA.

Comparing the best regular LTA model 1 and the best RI-LTA model 4, however,

it is seen that both the loglikelihood and BIC are better for RI-LTA. In addition,

model 1 and model 4 have different covariate effects. The effect of covariates on

the latent class of multipartner-exposed is of special interest. In presenting these

results, the log odds relates this class to the class of monogamous. For the regular

LTA of model 1, significant and positive effects are seen for male and past-year

marijuana usage at all time points, with an additional significant positive effect

of past-year drunkeness for the first time point. Past-year cigarette use does not

have a significant effect. For the RI-LTA model 4, only male has a significant

effect and it is positive. The covariate effects on the continuous random intercept,

however, are significant and positive for all the covariates. Positive effects increase

the random intercept value which in turn increases the probability of the latent

class indicators being in category 1 versus category 0 for binary indicators and

increases the probabilities of the higher categories relative to the lower categories

for the ordinal indicators. In other words, only male increases the latent class odds

while all covariates increase the odds of answering in a more “extreme” category of

the latent class indicators. The latter effect refers to a between-subject difference

that is stable over time and is unrelated to latent class membership.
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7 Discussion

This paper demonstrates the need for replacing regular LTA with random intercept

LTA (RI-LTA). Most importantly, RI-LTA typically fits the data better as

illustrated by the examples in this paper. This was also found to be the case

using several other data sets, including the life satisfaction data of Langeheine

and van de Pol (2002) mentioned in Section 2 and the reading data of Kaplan

(2008). Apart from a better fit of the model to the data, RI-LTA gives a clearer

interpretation. Regular LTA suffers from estimating transition probabilities

that confound between- and within-subject influences. By allowing random

intercept variation in the model, the between-subject variation is extracted from

the latent class indicators so that latent class transitions over time refer to

within-subject transitions. Because regular LTA does not include a random

intercept, the probability of staying in the same class is typically over estimated.

In addition, regular LTA overlooks information in the data which relates to

measurement. Unlike regular LTA, RI-LTA allows for measurement non-invariance

across subjects represented by the random intercepts. Regular LTA typically

overstates the ability of latent class indicators to discriminate between latent

classes. Regular LTA is also more likely to need an added Mover-Stayer component

whereas the random intercept of RI-LTA captures tendencies to stay in the same

latent class without such an added component. A limited simulation study

indicates that for sample sizes of at least 500, RI-LTA performs well when there

are three or more time points whereas with only two time points, a sample size of

more than 4000 may be needed.

While the case of categorical latent class indicators has been discussed here,

47



the same approach can also be applied to continuous, count, or nominal latent

class indicators. Several additional aspects of modeling with random intercepts

are of interest and are discussed below.

7.1 Computational aspects

The RI-LTA model requires a considerably longer computational time than regular

LTA. The continuous random intercept version is the most time-consuming in

that the maximum-likelihood estimation requires numerical integration but also

because it needs more random starting values to replicate the best loglikelihood.

While much faster than the continuous random intercept version, the binary

random intercept version is also slower than regular LTA due to having one

more latent class variable. Recent advances in CPU speed, multithreading, and

algorithmic improvements, however, have made it practical to estimate RI-LTA

models.

7.2 Other model variations

Several other variations of RI-LTA are possible in order to make the model

more flexible. Following are five such variations that are possible in the latent

variable framework of Mplus (Muthén & Muthén, 1998-2017). First, the typical

assumption of a lag-1 relationship between the latent class variables Ct may be

relaxed. Lag-2 effects were significant per likelihood-ratio chi-square testing in the

examples using the three model types. Second, the assumption of uncorrelated

latent class indicators across time conditional on the latent classes and the random

intercept may be relaxed. Asparouhov and Muthén (2015) presented a method for
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this in a regular LTA setting, allowing correlated “residuals”. Several instances

of correlated residuals were found for these examples using both regular LTA and

RI-LTA models. Third, with the use of a binary random intercept, RI-LTA can be

generalized to more than two classes and more than one latent class variable. In

the examples in this paper, however, there was no evidence that this was needed.

Fourth, the model can be extended to include other model parts such as distal

outcomes and multiple processes, the latter including the possibility to connect

RI-LTA to the random intercept cross-lagged panel modeling of Hamaker et al.

(2015). Fifth, a trend over time can be accomodated. In the continuous random

intercept case, a slope can be added to the random intercept, e.g. by letting

the slope influence the latent class indicators at each time point using the same

loadings as for the random intercept and allowing a slope mean to influence the

outcomes over time. Using a linear trend, this did not result in a better-fitting

model for the examples of this paper.

7.3 Future research on RI-LTA

Despite the promising results obtained by replacing regular LTA with RI-LTA,

further explorations and extensions of this new technique are warranted. It will be

useful to have more extensive Monte Carlo simulation studies for different settings,

studying the sample size requirements as a function of number of time points,

number of latent class indicators, number of latent classes, covariates, etc. The

susceptibility to model mis-specification should be studied. Class enumeration

techniques need to be considered. It will be of interest to develop multi-step

analyses for including covariates and distal outcomes in line with Asparouhov and
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Muthén (2014) and Bakk and Kuha (2018). Multilevel versions of RI-LTA are

needed when subjects are nested within schools, organizations, or communities.
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