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Nesting and Equivalence Testing for Structural
Equation Models

Tihomir Asparouhov and Bengt Muthén
Mplus

In this article, we discuss the nesting and equivalence testing (NET) methodology developed
in Bentler and Satorra (2010). We describe how the methodology is implemented in Mplus for
the general structural equation model (SEM) model with continuous variables based on the
maximum-likelihood (ML) estimation as well as the general SEM model with categorical,
censored and continuous dependent variables based on the weighted least squares (WLS)
family of estimators. We use the NET methodology to address several model nesting questions
that arise in the bi-factor CFA model and the multiple group factor analysis model.

Keywords: bi-factor models, model nesting, multiple group models, structural equation

models

INTRODUCTION

The nesting and equivalence testing (NET) methodology
developed in Bentler and Satorra (2010) can be used to
determine if two structural models are nested or if they are
equivalent. In this note, we discuss how the methodology is
implemented in Mplus (Muthén & Muthén, 1998-2017) and
illustrate it with several examples. The NET testing can be
applied to the general SEM model with continuous variables
based on the ML estimation as well as the general SEM
model for categorical, censored, and continuous dependent
variables based on the weighted least squares (WLS) family
of estimators. It can be used with multiple group and miss-
ing data but it does not extend to multilevel models, time-
series models, or mixture models.

Consider first the situation with all continuous variables.
Let Hy be a SEM model with py parameters that is hypothe-
sized to be nested within an H; model with p; parameters
where p; > po. The NET methodology can determine if Hy
is nested within A in three steps.

Correspondence should be addressed to Tihomir Asparouhov, Mplus,
Salt Lake City, UT, 84108, USA. E-mail: tihomir@statmodel.com

o Step 1. Estimate the Hy model and compute the model
estimated mean /i, and model estimated variance cov-
ariance 20.

 Step 2. Read in j, and %, as data and estimate the H,
model. Denote by Fy the fit function value from that
estimation.

o Step 3. Using a small value € (e.g. 0.0000001)

— If Fp>e, the models are not equivalent or nested.
— If Fy<e and p;>py, the models are nested.
— If Fy<e and p; = po, the models are equivalent.

The outline of this note is as follows. First, we discuss

the Mplus implementation of the NET methodology for
SEM models with continuous variables in the ML frame-
work. Next, we discuss the Mplus implementation of the
NET methodology for SEM models with categorical, cen-
sored, and continuous variables in the WLS framework.
Finally, we illustrate the methodology with several
examples.

THE NET PROCEDURE WITH THE ML ESTIMATOR

The NET implementation in Mplus is as follows. In step 1,
the Hy model estimated mean i, and variance/covariance X
are saved in a file specified with the NESTED option of the
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SAVEDATA command. In step 2, the H; model is estimated
and the NESTED file from Step 1 is specified in the
ANALYSIS command. In this step, Mplus minimizes the
log-likelihood fit function

F(0) = % (Tr(Z(6) ™" (Zo + (u(6) — itg) (1(6) — )"))

+In([2(0)|/[20]) — p)

with respect to the H, parameters §. Here p is the number of
variables in the model, x(6) and X(0) are the H; model-implied
mean and variance covariance, and ji, and flo take the role of the
sample mean and variance/covariance. If the H, model is nested
within the A} model the “sample statistics” /i, and ¥y can be
matched precisely by the H; model estimation and, thus, the
NET function value Fy = min(F(0)) will be 0. Note that, under
the assumption that the sample mean and variance of the data are
fto and %, and the sample size is 1, the chi-square test statistic for
the H; model is 2nFy and, thus, will be zero when the models
are nested. Note also that F'(0) > 0 and therefore, Fy > 0.

Because Fj is computed numerically through the minimi-
zation procedure, precise zero values are unrealistic. Instead,
small values are used as cutoff values and 10~7 appears to
work well enough for most situations. If F;<10~7 we conclude
that the models are nested (if p;>py) or equivalent (if pg = p1).
If Fy is between 107® and 1077 the procedure yields an
inconclusive result, i.e. it is not clear if F| iS zero or not.
This inconclusive result can be resolved by sharpening
(decreasing) the convergence criterion of the optimization
procedure or by utilizing a different data set or a subsample
of the existing data set.

The NET methodology in principle does not depend on
the data even though the implementation is incorporated
within a specific data analysis. It may appear that the data
affect the result but that is not the case in most situations
and changing the data should not affect the conclusion
regarding the nesting of the two models. In certain situa-
tions, however, the nesting of the models depends on the
parameter estimates. That is, the nesting of the models can
change when the model estimates change. The nesting can
be different in one part of the parameter space than in
another. Because the parameter estimates are affected by
the data we can indeed see dependence of the NET metho-
dology on the data but this occurs only through the NET
dependence on the parameters.

The NET procedure is prone to some failures due to
special conditions that occur in particular data sets. We
can illustrate this with the following trivial example.
Suppose that the data consists of two identical variables
Y; and Y;. Let the Hy model be the bivariate model where
the means are unconstrained, the covariance is restricted
to 0 and the variances are restricted to be equal. Let the
H; model be the bivariate model where the means are
constrained to be equal, the covariance is restricted to 0,
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and the variances are unconstrained. Both models have 3
parameters but are obviously not equivalent. If we per-
form the NET procedure using the data set where Y; and
Y, are identical, the Hy model estimated means will be
equal and, therefore, the H; model will be able to match
the Hy estimated sample statistics. Therefore, the NET
procedure will conclude that the two models are equiva-
lent. To avoid such data specific problems, it is recom-
mended that the NET procedure is performed several
times over multiple data sets including simulated data.

It is important to note that the nesting of the models does
not necessarily imply that the chi-square testing between the
models is valid. That is because the models can be nested in
such a way that parameters are constrained on the border of
the admissible parameter space. The most common example
of that is when the nesting is based on a factor variance
being fixed to zero (EFA with one factor v.s. EFA with two
factors). It is well-known that the log-likelihood ratio test
(LRT) in such circumstances deviates from the chi-square
distribution, see Self and Liang (1987); Hayashi, Bentler,
and Yuan (2007); and Crainiceanu and Ruppert (2004).

THE NET PROCEDURE WITH THE WLS FAMILY OF
ESTIMATORS

Bentler and Satorra (2010) point out that the NET approach
for evaluating model nesting and equivalence applies to a
wide variety of related modeling situations including cate-
gorical data modeling such as log-linear models. In this
section, we describe how it can be implemented for the
SEM modeling framework with categorical/continous/cen-
sored variables and the WLS family of estimators.

The WLS family of estimators minimizes the following
fit function to obtain the model parameter estimates

—

F(0) =5(S*0(9))TW’1(S*G(9))7 (M
see Muthén and Satorra (1995) and Muthén (1998), where s
represents a set of sample statistics, estimated from the
unconstrained model, and 6(6) represents the same quanti-
ties estimated from a structural model, where 6 are the
model parameters. In the case of all categorical dependent
variables, this unconstrained model is simply the multivari-
ate probit model and s consists of all thresholds and poly-
choric correlations. In the more general model of the
combination of continuous, categorical, and censored vari-
ables, the vector s contains the unconstrained model-esti-
mated threshold parameters, sample means, regression
coefficients, and unconstrained residual variance covariance
matrix with diagonal entries of 1 for all categorical vari-
ables. The weight matrix W is different for the different
WLS estimators. For the ULSMV estimator this is the
identity matrix. For the WLS estimator this is the asymptotic
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variance covariance matrix of the sample statistics, while for
the WLSMV and WLSM estimators that matrix is reduced
to its main diagonal.

The NET procedure in the WLS case is implemented as
follows.

o Step 1. Estimate the Hy model and compute the model
estimated statistic 6o = o(6y) (thresholds, polychoric cor-
relations, etc.), where 90 are the Hy model parameter
estimates.

o Step 2. Read in 6 as data (i.e. as the sample statistics s)
and estimate the A} model. The weight matrix remains
the same as in Step 1. Denote by Fy the fit function value
from that estimation.

o Step 3. Using a small value € (e.g. 0.0000001)

— If Fp>¢, the models are not equivalent or nested.
— If Fy<e and p;>py, the models are nested.
— If Fy<e and p; = po, the models are equivalent.

In Step 2, the fit function

F(0) =5 (60— o(@) W (G0 —0(0) @
is minimized with respect to the H; model parameters 6,
where o(0) is the H; model estimated statistics. The condi-
tions of Appendix B in Bentler and Satorra (2010) are all
satisfied and, thus, we can apply the NET methodology with
the WLS family of estimators.

EXAMPLES

Bentler and Satorra (2010) present several examples and
demonstrate the NET methodology using an R interface to
EQS (REQS;Mair, Wu, & Bentler, 2010). In this section, we
further illustrate the method with several new applications
encountered in our research. All model inputs and outputs
for these examples can be found at statmodel.com.

Residual correlations

It is well-known that if a CFA model does not fit well due to
one non-zero residual correlation, we can augment the CFA
model by an additional factor and resolve the problem. The
additional factor would be measured by the two variables
involved in the non-zero correlation. The question we want
to address here is if it is possible to resolve two residual
correlations with one additional factor. We use the NET
procedure to test this hypothesis. Suppose that we have p
indicators measuring a single factor f'

Yi=p+Af +e& A3)

where 6;; = Var(s;) and Var(f) is fixed to 1 for identification
purposes. We assume that all covariances between the resi-
duals 6; = Cov(g;, &7) = 0 for i#j with the exception of two
such covariances. Suppose that 6, and 834 are not zero. The
first model we consider is the above model where 81, and 634
are estimated as free parameters. This model has 3p + 2
parameters: p intercept parameters u;, p loading parameters
Ai, p residual variance parameters 6;;, and the two residual
covariance parameters 6, and 634. Let us call this model M1.
The second model we consider is the EFA model with 2
factors. Let us call this model M2. Model M2 has 4p-1
parameters. The EFA model with two factors requires p > 5
and so we limit the discussion to that case. When p > 5,
model M2 has more parameters than model M1.

We want to know if by adding a second factor to the one
factor model can we fit those two outstanding residual covar-
iances that the one factor model is unable to fit, i.e. we want to
test if model M1 is nested within model M2. We check the
nesting of M1 and M2 with two examples. The first example
uses p = 5 and the second example uses p = 6. In both cases
we generate a data set of size N = 500 using model M1 with
the following parameter values u; =0, 6; =1, 4; =1,
612 = 934 =0.2.

Using the NET procedure as implemented in Mplus,
when p =5 we obtain the NET function value of
0.00000000 and the procedure concludes that M1 is nested
within M2. When p = 6 we obtain the NET function value
of 0.00383687 and the procedure concludes that M1 is not
nested within M2. Therefore, two non-zero residuals can be
resolved by adding a second factor but only for the case of
p = 5. It is not true for larger models. Note also that in the
above discussion it is important for the correlations to not
have a variable in common, i.e. the case where the two non-
zero correlations are 6, and 63 is a different problem.

Bi-factor CFA

Here, we consider the bi-factor CFA models discussed in
Reise (2012). The question we want to address here is
whether and when a regular factor analysis model is nested
within a bi-factor model. Let ¥ be the vector of dependent
variables of size p, and let the variables be grouped in m
equal size groups of size /, i.e. p = ml. Each of these groups
will be used to measure one specific factor. Denote by Y
the i — th variable in the j — th group. The groups need not
be of the same size in general but we assume this here for
simplicity. The first model M1 we are interested in is the
standard CFA with m correlated factors

Yy = p; + Ayt + & 4

The factor variances are fixed to 1 but the correlations
between the factors are freely estimated. The number of
parameters in the model is ¢, = 3p + m(m — 1)/2. There
are p intercept parameters, p loading parameters, and p



residual variance parameters plus the m(m — 1)/2 factor
correlation parameters. We want to compare this model to
the following bi-factor model M2,

Yy = s =+ Aty + Ao ity + &3 (5)

where 7, is the general factor measured by all indicators. In
this bi-factor model, the correlations between the m specific
factors 7; are fixed to 0. In addition, the correlations
between the general factor 7, and the specific factors 7,
are also fixed to 0. The number of parameters in this
model is g, = 4p. There are p intercept parameters, 2p
loading parameters, and p residual variance parameters.
Model M1 has more parameters than model M2 when
m>2] 4+ 1. The two models have equal number of para-
meters when m = 2/ + 1. Model M2 has more parameters
when m<2[l+ 1. The nesting of these models will now be
investigated algebraically and with the NET procedure.

It is fairly easy to see that if m < 3, the M1 model can be
nested within the M2 model. That is because the variance
covariance matrix of #; can be represented by a one factor
analysis model. Let us consider first the case of m = 3. It is
well-known that a three-by-three correlation matrix is
equivalent to a one factor model if all three correlations
are positive (or two are negative and one is positive which
by reversing the sign of one of the factors can be converted
to all positive). Denote the correlation between #; and 7, by
Pij- Then the unconstrained correlation matrix is equivalent
to the factor analysis model

n; = oMo + & (6)

where Var(n,) = | and

Jor = P12P13 %
P23

Jog = [P12P23 (8)
P13

Jog = )P0, ©)
P12

To keep the variances of & positive we also need the addi-
tional constraints A ;<1. If this is the case model M1 can be
written as

Y = py + & =+ Liho o + € (10)

which clearly is a model nested within M2, after rescaling ¢;
to have a unit variance (and take the place of the specific
factors). Note here that the rescaling requires Var(;)>0, i.e.
Ao,<1 is a requirement for M1 to be nested within M2. This
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requirement can be reformulated as follows: the product of
the two larger correlations should be smaller than the smal-
lest of the three correlations.

Let us illustrate how this analytical argument can also be
confirmed with the NET procedure. We generate two data
sets one of size n = 100 and one of size n = 300. We use
[ =3, m = 3,and p = 9 in this simulation. Model M1 is used
to generate the data where all loadings and residual variances
are set to 1 and all means are set to 0. The three factor
correlations are set to 0.5, 0.4, and 0.3. Using the smaller
data set, we estimate the M1 model and the three factor
correlations are estimated to 0.519, 0.206, 0.090. In this
case the condition 4o ;<1 is violated since the product of the
two larger correlations is bigger than the smallest. Using the
larger data set of n = 300, the three factor correlations are
estimated as 0.455, 0.247, 0.255 and the conditions for the
nested models are satisfied. This result is also confirmed by
the NET procedure. The NET value in the case of n = 100 is
0.00008274 and the models are identified as not nested, while
in the case of n =300 the value is 0.00000000 and the
models are identified as nested. This example illustrates the
complexities that can occur in determining if two models are
nested. In a large portion of the parameter space when m = 3,
the M1 model is nested within the M2 model, but in another
part of the parameter space, the models are not nested. In our
example with n = 100, M2 has more parameters than M1 and
a higher log-likelihood value. Nevertheless, since the models
are not nested, formal chi-square testing should not be
performed.

Let us also consider the implications of the second
requirement for M1 to be nested in M2, that is, all three
correlations need to be positive. We generate a data set with
n = 1000 using the M1 model and the three correlations 0.2,
0.2, and —0.2. Estimating the M1 model is not a problem at
all, however, estimating the M2 model on such a data set is
very problematic. The result is non-convergence even with
many random starting values. This illustrates how the para-
meter spaces of M1 and M2 are not aligned at all.

The situation for the case of m = 2 and m = 1 does not
have such complications and in these cases M1 is always
nested within M2. For the case of M > 4 the models are not
nested. We illustrate this with another simulation study,
using a sample size of n =300, p =12, m = 4, and [/ = 3.
All means again are set to 0 and all residual variances and
loadings are set to 1. All factor correlations are set to 0.5.
When we estimate the M1 model the factor correlation
estimates are between 0.43 and 0.55. In this case the NET
value is 0.00969020 and the procedure concludes that the
models are not nested. Here it is interesting to point out that
again the M2 model has more parameters and a better log-
likelihood value. Since the models are not nested, however,
a chi-square test would be invalid. In addition, note that if
the M1 model had produced the exact values that we used
for data generation purposes the models would have been



306  ASPAROUHOV AND MUTHEN

nested since the equal correlation matrix is also equivalent
to a one factor model. That, however, is not the case for the
M1 model estimates in this finite population and the corre-
lations were not estimated to the same value. Another inter-
esting perspective is the following. If in the above setup we
change just one of the factor correlations to 0.1 instead of
0.5 (making it further away from a one factor model) and
we estimate the models M1 and M2, we get a NET value of
0.06604214 and again the models are identified as not
nested. But in this case the NET procedure was not needed:
the M1 model produced a better log-likelihood value than
the M2 model and it has fewer parameters, clearly revealing
the fact that the models are not nested.

Multiple group CFA

In this section, we consider the multiple group CFA model
and in particular we discuss conditions for the scalar invar-
iance CFA model to be nested within the configural CFA
model. This topic has been discussed in Raykov,
Marcoulides, and Li (2012) from an interpretive point of
view where here we use a statistical approach based on the
NET methodology. First, we discuss the models with con-
tinuous variables, then we discuss the models for the com-
bination of categorical and continuous variables. Finally, we
discuss the special case where a factor is measured by only
two indicators and consider the implications that has on the
nesting of the models. We analyze the nesting of the models
algebraically and with the NET procedure.

Continuous variables

The scalar invariance model, which we refer to as the M1
model, is defined as follows:

Yig = u+ Anjg + &ig. (1)

ning(aga\Pg)7gig~N(07®g>a (12)

where the indices i and g refer to individual 7 in group g. For
identification purposes, one factor loading in A is fixed to 1
for each factor and a; = 0. The configural CFA model,
which we refer to as the M2 model, is defined as follows:

Yig =ty + Aoty + &ig- (13)
Nig~N (0, ¥y), &:e~N(0,0,). (14)

For identification purposes one factor loading in Ag is
fixed to 1 for each factor. Model M1 is nested within
model M2 and that can be seen algebraically as follows.
If we add the following constraints to the parameters of
model M2 for g>1

Ag = A (15)

ﬂg :Alag +ﬂ1 (16)

the model becomes equivalent to model M1, where A, takes
the role of A and y; takes the role of x. Under the above
constraints the log-likelihood values of M2 and M1 would
be identical. Therefore, M1 is nested within M2, even
though the factor means a, are fixed to zero in M2 while
they are estimated as free parameters in M1. This is an
example where the more restricted model has new para-
meters that are not present in the less restrictive model
without compromising the nesting of the models.

We illustrate the nesting of the above models using the
NET methodology applied to a two-group two-factor CFA
model where each factor is measured by three different indi-
cators and there are no cross-loadings. We generate the data
according to model M1 using 100 observations in each group
and the following parameter values: the loading parameters
are set to 1, the intercept parameters are set to 0, the residual
variance parameters are set to 1, the factor variance covar-
iance matrix is set to the identity matrix, the factor means are
set to 0 in the first group and to 1 in the second. Using these
data, we estimate model M1 and M2 and apply the NET
procedure to verify that the models are nested. Model M1
uses scalar invariance across the groups and has a total of 30
parameters: 6 intercept parameters, 4 loading parameters, 6
residual variance parameters in each group, 3 parameters in
the factor variance covariance matrix in each group, and 2
factor mean parameters in the second group. Model M2 uses
configural invariance across the groups and has 38 para-
meters, that is, 19 parameters in each group: 6 intercept
parameters, 4 loading parameters, 6 residual variance para-
meters, and 3 parameters in the factor variance covariance
matrix. Model M1 has 2 factor mean parameters not present
in model M2. Nevertheless, model M1 is nested within model
M2. This is confirmed by the NET procedure which produces
a NET value of 0.00000000.

Combination of categorical and continuous
variables

In this situation the models can be estimated with the
WLS family of estimators. Here, we use the “theta”
parametrization, see Muthén and Asparouhov (2002),
but the conclusions apply to the “delta” parametrization
as well. Several changes apply to the above models
when categorical variables are involved. First, the
above equations apply to the underlying continuous vari-
ables Y. Second the parameters u and p, are zero for
every categorical variable. Third, in the M2 model the
diagonal entries in ©, are fixed to 1 for every catego-
rical variable, while in the M1 model the diagonal
entries in ®; are fixed to 1 for every categorical variable
while for all other groups these parameters are not fixed
to 1 but are free to be estimated. The fourth change is
regarding the thresholds for the categorical variables. In



the M1 model the thresholds are group invariant 1,
while in the M2 model they are group specific T,
where p refers to the variable the p — th variable in the
vector Y;, which we denote by Y,;.. Thus, for model M1
we have

Ypig =j& TP,/—1<Y1jig < Tpj (17)

while for model M2

Ypig =] € Tj-15< Yy < Tpjg- (18)

We can also express this in probability scale. For model M1

Ty — Npllig

N

TPJ*1 - Ap”/ig

P(Ypig :j|77ig) = (I)(

—O( ) (19)
/ Ozpp
and for model M2
P(Ypig :jlnig) = (D(ijg - Agp”ig)
— O(tp-14 — Apg’]ig) (20)

where A, and A, refer to the p — th row of A and A, while
Ogpp 18 the p — th diagonal entry of @, for model M1. If the
following constraints are imposed on the parameters of
model M2 for g>1

Agy = ——2 1)

DAy (22)

Tpjg = —/@ -

the model becomes equivalent to model M1 where A,
takes the role of A, and 1, takes the role of 7,. The
parameter constraints for the continuous variables in the
model that are needed to reduce model M2 to model M1
are the same as in the previous section. We conclude that for
the combination of categorical and continuous variables,
model M1 is nested within model M2.

The special case of two-indicator factors

In this section, we limit the discussion to a loading
matrix of complexity 1, i.e. there are no cross-loadings
and each dependent variable measures exactly one factor.
We are particularly interested in the special situation when
one of the factors is measured by just two indicator vari-
ables. We discuss the issues that occur in this case in regard
to the nesting of M1 and M2. We also illustrate the NET
methodology with several examples.
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Using only two indicators to measure a factor is by no
means recommended here. It is of course preferable to have
more than two indicators. However, in many practical situa-
tions this is not an option for the data analysts. First, note
that if the model consists of just one factor, measured by
two variables, even in the case of only one group, there is an
identification problem. In the continuous case, the number
of sufficient statistics is five; two means, two variances, and
one covariance. Any SEM model that can be estimated in
this context can have no more than five parameters and the
above CFA models would have six: two means, two residual
variances, one loading, and one factor variance. In the
binary case, we have only three degrees of freedom/suffi-
cient statistics which are the three cell probabilities in the
joint distribution of the two binary variables. The above
CFA model, however, would estimate four parameters: two
thresholds, one loading, and one factor variance. In both
cases the identifiability problem is often resolved by fixing
the second loading to 1 (the first is already fixed to 1). These
considerations, however, do not apply to the more general
SEM model where there are other factors and other indicator
variables. The second loading is no longer unidentified and
can be estimated because it reflects information regarding
how the second indicator correlates to other variables in the
model as compared to the first indicator. We illustrate this in
the simulation study below. Very often, however, the iden-
tifiability of the second loading, even though it is possible, it
is still fairly poor. The model estimation may fail to con-
verge or even if it converges the standard errors of many of
the parameter estimates (particularly in the categorical case)
maybe so large that it makes inference quite unsatisfactory
(poor power). For these reasons, the second loading is often
fixed to 1 even if in principle the loading can be identified.
This, however, has important implication for the configural
v.s. scalar testing. We illustrate that with a simulation study,
using the NET procedure.

Consider the following two-group CFA model with two
factors. The first factor is measured by five indicators and
the second factor is measured by two. The model has a total
of seven dependent variables. We generate the data using
10,000 observations for each group. The data is generated
from the M1 model where all 7 loadings are set to 1, all
intercepts u are set to 0. The residual variances in the first
group are set to 1 and in the second group to 0.8. The factor
variances in the first group are set to 1 and in the second
group to 1.2. The factor covariance is 0.6 in the first group
and 0.4 in the second group. The factor means are set to 0 in
the first group and 0.3 in the second group. We estimate
models M1 and M2 using this data set. Both models con-
verged and the two-indicator factor did not cause any pro-
blems. The NET procedure confirms that the models are
nested and the NET value is 0.00000000. Next we estimate
the models M1 and M2 where the second loading is also
fixed to 1. As expected the models converged as well and
the NET value again confirmed that the models are nested.
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Let us now repeat this simulation in the context of
binary indicator variables. We use the same setup and
parameter values. The threshold values we use for data
generation purposes are as follows. The thresholds for
the five indicators measuring one factor are
0.1,0.2,0.3,0.4,0.5, while the thresholds for the two indi-
cators for the second factor are set to 0.5 and 0.8. Again
we estimate the M1 and M2 models using this data set.
Both models converged and the two-indicator factor did
not cause any problems. The second loading was esti-
mated near its true value. The NET procedure concluded
that the two models are nested as we would expect and
the NET value is again 0.00000000. Next we estimate
the M1 and the M2 models with the second loading also
fixed to 1 (which is the true value used for data genera-
tion purposes). Again the two models converged, how-
ever the NET value in this case is 0.00000704 and the
NET procedure concludes surprisingly that the two mod-
els are not nested. Model M1 has 26 parameters and a
chi-square value of 27.4. Model M2 has 28 parameters
and a chi-square value of 21.1. Still the NET procedure
implies that the models are NOT nested. This invalidates
also the chi-square difference testing. In this situation,
the chi-square difference testing is done in Mplus with
the DIFFTEST command, when using the WLSMV
default estimator. It is important to note here that the
DIFFTEST command does not perform a complete check
to verify the nesting of the two models. It verifies that
the M2 model has more parameters than the M1 model
and a smaller fit function value, however, these two
conditions are only necessary but not sufficient condi-
tions for nesting. The DIFFTEST command generally
assumes that the models are nested. In certain situations,
when the models are not nested the DIFFTEST com-
mand encounters computational problems due to the
violated nesting assumption. However, in some exam-
ples, the DIFFTEST command will complete the compu-
tation of the chi-square difference testing even when the
models are not nested, i.e. will produce an invalid result.
Thus, the NET procedure complements the DIFFTEST
command and allows us to verify the nesting and avoid
such invalid difference testing results.

The above problem with the nesting of the scalar and the
configural model is actually quite easy to explain. Suppose
that Yg and Y7 are the indicators for the second factor. For
model M2 in group 2, the model implies that Cor (Y}, Y{) =
Cor(Yy,Y7) because that covariance is channelled through
the factor covariance and the loadings as well as the residual
variances for Y and Y7 are identical. In model M1, this
constraint is not present (i.e. the model is less restricted in
that part of the model) because the residual variances are
free to be estimated. It is interesting to note that if in the
configural model instead of fixing the loadings to 1 in both
groups, we fix the loadings to 1 in group 1 but we free the

second loading in group 2, the nesting is restored, i.e. in that
case the NET procedure concludes that the scalar model is
nested within this modified configural model.

The above logic brings to the spotlight an additional
concept: the order of the groups. For the original scalar
and configural models given in Equations (11-14) the
order of the groups is irrelevant. All reordering of the
groups yield equivalent models and the same chi-square
values. This, however, is no longer the case for the Ml
model when two of the loadings are fixed to 1. In group 1
we have the constraint Cor(Y}, Y¢) = Cor(Y[, Y5), while in
group 2 that constraint is relaxed and, therefore, the group
modeling is not equivalent and the group order matters.
Indeed, when the group order is reversed we obtain a
different chi-square value. In addition, we can use the
NET procedure to test if reversing the order of the groups
produces equivalent models. Note that the NET procedure
in its current implementation requires that the groups come
in the same order for the two models that are to be tested.
Therefore, to test the equivalence between the two models
with reversed group order we have to override the Mplus
defaults of factor variance means being fixed to 0 in the first
group and the residual variances being fixed to 1 in the first
group, i.e. to reverse the order of the groups we have to
specify the model for the second group to be the reference
group model. Using the NET procedure we obtain the NET
value of 0.00000704 and we conclude that the models with
reversed order of the groups are not equivalent.

Let us summarize our findings. We showed here that the
scalar model is generally nested within the configural model.
If, however, non-standard constraints are added in the model,
the nesting could be broken. We illustrated this with the
example of a two-indicator factor model for categorical indi-
cators where both loadings are fixed to 1. The NET procedure
should be utilized with non-standard parameter constraints to
verify proper nesting of the models. The multiple group
scalar modeling that we discussed above also applies to long-
itudinal studies where the same measurement model occurs at
different time points, see Muthén and Asparouhov (2002).
Therefore, the NET procedure should be used to verify model
nesting for longitudinal models in the presence of non-stan-
dard measurement model constraints.
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