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Abstract

This papers considers new factor analytic and item response theory (IRT)

approaches to the study of invariance across groups. Two methods are described

and contrasted. The alignment method considers the groups as a fixed mode of

variation, while the random-intercept, random-loading two-level method considers

the groups as a random mode of variation. Both maximum-likelihood and

Bayesian analysis is applied. A survey of close to 50,000 subjects in 26 countries

is used as an illustration. In addition, the two methods are studied by Monte

Carlo simulations. A list of considerations for choosing between the two methods

is presented.

2



1 Introduction

This papers considers new factor analytic and item response theory (IRT)

approaches to the study of invariance across many groups. The analysis of many

groups presents special difficulties in that it is often realistic to assume that

there is a large degree of measurement non-invariance. This is typically the case

with studies comparing countries in that quite different subject background and

country characteristics cause potentially wide differences in response processes.

Recent methodological developments attempt to take this into account, providing

modeling that assumes only approximate measurement invariance while still

making it possible to make group comparisons on latent variables.

To structure the presentation, it is useful to distinguish between two traditional

strands of research viewing the groups as fixed or random modes of variation.

With fixed mode, inference is to the groups in the sample (e.g. all U.S. states,

all European countries) and usually there is a relatively small number of groups,

leading to multiple-group factor analysis or multiple-group IRT. With random

mode, inference is to a population from which the groups/clusters have been

sampled (e.g. U.S public schools) and usually there is a relatively large number of

groups/clusters, leading to two-level factor analysis or two-level IRT. Using either

of the two views, two new techniques have recently been proposed that have in

common the notion of approximate measurement invariance:

1. Fixed mode: Alignment (Asparouhov & Muthén, 2013)

2. Random mode: Two-level modeling with random item parameters (de Jong

et al., 2007; Fox, 2010; Jak, 2013ab)
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This paper gives an overview of the two approaches, describes how they relate to

each other, and gives some recommendations for choosing between them.

The following example will be used throughout to illustrate the different

analysis approaches. The data are from the European Social Survey as discussed

in Beierlein et al. (2012). The survey intended to cover the 28 European Union

countries and if possible all other European states including Russia and Israel. Due

to cost issues, however, not all countries participated, resulting in 26 countries and

49,894 subjects with an average country sample size of 1,919. The latent variable

constructs of tradition and conformity are measured by four items presented in

portrait format, where the scale of the items is such that a high value represents a

low level of tradition-conformity. The item wording is shown in Table 1. The two

constructs have been found to correlate highly and are here viewed as forming a

single factor.

[Table 1 about here.]

The structure of the paper is as follows. Section 2 applies conventional, fixed-

mode multiple-group factor analysis to the 26-country data, presents the fixed-

mode alignment method, and applies the alignment method to the 26-country

data. Section 3 presents different two-level models, contrasts them, and applies

them to the 26-country data. Section 4 presents Monte Carlo simulation studies

of the two methods. Section 5 concludes with a comparison of the two methods

on several practical criteria.
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2 Fixed Mode Analysis

2.1 Conventional Multiple-Group Factor Analysis

With fixed mode analysis, it is well known that factor analysis of multiple groups

commonly considers three different degrees of measurement invariance (see, e.g.

Millsap, 2011): configural, metric (also referred to as weak factorial invariance),

and scalar (strong factorial invariance). Configural invariance specifies the

same location of the zero factor loadings of confirmatory factor analysis (CFA)

commonly used with multiple-group analysis; see, however, ”ESEM” (Exploratory

Structural Equation Modeling) analysis of multiple groups (Asparouhov &

Muthén, 2009). No equality restrictions across groups are present for any of the

parameters. Metric invariance holds the values of the factor loadings equal across

groups. This makes it possible to make group comparisons of factor variances and

structural relationships in SEM. Scalar invariance specifies that both the factor

loadings and the measurement intercepts (thresholds with categorical items) are

invariant. This makes it possible to compare factor means and factor intercepts

across groups.

The following introduces notation and gives a quick refresher of the correspond-

ing three sets of factor analysis formulas for a particular item in the one-factor

case for individual i in group j.

Configural:

yij = νj + λj fij + εij, (1)

E(fj) = αj = 0, V (fj) = ψj = 1.
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Metric:

yij = νj + λ fij + εij, (2)

E(fj) = αj = 0, V (fj) = ψj.

Scalar:

yij = ν + λ fij + εij, (3)

E(fj) = αj, V (fj) = ψj,

where ν is a measurement intercept, λ is a factor loading, f is a factor with mean

α and variance ψ, and ε is a residual with mean zero and variance θ, uncorrelated

with f . The configural model has subscript j for both intercepts and loadings,

the metric model drops the subscript j for the loadings, and the scalar model

drops the subscript j for both intercepts and loadings. Given the non-invariant

intercepts and loadings, the configural model cannot identify the factor mean and

variance, but sets the metric of the factor by fixing the factor mean to zero and the

factor variance to one, while the metric model identifies group differences in the

factor variances, and the scalar model identifies group differences in both factor

means and variances.

For historical reasons, metric invariance has dominated multiple-group analysis

given that mean structure modeling was introduced relatively late in SEM, initially

having a covariance structure emphasis. In other fields such as IRT, the opposite is

the case with a stronger emphasis on the categorical counterpart to measurement

intercepts (referred to as difficulties in IRT). The emphasis on metric invariance is
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unfortunate because it is hard to imagine how an item can be perceived the same

way by subjects if in the regression of an item on a factor only the regression slope

(the factor loading) and not the regression intercept (the measurement intercept)

is invariant. Scalar invariance, however, has been found to rarely fit the data well,

especially in the analysis of many groups. This has hampered the comparison of

factor means across groups. The new fixed-mode method referred to as alignment

solves this problem. Interestingly, the method is not limited to the traditional

domain of multiple-group CFA or IRT where only a few groups are typically

studies, but the alignment method is suitable for the study of many groups, say

up to 100.

Measurement invariance (referred to as ”item bias” and ”DIF” in IRT) has

traditionally been concerned with comparing a small number of groups such

as with gender or ethnicity using techniques such as likelihood-ratio chi-square

testing of one item at a time (see, e.g., Thissen et al, 1993). Two common

approaches have been discussed (Kim & Yoon, 2011; Lee et al., 2010; Stark et al.,

2006):

• Bottom-up: Start with no invariance (configural case), imposing invariance

one item at a time

• Top-down: Start with full invariance (scalar case), freeing invariance one

item at a time, e.g. using modification indices (Sörbom, 1089)

Neither approach is scalable - both are very cumbersome when there are many

groups, such as 50 countries (50 × 49/2 = 1225 pairwise comparisons for each

item). The correct model may well be far from either of the two starting points,

which may lead to the wrong model.
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2.2 Conventional Multiple-Group CFA of the 26-Country

Example

Table 2 shows the model fit results for the configural, metric, and scalar models.

The large sample size of 49, 894 produces zero p-values for all three models. The

configural model, however, may be deemed to have reasonable RMSEA and CFI

fit values. It is clear that the addition of invariant intercepts of the scalar model

in particular adds greatly to the misfit.

[Table 2 about here.]

The scalar model shows many large modification indices: 83 in the range of 10-

100, 15 in the range of 100-200, and 16 in the range of 200-457 (the largest value).

The presence of so many large modification indices implies that a long sequence of

model modifications is needed to reach a model with acceptable fit and the search

for a good model may easily lead to the wrong model. We conclude that traditional

multiple-group CFA fails due to too many necessary model modifications. This

is a typical outcome when a scalar invariance model is applied to many groups.

It is then impossible to compare factor means across the groups. A new method

is needed. In this paper we review the radically different method of alignment as

proposed in Asparouhov and Muthén (2013).

2.3 The Alignment Method

An advantage of the alignment method is that it has the same fit as the configural

model. The alignment method minimizes the amount of measurement non-

invariance by estimating the factor means α and factor variances ψ. This is
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possible despite the fact that these parameters are not identified without imposing

scalar invariance because a different set of restrictions is imposed that optimizes

a simplicity function. The simplicity function F is optimized at a few large non-

invariant parameters and many approximately invariant parameters rather than

many medium-sized non-invariant parameters (compare with EFA rotations using

functions that aim for either large or small loadings, not mid-sized loadings)

In the alignment optimization of the simplicity function, the factor means αj

and variances ψj are free parameters, noting that for every set of factor means

and variances the same fit as the configural model is obtained with loadings λj

and intercepts νj changed as:

λj = λj,configural/
√
ψj, (4)

νj = νj,configural − αj λj,configural/
√
ψj. (5)

The alignment method has two steps:

1. Estimate the configural model:

• Loadings and intercepts free across groups, factor means fixed at zero,

factor variances fixed at one

2. Alignment optimization:

• Free the factor means and variances and choose their values to minimize

the total amount of non-invariance using a simplicity function

F =
∑
p

∑
j1<j2

wj1,j2 f(λpj1 − λpj2) +
∑
p

∑
j1<j2

wj1,j2 f(νpj1 − νpj2), (6)
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for every pair of groups and every intercept and loading using a

component loss function (CLF) f from EFA rotations (Jennrich, 2006)

In this way, a non-identified model where factor means and factor variances

are added to the configural model is made identified by adding a simplicity

requirement. Simulation studies show that the alignment method works very

well unless there is a majority of significant non-invariant parameters or small

group sizes. For well-known examples with few groups and few non-invariances,

the results agree with the alignment method.

In addition to the estimated aligned model, the alignment procedure as

implemented in Mplus Version 7.11 gives measurement invariance test results

produced by an algorithm that determines the largest set of parameters that

has no significant difference between the parameters. Factor mean ordering

among groups and significant differences produced by z-tests are also given.

Information is further provided on each item’s intercept and loading contribution

to the optimized simplicity function. An R2 measure is a useful descriptive

statistic for the degree of invariance for a parameter, showing how much of the

configural parameter variation across groups can be explained by variation in the

factor means and factor variances. A high R2 value indicates a high degree of

measurement invariance. Further details of the alignment method are given in

Asparouhov and Muthén (2013).

2.4 Critique of the Alignment Method

The assumption of the alignment method is that a majority of the parameters are

invariant and a minority of the parameters are non-invariant. In some applications
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there may not be a clear invariance pattern of this kind to be found. For example,

in achievement studies of civic education in different countries, country-specific

curricula and history may cause non-invariance among most or all items and

countries. A difficulty of the method is how to be aware that such a situation is

at hand.

2.5 Alignment Analysis of the 26-Country Example

This section continues the analysis of the tradition-conformity items for 49, 894

subjects in 26 European countries that was introduced in Section 2.2. It is

shown how the alignment method resolves the problem of comparing factor

means found with the traditional multiple-group factor analysis under scalar

invariance. Maximum-likelihood estimation was used for the initial configural

model as discussed in Asparouhov and Muthén (2013).

Table 3 shows the (non-) invariance results for the measurement intercepts

and factor loadings. The countries that are deemed to have a significantly

non-invariant measurement parameter are shown as bolded within parentheses.

As seen in Table 3, most of the items show a large degree of measurement

non-invariance for the measurement intercepts and, to a lesser extent, the

loadings. The large degree of non-invariance is in line with the findings of the

traditional approach using the scalar model. However, Table 3 also shows that

item IPBHPRP has no significant measurement non-invariance and this item is

therefore particularly useful for comparing these countries on the factor.

Table 4 shows each item’s intercept and loading contribution to the optimized

simplicity function. These values add up to the total optimized simplicity function
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value. In line with Table 3, it is seen that the item IPBHPRP contributes by

far the least, while the items IPMODST, IMPTRAD, and IPFRULE contribute

roughly the same. This implies that IPMODST, IMPTRAD, and IPFRULE have

a similar degree of measurement non-invariance. The R2 column of Table 4 also

indicates that the IPBHPRP item is the most invariant in that essentially all

the variation across groups in the configural model intercepts and loadings for

this item is explained by variation in the factor mean and factor variance across

groups. The variance column of Table 4 again shows the variation in the alignment

parameters across groups and again indicates invariance for item IPBHPRP.

Taken together, these three columns give an indication of the plausibility of the

assumption underlying the alignment method mentioned in Section 2.4, namely

that an invariance pattern can be found. In this example, the inclusion of the

IPBHPRP item makes this assumption plausible and ensures good performance

of the alignment method. This is also supported by Monte Carlo simulation

studies discussed in Section 4.2. Note, however, that simulation studies show

that to obtain good alignment performance, it is not necessary that any item has

invariant measurement parameters across all groups.

Table 5 shows the factor means as estimated by the alignment method. For

convenience in the presentation, the factor means are ordered from high to low

and groups that have factor means significantly different on the 5% level are

shown. Figure 1 compares the estimated factor means using the alignment

method with the factor means of the scalar invariance model (without relaxing

any invariance restrictions). The correlation between the two sets is 0.943, but

despite this seemingly high correlation there are several discrepancies. Recalling

the reversed scale, the two methods agree that Sweden (country 23) has the
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lowest level of tradition-conformity and Cyprus (country 4) the highest level. The

alignment method, however, finds that Portugal (country 21) has a significantly

different mean from the Netherlands (country 18), whereas the scalar method finds

essentially no difference between these countries. Other discrepancies between

the two methods are found for France compared to Switzerland and for Norway

compared to Russia.

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Figure 1 about here.]

3 Random Mode Analysis

Turning to random mode analysis, the question is what two-level factor analysis

and two-level IRT can tell us about measurement invariance and how it can be

used to compare groups with respect to group-specific factor values. As a refresher

on two-level factor analysis and IRT it is useful to distinguish between three major

types of models:

1. Random intercepts, non-random (invariant) loadings: Different within- and

between-level factor loadings

2. Measurement invariance (non-random intercepts and loadings): Same

within- and between-level factor loadings and zero between-level residual

variances
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3. Random intercepts and random loadings

3.1 Model Type 1: Random Intercepts, Non-Random

Loadings, Different Within- and Between-Level Factor

Loadings

As a background for model type 1, recall random effect ANOVA for individual i

in cluster j,

yij = ν + yBj
+ yWij

, (7)

where yBj
and yWij

are uncorrelated. For a given item, two-level factor analysis

generalizes this to

yij = ν + λB fBj
+ εBj

+ λW fWij
+ εWij

(8)

with covariance structure V (yij) = ΣB + ΣW , where

ΣB = ΛB ΨB Λ′
B + ΘB,

ΣW = ΛW ΨW Λ′
W + ΘW .

It is clear that (8) can be equivalently expressed as a random intercept model:

Level 1 : yij = νj + λW fWij
+ εWij

, (9)

Level 2 : νj = ν + λB fBj
+ εBj

. (10)
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The variation in the random intercept νj is expressed in terms of variation in a

between-level factor fBj
and a between-level residual εBj

.

Figure 2 shows the model in diagram form. On the within level there are

two factors (f1w and f2w), shown as circles, whereas on the between level there

is one factor (fb). In an educational testing context with students clustered

within schools, the within factors may correspond to verbal and mathematics

achievement, while the between factor may correspond to school excellence. This

illustrates that the factor loadings can be different on the two levels. The filled

circles on the within level indicate that the intercepts of the factor indicators

y1 − y6 are random effects. These random effects are latent continuous variables

on the between level, where the figure shows a standard linear one-factor model

albeit with latent instead of observed factor indicators. The short arrows show the

residuals, labelled εBj
on the between level in (10). The idea of possibly different

factor structures on the two levels is in line with the two-level factor analysis

tradition starting with Cronbach (1976) and Härnqvist (1978) and carried further

in Goldstein and McDonald (1988), McDonald and Goldstein (1989), Longford

and Muthén (1992), Härnqvist et al. (1994), and Muthén (1994).

[Figure 2 about here.]

3.2 Model Type 2: Measurement Invariance, Same Within-

and Between-Level Factor Loadings

Moving to model type 2, it is instructive to see the connections between random

intercept two-level factor analysis, conventional two-level IRT, and measurement

invariance. Conventional two-level IRT (see, e.g., Fox & Glas, 2001; Fox, 2005,
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2010) considers the special case of λW = λB = λ and V (εBj
) = 0, so that (9) and

(10) become

Level 1 : yij = νj + λ fWij
+ εij, (11)

Level 2 : νj = ν + λ fBj
+ 0, (12)

so that νj varies only as a function of fB, that is, the intercept of the outcome

is determined by the cluster factor value. In conventional two-level IRT contexts

this is typically re-written as

yij = ν + λ fij + εij, (13)

fij = fBj
+ fWij

, (14)

which shows that the model assumes invariance of the intercept ν and the loading

λ across clusters and that the same λ multiples both fB and fW . This conventional

two-level IRT model has the covariance structure

ΣB = Λ ΨB Λ′, (15)

ΣW = Λ ΨW Λ′ + ΘW . (16)

so that ΘB = 0.

Testing of measurement invariance with random intercept two-level factor

analysis is considered in Jak et al. (2013a,b). This involves testing the general

model of (9) and (10) against the model with λW = λB = λ and V (εBj
) = 0 using

likelihood-ratio χ2. Modification indices (Lagrange multipliers; Sörbom, 1989) are
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used to reveal model misfit due to non-zero V (εBj
), pointing to factor indicators

that have significant between-level residual variance and therefore non-invariant

intercepts. This approach is illustrated in Section 3.5.1.

3.3 Model Type 3: Random-Intercepts, Random-Loadings

Model type 3 lets both intercepts and factor loadings vary across between-level

units. This has been discussed in De Jong, Steenkamp and Fox (2007), De Boeck

(2008), De Jong and Steenkamp (2010), Frederickx et al. (2010), Fox (2010), Fox

and Verhagen (2011), Verhagen and Fox (2013), Verhagen (2013), and Asparouhov

and Muthén (2012). Bayesian estimation is needed because random loadings with

maximum-likelihood estimation gives rise to numerical integration with many

dimensions which is computationally intractable. The proposed analysis implies

a new conceptualization of measurement invariance where each measurement

parameter varies across groups/clusters, but groups/clusters have a common mean

and variance. As with the alignment method, only approximate measurement

invariance is presumed. Different groups/clusters have different random deviations

from the common mean. E.g., for a factor loading,

λj ∼ N(µλ, σ
2
λ). (17)

This is illustrated in Figure 3, where the overall factor loading µλ = 1, but there

is a small variance σ2
λ = 0.01 across groups/clusters. Nevertheless, 95% of the

groups/clusters have a factor loading between 0.8 and 1.2.

[Figure 3 about here.]
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Fox (2010) considered this approach in the context of IRT with binary

indicators, where the random-intercepts, random-loadings model can be expressed

for an outcome yij for individual i in group/cluster j as

P (yij = 1) = Φ(aj θij + bj), (18)

aj = a+ εaj , (19)

bj = b+ εbj . (20)

where Φ is the standard normal distribution function, θij is an ability factor,

εaj ∼ N(0, σa), and εbj ∼ N(0, σb). This is a 2-parameter probit IRT model

where both discrimination (a) and difficulty (b) vary across groups/clusters. The

θ ability factor is decomposed into between- and within-group/cluster components

as

θij = θBj
+ θWij

. (21)

The mean and variance of the ability vary across the groups/clusters. The model

preserves a common measurement scale while accommodating measurement non-

invariance. The ability for each group/cluster can be obtained by factor score

estimation.

As discussed by Fox (2010), special modeling considerations are needed to

separately identify cluster/varying factor means and variances in the presence

of random intercepts and loadings. Asparouhov and Muthén (2012) proposed a

convenient way to accomplish this. This is described here for continuous factor

indicators but carries over directly to binary indicators. For a certain continuous
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factor indicator yij, the model is specified as

yij = νj + λj fWij
+ εij, (22)

νj = ν + λ fBj
+ ενj , (23)

λj = λ+ λ fψj
+ ελj , (24)

where fWij
∼ N(0, 1), εij ∼ N(0, θ), ενj ∼ N(0, σ2

ν), ελ,j ∼ N(0, σ2
λ), fB ∼ N(0, ψ),

and fψj
∼ N(0, σ2). The variation in intercepts is captured by σ2

ν , the variation

in the loadings is captured by σ2
λ, the variation in factor means is captured by ψ,

and the variation in the factor variance is captured by σ2. Cluster-specific factor

values corresponding to factor means, can be obtained as factor score means for

the between-level factor fBj
using draws of Bayesian plausible values.

The previous two types of two-level factor analysis and IRT models are easily

related to the model in (22) - (24). Model type 2 of (13), (14) is obtained when

setting σ2 = 0, σ2
λ = 0, and σ2

ν = 0, that is, requiring no factor loading variation

so that λj = λ and requiring no intercept variation that is not explained by fB,

so that νj = ν +λ fBj
. Model type 1 of (9), (10) is obtained when setting σ2 = 0,

σ2
λ = 0 and in addition letting λj = λW , that is, requiring no factor loading

variation but allowing different factor loadings on the two levels. It may be noted

that only model type 3 allows for cluster variation in the factor variances by letting

σ2 be freely estimated.
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3.4 Critique of the Assumptions Behind Two-level Anal-

ysis

The random mode approach of two-level analysis builds on the assumptions of

randomly sampled groups/clusters and normally distributed random measurement

parameters. In some cases, these random mode assumptions are not well

supported. The group of countries studied may not represent a random sample

of a specific population and may in fact be a heterogeneous collection of different

country types. Bou and Satorra (2010) criticize the random mode approach in

favor of a fixed-mode, multiple-group approach. They argue from a substantive

point of view in terms of comparing countries that it is not likely that the set of

countries can be considered as random draws from a population. Non-normality

of the distribution of a measurement parameter may be violated due to a set

of outlying countries for which the survey question has quite different meaning.

From this point of view, deviations from a common mean are not likely to follow

a simple distribution such as the normal. For example, consider a situation such

as shown in Figure 4. The figure can be seen as showing a set of measurement

intercepts for a factor indicator, where a majority of the groups/clusters have a

small intercept with some variation around it and a minority of the groups/clusters

have a much larger intercept with some variation around it. In this way, there is a

mixture of two unobserved subpopulations and treating this as a single population

random intercept situation gives distorted results with an estimated mean that is

incorrect for both subpopulations and a variance estimate that is inflated. The

mixture case is considered in De Jong and Steenkamp (2010), but results in a very

complex analysis.
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[Figure 4 about here.]

3.5 Two-Level Analyses of the 26-Country Example

In this section the three types of two-level models discussed above are applied to

the 26-country data. One factor is specified for both levels.

3.5.1 Random Intercept Analysis

Three random intercept models are fitted, following the suggestions of Jak et al.

(2013a). Model 1 lets factor loadings be different on the two levels and lets the

residual variances on the between level be free (λB 6= λW , θB free). Model 2

holds the factor loadings equal across levels, while still letting the between-level

residual variances be free (λB = λW , θB free). Model 3 holds the factor loadings

equal across levels and fixes the residual variances on the between level to zero

(λB = λW , θB = 0). The models are estimated by maximum-likelihood. The

resulting fit statistics are shown in Table 6.

[Table 6 about here.]

Model 1 fits rather well given the large sample size of 49,894 subjects. The χ2

p-value is 0.000, but good fit is indicated by RMSEA = 0.011 and CFI = 0.999.

A test of Model 2 against Model 1 leads to a χ2 test of 3.9 with 3 degrees of freedom

so that equality of factor loadings across levels cannot be rejected. Testing Model

3 against Model 1, however, rejects zero between-level residual variances with a

χ2 of 6,703 with 7 degrees of freedom.

The influence on model misfit for Model 3 due to non-zero residual variances

on the between level is shown in Table 7. In addition to modification indices,
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the actual χ2 improvements (the drop in χ2)) when freeing the residual variances

one at a time are shown. For these parameters the modification index values

do not seem to give a good approximation of the actual model fit improvement,

although the conclusions about which indicators are most in need of free residual

variances are the same as for the actual χ2 improvement. The two factor indicators

IPMODST and IPFRULE show a much stronger need for free residual variances

than the other two indicators and are therefore exhibiting much stronger non-

invariance of the measurement intercepts.

[Table 7 about here.]

3.5.2 Random Intercept and Random Loading Analysis

Bayesian analysis was applied to the random-intercept, random-loading model

of (22) - (24). The intercept and loading variance estimates are shown in

Table 8. The two factor indicators IPMODST and IPFRULE show larger intercept

variances than the other two indicators. This is in line with the random intercept

model, that is, allowing loadings to be random as well does not change the picture.

For the loadings, the IPMODST item has the largest variance. The variance

estimates are in line with those of the alignment method shown in Table 4.

Significant variation in factor means as well as factor variances is also found

(not shown). The ordering of the countries based on factor means can be compared

between the factor means of the alignment method and the factor score means of

the Bayesian plausible values for the between-level factor fBj
. For this example the

correlation between the two sets is 0.987. Figure 5 shows the relationship. Some

of the differences between the two approaches in the ordering of the countries are
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similar to those of Figure 1, with the two-level approach taking the role of the

scalar model approach. The relationship between the scalar model approach and

two-level approach is, however, not perfect, but the correlation is 0.980.

[Table 8 about here.]

[Figure 5 about here.]

4 Simulation Studies Comparing Fixed versus

Random Mode Analysis

This section compares the alignment method and the random-intercept, random-

loading method using simulated data. In the Monte Carlo studies it is useful

to have a simple gauge of the quality of the estimation. An important goal

is to correctly estimate the ordering of the groups with respect to the factor

means/factor scores. In Monte Carlo simulations, an important statistic is

therefore the correlation between the true factor means and the estimated factor

means. As a first step, the relationship between this correlation and the error

in the estimation of the factor mean is derived. This is followed by several

simulation studies using the alignment approach and using the two-level approach.

The results for the model with full measurement invariance are also shown as a

comparison.
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4.1 Correlation and Standard Error for Group-Specific

Factor Means

Consider the alignment method, that is, a fixed-mode, multiple-group analysis

and the goal of correctly estimating the ordering of the groups with respect

to the factor means. The correlation between the true factor means and the

estimated factor means can be computed for each replication and averaged over

the replications. It can also be computed from the correlation between the true

factor means and the average estimated factor means, where the average is over

the replications. The latter value is largely independent of the sample size and

therefore shows the potential of the alignment method to do a good job for the

extent of non-invariance studied, whereas the former value shows the performance

of the alignment method for the extent of non-invariance studied as well as the

sample size studied.

Although the size of a correlation is easy to understand, it is also useful to

consider the standard error of the factor mean estimate. Appendix 1 derives

the relationship between the standard error and the correlation. Table 9 shows

examples of correlation values and the corresponding limit of the estimation error

for 95% of the groups, where the error is given in a standardized metric. It is seen

that a rather high correlation is required to keep the absolute error small. For

example, to achieve a relatively small absolute error limit of 0.277 for 95% of the

groups, a correlation of 0.99 is required. A correlation of 0.95 gives a large error of

0.620. Figure 1 and Figure 5 exemplify the difference in ordering of the countries

for a correlation of 0.943 and 0.987, respectively. A correlation of at least 0.99

has also shown to be a good requirement for low bias in estimating each group’s

24



factor mean.

[Table 9 about here.]

Using the factor mean correlation as a gauge of quality is also applicable to the

two-level, random-intercept, random-slope method. In this case the factor means

are replaced by factor score means from Bayesian plausible value draws for each

group/cluster. Because of the random-mode approach, the true values vary across

replications.

4.2 Simulations Based on the 26-Country Data

As discussed in Asparouhov and Muthén (2013), the quality of estimation can

be studied based on the features of a particular real data set. The estimated

parameter values for the data set are used to generate data for the simulation

study. To study the alignment method, the real data are analyzed by the

alignment method, data are generated in many replications from those estimates,

and analyzed using the alignment method. The two-level method is studied

analogously by analyzing the real data by the random-intercept, random-loading

two-level method, generating data from those estimates over many replications,

and analyzing using the random-intercept, random-loading two-level method. The

real data used here is the 26-country data.

For the alignment method the correlation between the true factor means and

the estimated factor means computed for each replication and averaged over the

replications is 0.990 for the factor means. According to Table 9, the high factor

mean correlation corresponds to a relatively small absolute error of 0.277. The

correlation between the true factor means and the average estimated factor means,
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where the average is over the replications, is 0.999 for the factor means. The latter

value approximates the quality of estimation for a very large sample, whereas the

former value is sample-size specific. These values indicate very good performance

of the alignment method. Analysis using the scalar model performs considerably

less well with correlations of 0.940 and 0.943, respectively for the replication-

specific and average computations.

Using the analogous approach when applying the random-intercept, random-

loading two-level method, the correlation between the true factor scores and

the estimated factor scores computed for each replication and averaged over

the replications is only 0.950 corresponding to an absolute error of 0.620. The

correlation using averages is not applicable in this case given that average scores

are zero. The poor performance of the two-level method is most likely due to

using only four factor indicators. The corresponding correlations when adding

similar indicators to use 8, 12, 16, and 20 indicators are 0.977, 0.982, 0.985, and

0.988, respectively. This suggests that for indicators of the quality seen for the

26-country data, about 20 indicators are needed for good recovery of the factor

scores.

Still generating the data according to the random-intercept, random-loading

two-level method, but analyzing using the two-level model type 2, where both the

intercepts and loadings are invariant (not random), a correlation of only 0.874 is

obtained. This is akin to using the scalar model in the fixed-mode case. Applying

model type 1, a correlation of 0.872 is obtained. These two results show the

importance of using random measurement parameters. Note, however, that in

this case using a model with random intercepts and non-random loadings that

are equal across the two levels obtains a correlation of 0.951, that is, the same as
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when also letting the loadings be random. This means that this simpler model

can be estimated by maximum likelihood in line with what was used for model

type 1, leading to quicker computations.

In the above studies, data were analyzed by the same model that generated

the data. It is useful to also study the methods when applied to data generated

by a different model. Appendix 2 shows simulations where the data generation is

based on multiple-group data suitable for the alignment method and a comparison

is made between the results of analyzing by the alignment method versus analyzing

by the two-level method. The analogous case of data generation based on

a random-intercept, random-slope two-level model is also studied. In these

comparisons between methods, the same data are used and it is therefore possible

to compare the methods with respect to both correlation and a mean squared

error (MSE) that describes in one statistic both the bias and variability of the

estimates. The reader is referred to Appendix 2 for the results.

5 Conclusions

This paper discusses two new methodologies for studying invariance across many

groups. Both are based on the idea of approximate measurement invariance and

perform well under a large set of conditions. The availability of the two new

methods should be a welcome contribution to the study of invariance across many

groups. They represent a big step forward in the methodology and they are not

difficult to use. The Mplus scripts for all analyses in this paper are available at

www.statmodel.com.

The differences between the two methods discussed in this paper is in how
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the group-specific factor mean and variance parameter are obtained and what

assumptions are added to the information in the data. The assumption of the

alignment method is that a majority of the parameters are invariant and a minority

of the parameters are non-invariant. The assumption of the random intercept

and loading method is that all parameters are approximately the same, i.e., no

parameters are exactly the same across the groups, but rather each parameter

has random variation that makes it slightly different from the corresponding

parameter in the rest of the groups. Thus when deciding which model to use

for a practical application one should focus on deciding which of the above two

assumptions is more appropriate for the particular application. The alignment

method focuses on identifying the reason for non-invariance and produces a model

that has clear interpretation in terms of invariance and non-invariance. The

random intercept and slope method is not as detailed or focused on the actual

parameter variations across the groups but instead looks at the entire population

as a whole. In addition to these general considerations, there are several practical

issues in deciding between the two methods as described below.

5.1 Practical Issues in Choosing Between Fixed and Ran-

dom Approaches

There are several practical reasons for preferring either the alignment or the

random-intercept, random-loading two-level approach. The pros and cons of the

two methods are listed in Table 10. A plus sign denotes that the method has

an advantage over the other method, and a minus sign denotes that it has a

disadvantage.
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[Table 10 about here.]

5.1.1 Number of Factor Indicators

As seen in the simulations, the two-level method needs a sufficiently large number

of factor indicators to perform well. This is due to the need to estimate factor

scores and is in this way analogous to scoring issues in IRT. Many survey

instruments represent factors with only a few indicators in order to cover many

factors without making the survey instrument too long. For achievement studies,

however, the number of indicators is much larger and the two-level method would

work well. The alignment method can work very well with a small number of

indicators as seen in the simulations. For one factor, three indicators is sufficient

in principle.

5.1.2 Number of Groups

If the number of groups is small the random intercept, random-loading model may

not perform well and perhaps not even converge. Typically, at least 30 groups

is recommended in the multilevel literature. If the number of groups is large the

alignment method may have slow convergence and with more than say 100 groups

computations are prohibitive due to the many parameters of the configural model.

In many cases, however, both methods are possible and for any particular example

it may be useful to compare the results to better understand the data.

5.1.3 Group Size

With small group sizes, the two-level method has an advantage over the alignment

method. In contrast to the alignment method, the two-level method does not
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estimate parameters specific to each group. The two-level method borrows

information from all groups in estimating the parameters which are common to

all the groups, while allowing for random variation across groups. The group

size requirement for the alignment method varies depending on how clear the

invariance pattern is. For both alignment and two-level analysis, a notion of the

actual group size needed in a specific example can be obtained by Monte Carlo

simulation. Asparouhov and Muthén (2013) did Monte Carlo studies of the 26-

country data and found good alignment results for group sizes as low as 100, but

in other situations group sizes of several thousand observations may be needed.

5.1.4 Invariance Pattern

The type of measurement non-invariance pattern is an important factor in

choosing between the two methods. As mentioned in Section 2.4, the assumption

of the alignment method that a majority of the parameters should be invariant

and a minority of the parameters should be non-invariant may not be at hand in

all applications. In such situations, the two-level method is preferable.

5.1.5 Information About Groups Contributing to Non-Invariance

Measurement invariance studies benefit from information on which groups con-

tribute to non-invariance. This information is readily obtained by the alignment

method. The two-level method, however, has currently no such counterpart given

that it only estimates the degree of measurement variance across groups.
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5.1.6 Normality of Measurement Parameter Distributions

Normality of the distribution of measurement parameters across groups is assumed

by the two-level method. In contrast, the alignment method allows any kind of

measurement parameter distribution and is in this sense non-parametric.

5.1.7 Explanatory Variables for Non-Invariance

Group-level variables are sometimes hypothesized to influence measurement

parameters and therefore explain part of the measurement non-invariance. Such

variables can be incorporated in the two-level analysis, but currently this option

is not available with the alignment method.

5.1.8 Complex Survey Data

Comparisons of many groups often arise in surveys of many countries where a

complex survey design is used. For instance, with PISA, TIMSS and other surveys

of school children, sampling of schools is carried out using probability proportional

to size (PPS), giving rise to the need to use sampling weights. Complex survey

features of weights, stratification, and clustering can be taken into account in

the maximum-likelihood estimation of the alignment method. To date, however,

Bayesian analysis can not accommodate complex survey features.

5.1.9 Computational Speed

Computational speed is a final important practical consideration. In most cases,

the maximum-likelihood estimation with the alignment method gives much quicker

computations than the Bayesian analysis with the two-level method. This is due to
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the simple, two-step procedure of alignment where a configural model is estimated

first, followed by a computationally simple optimization of the alignment fit

function. In contrast, the Bayesian analysis needed for the random-intercept,

random-slope two-level model involves a complex model with many random effects.
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6 Appendix 1: Correlation and Error of Estima-

tion

This Appendix derives the relationship between the correlation between true and

estimated factor means on the one hand and the standard error of the estimated

factor mean on the other hand. Suppose that fj are the group-specific factor

means standardized to mean zero and variance one. Suppose that f̂j are the

corresponding estimates and suppose that ρ = Cor(fj, f̂j). Then

fj = ρf̂j + ε

where ε is a residual with mean zero and variance 1 − ρ2, uncorrelated with f̂j.

Therefore

fj − f̂j = (1− ρ)f̂j + ε

so that the residual fj − f̂j has a variance of (1 − ρ)2 + 1 − ρ2 and a standard

deviation √
(1− ρ)2 + 1− ρ2.

Thus the error in the estimate is limited by absolute value to

1.96
√

(1− ρ)2 + 1− ρ2

in 95% of the groups.
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7 Appendix 2: Further Simulations

This appendix describes the means squared error for factor means and presents two

simulation studies. In the first study, data are generated by the alignment model

and in the second study, data are generated by the random-intercept, random-

loading two-level model.

7.1 Mean Squared Error

From a practical perspective one of the most important results of the multiple-

group factor analysis is the group specific factor mean parameter αj. Therefore

the two methods are compared based on the following mean squared error (MSE)

measure:

MSE =

√√√√ G∑
i=1

(α̂j − αj)2/G

where αj is the true factor mean α̂j is the estimated factor mean and G is the

number of groups. The identification condition for the alignment method is that

the factor mean in the first group is zero and the factor variance in the first

group is 1. The data are generated using these conditions. The identification

conditions for the factor intercept and loading method are quite different so these

estimates need to be standardized before they can be compared to the alignment

estimates using the MSE measure. Suppose the α̂i,0 are the group specific factor

mean estimates obtained with the random intercepts and loadings model. To get

these estimates standardized in the same global metric as the alignment and the
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generation metric one can reparameterize the factor mean estimates as follows

α̂j =
α̂j,0 − α̂1,0√

ψ̂1,0

where ψ̂1,0 is the estimated factor variance in the first group obtained with the

random intercepts and loadings method. Now α̂j estimates are in the same metric

as the alignment estimates because mean and the variance of the first group will

be 0 and 1 respectively.

7.2 Two-Level Random using Multiple-Group Model Data

Data are generated by a one-factor model for 30 groups using three indicator

variables. Each group contains 1000 observations. For a certain item, the model

is given by

yij = νj + λj fij + εij

for individual i in group j. The factor fij has mean αj and variance ψj and the

residual εij has mean 0 and variance θj.

The generation parameters are set as follows, reflecting the situation in

Figure 4 with some outlying groups with respect to intercept values. The residual

variances θj are set to 1 for every indicator for every group. The indicator

intercepts νj are 0 and the loadings λj are 1 except in the non-invariant cases

listed below. The parameters are set in groups of 10, that is, the parameters in

the groups 1,...,10 are the same as the parameters in groups 11,...,20 and also in

groups 21,...,30. The non-invariant parameters in the first 10 groups are as follows.

The first intercept is non-invariant in groups 3, 6 and 9. The second intercept
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is non-invariant in groups 4, 7 and 10. The third intercept is non-invariant in

groups 2, 5 and 8. All non invariant intercepts are set to 1. The first loading

is non-invariant in groups 4, 7 and 10. The second loading is non-invariant in

groups 2, 5 and 8. The third loading is non-invariant in groups 3, 6 and 9. All

non invariant loadings are set to 1.5. All factor variances ψj are set to 1 and the

factor means αj are set to 0 except for α4 = −1, α5 = 1 and α10 = 2.

Using the above simulated example the MSE for the alignment method

is 0.055 and for the random-intercept, random-loading two-level method it is

0.229. The correlation between the true and estimated means is 0.998 for the

alignment method and 0.985 for the random-intercept, random-loading method.

The correlation between the estimates of the two methods is 0.989. This illustrates

the fact that the alignment method performs better in terms of recovering the

model parameters more accurately when the data are generated by a multiple-

group model. The random intercepts and loadings method is essentially driven

by minimizing the variability of the group-specific parameter estimates across

the groups, which is a very different goal than finding the simplest and most

interpretable non-invariance patterns, which is the principle that the alignment

methods is based on.

7.3 Alignment using Two-Level Model Data

In the above simulation, the data generation is favoring the alignment method.

Data were generated according to a model where most parameters are invariant

and few are non-invariant. This kind of non-invariance pattern is what the

alignment method is searching for. In this section the two methods are compared
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based on data generation that instead favors the two-level, random-intercept,

random-loading model.

Data are generated according to a random-intercept, random-loading single-

factor model with three indicators using the same parameter estimates that were

obtained in the random-intercept, random-loading model in the simulation of

the previous section. In this data generation the factor analysis parameters

vary randomly across groups, i.e., all the parameters are slightly different and

no parameter is invariant. These data are analyzed with the alignment method

and the random-intercept, random-loading method. The factor means are now

standardized so that they add up to 0 and have a standard deviation of 1. The

true factor means are standardized the same way and the MSE measure computed

for both methods. The MSE for the alignment method is now 0.514 and the

MSE for the random-intercept, random-loading method is 0.329. The correlation

between the true and estimated means is 0.863 for the alignment method and 0.944

for the random-intercept, random-slope method. The correlation between the

estimates of the two methods is 0.885. Thus with this alternative simulation one

could conclude that the random-intercept, random-loading method recovers the

parameters estimates better. Thus depending on which way the data are generated

a different method can perform better. Note, however, that in this case where the

two-level method is applied to the multiple-group data of Section 7.2 and data

are generated from the two-level model estimates, any simple invariance pattern

that is originally present is distorted and causes poor alignment performance. This

shortchanging of the alignment method in this section does not have a counterpart

for the two-level method in the previous section because the two-level method can

be well fitted to multiple-group data.
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Figure 1: 26-Country Example: Factor Means for Alignment Method vs Scalar
Model
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Figure 2: Random Intercept Two-Level Factor Analysis in Figure Form
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Figure 3: Random Measurement Parameter
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Figure 4: Group-Varying Intercepts
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Figure 5: 26-Country Example: Factor Means for Two-Level vs Alignment
Analysis
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Table 1: Tradition-Conformity Items from the 26-Country European Social Survey

Tradition (TR): 9. It is important for him to be humble and modest.
He tries not to draw attention to himself (ipmodst).

20. Tradition is important to him. He tries to follow
the customs handed down by his religion or family
(imptrad).

Conformity (CO): 7. He believes that people should do what they’re told.
He thinks people should follow rules at all times, even
when no one is watching (ipfrule).

16. It is important for him to always behave properly.
He wants to avoid doing anything people would say is
wrong (ipbhprp).
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Table 2: 26-Country Example: Model Fit for Multiple-Group Model (n = 49, 894)

Model χ2 Df P-value RMSEA (Prob ≤ .05) CFI

Configural 317 52 0.000 0.052 (.311) 0.990
Metric 1002 127 0.000 0.060 (.000) 0.967
Scalar 8654 202 0.000 0.148 (.000) 0.677

Metric vs Config 685 75 0.000
Scalar vs Config 8337 150 0.000
Scalar vs Metric 7652 75 0.000
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Table 3: 26-Country Example: Approximate Measurement (Non-) Invariance for
Intercepts and Loadings over Countries

Intercepts:

IPMODST (2) (3) (4) 5 (6) (7) (8) 9 (10) (11) (12) 13 14 (15) 16 17 (18) (21)

(22) (23) (24) 25 26 (27) 28 (30)

IMPTRAD (2) (3) (4) (5) 6 (7) 8 9 (10) 11 (12) 13 (14) (15) (16) (17) 18 (21)

(22) (23) (24) (25) 26 27 (28) (30)

IPFRULE (2) 3 (4) (5) 6 (7) (8) (9) (10) 11 (12) (13) (14) (15) (16) (17) 18

(21) (22) (23) 24 (25) 26 (27) 28 30

IPBHPRP 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 30

Loadings:

IPMODST (2) 3 (4) 5 6 (7) (8) 9 (10) (11) (12) (13) 14 15 16 17 18 21 22 23 24

25 (26) (27) 28 30

IMPTRAD 2 3 4 5 6 7 (8) 9 10 11 12 13 14 15 16 17 18 21 22 23 (24) 25 (26) 27

(28) 30

IPFRULE 2 3 4 5 6 (7) 8 9 10 (11) (12) 13 14 15 16 17 18 21 22 23 24 25 26 27

28 30

IPBHPRP 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 30
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Table 4: 26-Country Example: Alignment Fit Statistics

Intercepts Loadings

Fit Function Fit Function

Item Contribution R-Square Variance Contribution R-Square Variance

IPMODST -229.849 0.203 0.105 -158.121 0.000 0.020

IMPTRAD -199.831 0.566 0.058 -134.042 0.000 0.014

IPFRULE -213.806 0.198 0.103 -113.305 0.263 0.008

IPBHPRP -32.836 1.000 0.000 -33.941 0.999 0.000
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Table 5: 26-Country Example: Factor Mean Comparisons of Countries

Ranking Group Value Groups with significantly smaller factor mean

1 26 0.928 24 21 7 11 4 12 30 8 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

2 24 0.613 21 7 11 4 12 30 8 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

3 21 0.391 30 8 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

4 7 0.357 30 8 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

5 11 0.342 8 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

6 4 0.331 8 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

7 12 0.310 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

8 30 0.247 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

9 8 0.200 13 22 25 15 23 28 16 18 10 3 14 27 5

10 6 0.161 22 25 15 23 28 16 18 10 3 14 27 5

11 17 0.130 22 25 15 23 28 16 18 10 3 14 27 5

12 9 0.121 22 25 15 23 28 16 18 10 3 14 27 5

13 2 0.114 22 25 15 23 28 16 18 10 3 14 27 5

14 13 0.100 25 15 23 28 16 18 10 3 14 27 5

15 22 0.007 15 23 28 16 18 10 3 14 27 5

16 25 0.000 15 23 28 16 18 10 3 14 27 5

17 15 -0.114 18 10 3 14 27 5

18 23 -0.145 10 3 14 27 5

19 28 -0.185 3 14 27 5

20 16 -0.190 3 14 27 5

21 18 -0.214 14 27 5

22 10 -0.234 14 27 5

23 3 -0.288 5

24 14 -0.314 5

25 27 -0.327 5

26 5 -0.478
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Table 6: 26-Country Example: Two-Level Random Intercept Analysis

Model Chi-Square Df RMSEA CFI

1. Different loadings across levels,

residual variances free on between

28.010 4 0.011 0.999

2. Equal loadings across levels,

residual variances free on between

31.868 7 0.008 0.999

3. Equal loadings across levels,

residual variances fixed at zero

6731.072 11 0.111 0.723
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Table 7: 26-Country Example: Two-Level Random Intercept Predicted and
Actual Chi-Square Improvement for Model 3 Between-Level Residual Variances

Item Chi-Square Improvement

Predicted by Actual
Modification Index

IPMODST 201,293 3,549
IMPTRAD 29,726 1,201
IPFRULE 161,347 2,924
IPBHPRP 14,347 852
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Table 8: 26-Country Example: Two-Level Random Intercept and Random
Loading Variance Estimates and 95% Credibility Intervals

Item Intercept Loading

Estimate CI Estimate CI

IPMODST 0.122 [0.070, 0.240] 0.022 [0.012, 0.042]
IMPTRAD 0.056 [0.031, 0.116] 0.010 [0.005, 0.021]
IPFRULE 0.100 [0.055, 0.196] 0.008 [0.003, 0.019]
IPBHPRP 0.008 [0.000, 0.038] 0.006 [0.002, 0.016]
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Table 9: Relationship Between Factor Mean Correlation and Absolute Error Size

Correlation 0.95 0.96 0.97 0.98 0.99 0.995 0.999
Error 0.620 0.554 0.480 0.392 0.277 0.196 0.088
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Table 10: Advantages and Disadvantages of Fixed versus Random Approaches in
Terms of Estimating Factor Means/Scores

Random-Intercepts,
Criterion Alignment Random-Slopes

Small number of
factor indicators + -

Number of groups
2-30 + -
30-100 + +
>100 - +

Small group
size - +

Weak invariance pattern - +

Information
about which
groups contribute
to non-invariance + -

Not requiring
normality of
measurement parameters + -

Ability to relate
non-invariance
to other variables - +

Complex survey
data + -

Computational
speed + -
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