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Abstract

This paper demonstrates that the regular LTA model is unnecessarily restrictive

and that an alternative model is readily available that typically fits the data

much better, leads to better estimates of the transition probabilities, and extracts

new information from the data. By allowing random intercept variation in the

model, between-subject variation is separated from the within-subject latent class

transitions over time allowing a clearer interpretation of the data. Analysis

of four examples from the literature demonstrates the advantages of random

intercept LTA. Model variations include Mover-Stayer analysis, multiple-group

measurement invariance analysis, and analysis with covariates.

Key words: Hidden Markov, mixtures, transition probabilities, latent trait-

state, two-level LCA, measurement non-invariance, Mover-Stayer.
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1 Introduction

Latent transition analysis (LTA) is frequently used in longitudinal studies to

characterize changes over time in latent discrete states, also referred to as latent

classes (see, e.g. Graham et al., 1991; Collins et al. 1992; Mooijaart, 1998;

Reboussin et al. 1998; Langeheine & van de Pol, 2002; Kaplan, 2008; Lanza &

Collins, 2008; and Collins & Lanza, 2010). The regular LTA model is, however,

unnecessarily restrictive and an alternative model is readily available that typically

fits the data much better, leads to better estimates of the transition probabilities,

and extracts new information from the data.

The regular LTA is represented as a single-level, wide-format model. The

alternative LTA model draws on the multilevel modeling idea of separating

between-subject variation from within-subject variation. From a multilevel

perspective, viewing time as the within level and subject as the between level, the

latent class transitions are represented on the within level whereas the between

level captures the variability across subjects. Essential parts of this multilevel

idea, however, can be represented in a single-level model in line with the regular

LTA model. Such an alternative single-level LTA model will be referred to as

random intercept LTA (RI-LTA) because a key focus is allowing for variation

across subjects represented by random intercepts.

The paper is structured as follows. Section 2 describes four data sets from the

LTA literature that will be used to demonstrate the advantage of RI-LTA over

regular LTA. Section 3 describes the regular single-level LTA model and gives a

critique of it. Section 4 discusses twolevel factor analysis and twolevel latent class

analysis models which serve as background for the proposed RI-LTA in Section 5.
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Section 6 shows applications of RI-LTA to the four data sets. Section 7 presents

an extension to Mover-Stayer modeling. Section 8 discusses random intercept

modeling extended to groups and covariates and shows applications. Section 9

concludes with a discussion of computational aspects, other model variations, and

the need for further research.

2 Data sets

Following is a brief description of the four data sets from the LTA literature that

will be used to demonstrate the advantage of RI-LTA over regular LTA. The data

sets exemplify a variety of samples sizes (N), number of time points (T), number

of outcomes (latent class indicators) per time point (R), and number of latent

classes (J).

2.1 Life satisfaction (N = 5147, T = 5, R = 1, J = 2)

This data set is from the German Socio-Economic Panel with N=5147, 5 time

points one year apart, and 1 binary latent class indicator measuring 2 latent classes

at each time point (Langeheine & van de Pol, 2002). Survey respondents were

asked ”How satisfied are you on the whole with your life” with answer categories

unsatisfied and satisfied.

2.2 Mood (N = 494, T = 4, R =2, J = 2)

This data set is from a longitudinal study with N=494, 4 time points 3 weeks

apart, and 2 binary latent class indicators measuring 2 latent classes at each time
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point (Eid & Langeheine, 2003). Participants rated their momentary sadness and

unhappiness on a 5-point scale ranging from 1 (not at all) to 5 (very much). A

dichotomized version of the two items was used in Eid and Langeheine (2003) as

well as here (first category versus the other categories).

2.3 Reading proficiency (N=3574, T = 4, R = 5, J = 3)

This data set is from the Early Childhood Longitudinal Study with N=3574, 4

time points corresponding to Fall and Spring of Kindergarten and first grade,

and 5 binary latent class indicators measuring 3 latent classes at each time point

(Kaplan, 2008). The 5 indicators concern a stage-sequential process measured

by the basic reading skills of letter recognition, beginning sounds, ending letter

sounds, sight words, and words in context. A binary covariate indicates whether

or not the child’s household is above the poverty threshold.

2.4 Dating and sexual risk behavior (N = 2933, T = 3, R

= 5, J = 5)

This data set is from the National Longitudinal Survey of Youth (NLSY97) with

N=2937, 3 time points one year apart, and 5 ordinal and binary items measuring 5

latent classes at each time point (Lanza & Collins, 2008). The items are past-year

number of dating partners (0, 1, 2 or more), past-year sex (no, yes), past-year

number of sexual partners (0, 1, 2 or more), and exposed to STD in past year (no,

yes). Covariates are gender and whether the respondent has used cigarettes, been

drunk, or used marijuana in the past year.
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Figure 1: LTA for 1 binary item at 5 time points
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Figure 2: LTA for 2 binary items at 3 time points
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3 Regular LTA

Figure 1 and Figure 2 show model diagrams for two types of regular LTA models.

Figure 1 corresponds to the model for the Life satisfaction data with one binary

indicator per time point and Figure 2 corresponds to the model for the Mood data

with two binary indicators per time point.

The regular LTA model has three parts. (1) The part for the latent class

variable Ct at the first time point describes the initial status probabilities

for the time 1 latent classes, P (C1). (2) The transition part describes the

conditional probabilities of the latent class variable Ct at time t given the
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latent classes at time t-1, P (C2|C1), P (C3|C2, C1), etc. Note that regular LTA

allows only lag-1 relationships among the latent class variables, that is, Ct is

influenced only by Ct−1, not C at any earlier time point. This is known as the

Markov property. Stationarity, that is, invariance across time of the transition

probabilities, is sometimes imposed. (3) The measurement part specifies the

conditional probabilities P (Ut|Ct) of the categorical latent class indicators Ut given

the latent classes of Ct where the different latent class indicators Ut at time point t

are independent conditioned on their respective latent class variable Ct. The latent

class indicators Ut are typically assumed to be influenced only by Ct, the latent

class variable at the same time point. Furthermore, measurement invariance for

all latent class indicators is typically applied across all the time points. The model

implies that the correlations across time for the latent class indicators are fully

explained by the correlations among the latent class variables. Regular LTA is

typically estimated using maximum-likelihood (ML) although Bayesian estimation

can also be used.

Consider the parameters of the model represented in Figure 1. With 2 latent

classes, this model has 5 parameters for the stationary version and 11 for the

non-stationary version: 1 initial status parameter P (C1 = 1) with 2 transition

parameters for the stationary model; P (Ct|Ct−1 = 1), P (Ct|Ct−1 = 2), and with

8 transition parameters for the non-stationary model, obtained as 2 times the

4 transitions; and 2 measurement parameters corresponding to the conditional

probabilities P (Ut = 1|Ct = 1) and P (Ut = 1|Ct = 2). The 5 binary outcomes

contribute 25 − 1 = 31 pieces of information, that is, the unrestricted model for

the 5 binary outcomes has 25 − 1 = 31 parameters. With a large enough sample

and a small enough total number of latent class indicators, it is possible to test fit
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between the observed and estimated frequency tables. This uses a likelihood-ratio

or a Pearson chi-square test of the LTA model against the unrestricted model

with degrees of freedom equal to the difference in the number of parameters for

the unrestricted model and the LTA model. In other cases, model fit has to be

assessed in more limited ways, e.g. via univariate and bivariate marginal frequency

tables. The decision on the number of latent classes to use is typically based on

BIC (Schwarz, 1978).

As an example, Table 1 gives the estimates for the Life satisfaction example

which corresponds to the Figure 1 model. The latent class probabilities at the

initial time point are estimated as 0.395 for the unsatisfied class and 0.605 for

the satisfied class. The probability of staying in the same class between time 1

and time 2 is high, estimated as 1.000 and 0.874 for the unsatisfied and satisfied

class, respectively. The latent class probabilities at the second time point are

obtained as follows from the latent class probabilities at the first time point and

the transition probabilities.

Unsatisfied : 0.395× 1.000 + 0.605× 0.126 = 0.471 (1)

Satisfied : 0.605× 0.874 + 0.395× 0.000 = 0.529. (2)

The transition probabilities for the other three transitions are of similar

magnitude (although a test rejects invariance/stationarity). The bottom of the

table shows the measurement parameters as the conditional probabilities of an

unsatisfied/satisfied answer given membership in an unsatisfied/satisfied latent

class. Each row shows the difference in observed response probabilites for the

two latent classes. For each row, the large difference in these probabilities
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Table 1: Regular LTA estimates for the Life satisfaction example

Time 1 latent class probabilities

Unsatisfied: 0.395 Satisfied: 0.605

Transition probabilities for Time 1 (rows) to Time 2 (columns)

Unsatisfied Satisfied

Unsatisfied 1.000 0.000
Satisfied 0.126 0.874

Measurement probabilities

Observed Latent class
response Unsatisfied Satisfied

Unsatisfied 0.855 0.163
Satisfied 0.145 0.837

shows that the latent class indicators clearly distinguished between the two latent

classes. The off-diagonal probabilities can be seen as ”measurement error” in that

membership in a certain class does not necessitate an answer in the corresponding

response category (Wiggins, 1973). This discrepancy between latent and observed

categories is a key feature of LTA and has given rise to the name hidden Markov

modeling (see, e.g., MacDonald & Zucchini, 1997).

3.1 A critique of the regular LTA model

The regular LTA model is analyzed in a single-level, wide format. It can,

however, be viewed as a two-level model where time represents the within level

(level 1) and subject represents the between level (level 2). In line with general
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two-level modeling, it is therefore important to separate between-level variation

across subjects from within-level, across-time latent transitions. It is essential

to remove between-subject differences that are stable over time from the within-

subject process which is of primary interest. This general idea appears in several

contexts with continuous observed and latent variables. For example, latent

trait-state modeling (see, e.g., Kenny & Zautra, 1995; Cole et al., 2005; Eid

et al., 2017) refers to the stable between-subject differences as a latent trait,

a continuous latent variable. A related example is cross-lagged panel modeling

(CLPM) where Hamaker et al. (2015) strongly advocates for separating out the

stable between-subject differences referred to as random intercepts so that the

cross-lagged relationships across time can be studied without interference of those

between-subject differences. This is named the RI-CLPM approach and is the

inspiration for the current paper. The idea of separating trait and states can

be clearly seen in the Kenny-Zautra model shown in Figure 3. The latent trait

is referred to as “T” and the latent states as “S” while the observed outcomes

are denoted “Y ” (other literature refers to this modeling as latent state-trait and

defines states as the sum of the trait and the occasion-specific latent variables;

see, e.g., Eid & Langeheine, 1999). Each observed outcome is the sum of trait,

state, and a residual seen as measurement error. The key feature is that the latent

trait influences the observed outcomes and not the latent states. In this way, the

states are free of trait influence which means that the relationships between the

states are not affected by stable differences between subjects.

The aim of the current paper is similar to the literature just cited, building

on the idea of a stable trait in Kenny and Zautra (1995) and extracting

between-subject variation in Hamaker et al. (2015). These two articles discuss
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Figure 3: Latent trait-state model (Kenny & Zautra, 1995)
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continuous outcomes where you can split each outcome into a between and a

within component of variation. This paper considers categorical variables where

this split is not possible. The split of the variation in the continuous-outcome

case, however, is the same as using random intercept modeling and it is the

random intercept idea that connects the continuous and categorical cases. The

random intercept idea is common in the statistics and econometrics literature as

a general way of representing unobserved heterogeneity (see, e.g., Fitzmaurice

et al., 2011; Wooldridge, 2002). For categorical latent and observed variables,

Eid and Langeheine (1999; 2003) consider latent trait-state modeling with a lag-

1 structure for occasion-specific latent class variables which together with latent

class variable traits contribute to the categorical outcomes. This is a type of latent

transition model that uses a random intercept notion although not portrayed as

such. Judging from the last two decades of applied LTA articles, however, the

Eid-Langeheine model appears to have been overlooked and not adopted in latent

11



transition analysis practice but will be one of the models studied here.

This paper focuses on the following two key aspects. First, because LTA

typically considers several indicators of the latent class variables, measurement

invariance/non-invariance across subjects needs to be considered. Allowing for

a degree of measurement non-invariance should be of primary concern when

studying structural relations, in this case relationships between the latent class

variables. Second, it is of interest to study how much the latent transition

probabilities are distorted in regular LTA when stable between-subject differences

are ignored.

To summarize, because regular LTA does not separate out stable between-

subject differences, it suffers from the risk of distorted estimates of the model’s

parameters, especially the transition probabilites. The alternative of random

intercept LTA aims to avoid this distortion while staying in the single-level, wide

analysis format.

3.2 A hypothetical example

A simple hypothetical example illustrates the effects of ignoring stable between-

subject differences. The model that the data correspond to will be formally

specified in Section 5 but can be conceptualized in line with Figure 3 although

with T replaced by a binary random intercept variable I and the S’s replaced by

binary latent class variables Ct. In this example, there are 5 binary indicators of

the latent class variable Ct at each time point, 2 time points, and 2 latent classes

for Ct. The single binary latent class random intercept variable I influences all

5 indicators equally. The latent class variable probabilities and the transition
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probabilities are presented below. The random intercept variable I has a 73-27

split representing two types/classes of subjects. A continuous random intercept

variable may be more realistic in many cases but as will be seen in the real-

data analyses, the binary random intercept variable can serve as a reasonable

approximation and makes the example simpler. For the 73% majority class, the

probability of endorsing each item is 0.27 when in Ct class 1 and 0.73 when in

Ct class 2. In this way, the latent class indicators clearly distinguish between

the two Ct classes for the 73% majority class. For the 27% minority class, the

probability of endorsing each item is 0.62 when in Ct class 1 and 0.92 when in

Ct class 2. The latent class indicators distinguish between the two Ct classes also

for the minority but at a higher level of endorsement probabilities. This suggests

that subjects in the minority class interpret the latent class indicator questions

differently than the majority class or have a different response style, perhaps

related to their background characteristics. As will be shown in in Section 4.2, the

measurement difference illustrated by the binary random intercept is in line with

the multilevel latent class example in Henry and Muthén (2010) where different

response behaviors are observed in different types of communities. The top part of

Table 2 gives the population values of the probabilities of the latent class variable

Ct and the transition probabilities. These probabilities are the same for the two

types of subjects, that is, the structural part of the model is not affected by its

measurement part.

A Monte Carlo study is carried out where data are generated according to this

model for a sample of N = 3000. This sample size is in line with those of the

Reading proficiency example and the Dating and sexual risk behavior example.

Using 500 replications, the data are analyzed by maximum likelihood both using
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Table 2: Latent class and transition probabilities for a hypothetical example using
an RI-LTA model with a binary random intercept (standard errors are given in
parentheses)

Population values for RI-LTA, binary RI model

Class 1 Class 2

Class probabilities
Time 1 0.500 0.500
Time 2 0.561 0.439

Transition probabilities
Class 1 0.622 0.378
Class 2 0.500 0.500

Estimated regular LTA model

Class 1 Class 2

Class probabilities
Time 1 0.446 (.016) 0.554 (.016)
Time 2 0.497 (.016) 0.503 (.016)

Transition probabilities
Class 1 0.670 (.021) 0.330 (.021)
Class 2 0.358 (.018) 0.642 (.018)

Estimated RI-LTA, binary RI model

Class 1 Class 2

Class probabilities
Time 1 0.498 (.035) 0.502 (.035)
Time 2 0.558 (.037) 0.442 (.037)

Transition probabilities
Class 1 0.624 (.031) 0.376 (.031)
Class 2 0.497 (.068) 0.503 (.068)
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the regular LTA which ignores the random intercept variable and using the correct

random intercept LTA model. The focus of this example is how the transition

probabilities are affected when using regular LTA on data generated by a random

intercept LTA model.

The second part of Table 2 gives the estimated values using the regular

LTA model. In parentheses are given the estimated standard errors obtained

as the average standard error across the 500 replications. The table shows that

regular LTA obtains biased parameter estimates. In particular, it obtains too high

diagonal values for the transition probabilities, that is, it overstates the stability

of class membership over time. The largest bias is for class 2 where the true model

says that it is equally likely for a subject to transition to class 1 as it is to stay

in class 2 while regular LTA says that it is distinctly less likely to transition than

to stay. The time 1 latent class probabilities are somewhat biased as well (the

time 2 latent class probability bias is a function also of the bias in the transition

probabilities).

The bottom part of Table 2 shows the results for the RI-LTA which uses the

correct model for the generated data. This shows that the population parameter

values are well recovered. The standard errors are well estimated and the coverage

values are also good (not shown). Comparing the standard errors to those of

regular LTA shows that the standard errors are underestimated by regular LTA.

For the class 2 transition probabilities, they are underestimated by a factor greater

than 3. This underestimation of standard errors is in line with ignoring cluster

effects in two-level data (see, e.g., Muthén & Satorra, 1995).

This hypothetical example illustrates the problem of regular LTA which ignores

stable between-subject differences, in this case represented by a majority and a
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minority class of subjects. A researcher may argue that sometimes the interest

is in the overall picture and not in the separate mixture components of different

subject classes. However, the two classes have the same transition probabilities

so that the mixture of the two obtained by regular LTA is not correct for either

subject class but instead an uninterpretable blend is obtained.

The potential for bias in regular LTA is clearly seen in this hypothetical

example. It remains to be seen, however, if this is a common phenomenon or

not in real data. This will be studied in Section 6 where the four different data

sets from the LTA literature are analyzed. Readers with a main interest in the

applications may go straight to this section. In the next section, however, the

multilevel background for the random intercept idea is discussed, followed by

Section 5 which presents the details of the proposed random intercept LTA.

4 A multilevel perspective

Because LTA can be viewed as a model with variation across time and variation

across subjects, it can be described as a twolevel model. This idea will be

approached in two steps, considering a twolevel factor analysis model and a

twolevel latent class analysis model. This gives the background for the proposed

random intercept LTA.

4.1 Random intercepts in multilevel factor analysis

Consider a binary outcome Uij for subject i in cluster j which is an indicator of

a factor fij using e.g. logistic regression. A typical example is measurement of

student performance in schools. Decomposing the factor variation into within and
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between components as fij = fWij
+ fBj

, the model can be expressed by the two

equations

logitP (Uij = 1|fWij
) = νj + λWfWij

, (3)

νj = ν + λBfBj
+ εBj, (4)

corresponding to the within- and between-level parts of a multilevel model. This

is in line with twolevel regression where the intercept νj is random, varying across

schools. The fact that νj is not the same for all schools can be seen as a type

of measurement non-invariance (Jak et al. 2013, 2014; Muthén and Asparouhov,

2018). The model is shown in Figure 4 for five factor indicators u1−u5 where in line

with Muthén and Muthén (1998-2017), the filled circles for the factor indicators

on the within level show that their intercepts are random. On the between level,

the random intercepts are shown as continuous latent variables. The εB residual

on the between level is left out in the figure because it is often close to zero. The

extraction of between-level variation ensures that using the factor as a predictor

on the within level does not confound its effect by between-level variation, that

is, using fW as the independent variable, not f = fW + fB.

Although the random intercept values are different for different clusters, the

clusters are assumed to belong to the same population with the same mean and

variance for the random intercepts. This view of measurement invariance/non-

invariance is discussed in Asparouhov and Muthén (2016) and Muthén and

Asparouhov (2018) and also relates to two-level modeling with random item

parameters in Item Response Theory (see, e.g., de Jong, Steenkamp, and Fox

2007; de Jong & Steenkamp, 2010; Fox 2010).
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Figure 4: Multilevel factor analysis
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Figure 5: Twolevel LCA for 5 binary items and 3 latent classes with latent class
random intercepts
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4.2 Random intercepts in multilevel latent class analysis

Latent class analysis (LCA) has typically taken a different approach to multilevel

modeling than factor analysis. As shown in Figure 5, the variation across clusters

is expressed via random intercepts/means for the classes of the latent class variable

c instead of its indicators. The statistical underpinnings of multilevel latent class

and latent transition analysis are discussed in e.g. Altman (2007), Asparouhov

and Muthén (2008), Henry and Muthén (2010), and Vermunt (2003, 2008).

The current paper draws on another multilevel LCA model that is in line with

the multilevel factor analysis model presented earlier. The random intercepts

will be specified for the latent class indicators instead of the latent classes as has
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been discussed in Asparouhov and Muthén (2008) and Henry and Muthén (2010).

Consider a binary latent class indicator Uij observed for student i in school j

where the latent class variable Cij represents different latent classes of students.

Considering one of the five latent class indicators U , the random measurement

intercept αcj can be expressed via the logit of the conditional probability for Uij

given the latent class variable Cij as

logitP (Uij = 1|Cij = c) = αcj = αc + εj, (5)

where the intercept αc varies across the classes c and ε is a normally distributed

random effect with mean zero and a variance that represents across-school

variation.

This model is shown in Figure 6. The filled circles at the bottom of the

u boxes represent random measurement intercepts. On the between level, the

random measurement intercept for each latent class indicator is shown as a circle

u representing a continuous latent variable that varies across the between-level

units, in this case schools. The random intercepts for the different items may

correlate as indicated by the double-headed arrows. With a polytomous ordinal

indicator, one can still specify a single random intercept shifting the probabilities

of all response categories.

The model with random intercepts for the latent class indicators presents com-

putational difficulties using maximum-likelihood estimation. With 5 indicators,

it requires 5 dimensions of numerical integration corresponding to the 5 latent

variables on the between level and this leads to very slow computations with low

precision. A common solution to this problem is to place an intercept factor
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Figure 6: Twolevel LCA for 5 binary items with latent class indicator random
intercepts
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(a continuous latent variable) behind the set of latent variables as shown by

the i intercept factor on the between level of Figure 7. With zero residuals,

this reduces the numerical integration to 1 dimension while allowing the random

intercepts to correlate and estimating their factor loadings. A non-parametric

version of this solution replaces the continuous intercept factors with a latent class

variable to eliminate the numerical integration altogether and avoid a normality

assumption for the factor. For example, a continuous factor can be seen as

approximated by e.g. a 3-class latent class variable where the class proportions

allow a non-symmetric distribution. In this paper, both the parametric approach

using continuous factors and the non-parametric approach using latent classes will

be referred to as using random intercepts.

It is possible to use random intercepts for both the latent class indicators

and the latent classes, that is, a combination of Figure 5 and Figure 6. Such a

twolevel LCA, however, requires large cluster sizes for the parameters to be well

defined. In longitudinal settings where cluster size refers to the number of time

points, Asparouhov and Muthén (2019) found that at least 10-20 time points were

needed. In typical LTA applications, however, there are only 2-5 time points. Also,

when a random intercept is specified to influence the latent class variables, the

transitions refer to latent class variables that contain between-subject variation,

thereby losing the between-within separation. For these reasons, the current paper

proposes random intercepts for the latent class indicators only.

Henry and Muthén (2010) provides an example of two-level LCA analyzing

smoking behavior for 10,772 9th grade females in 206 rural communities across

the United States. Six categorical latent class indicators measure three latent

classes of student smoking behavior. Using random intercepts for the latent class

22



Figure 7: Twolevel LCA for 5 binary items with a factor for latent class indicator
random intercepts
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indicators, they found significant variation across communities in the response

probabilities for several of the indicators where the variation across communities

was related to the proportion of youth living in poverty. For example, the

indicator ”Most friends are smokers” had a much larger probablity of being

endorsed in communities with a large poverty proportion. In contrast, no

significant differences across communities were found for the indicators ”Parents

would try to stop me from smoking” and ”Smoking harms health”. Using

random intercepts/means for the latent classes, they also found differences

across communities where communities in tobacco-growing states had a higher

probability of being in the heavy smoking latent class.

As suggested by the Henry and Muthén (2010) smoking example, random

intercept variation for the latent class indicators can be seen as a type of

measurement non-invariance. In the LTA context, this non-invariance refers to

different subjects having different response probabilities for a given latent class

indicator.

5 Random intercept LTA (RI-LTA)

Random intercept LTA (RI-LTA) borrows from the idea of indicator-level random

intercepts shown in Figure 4, Figure 6, and Figure 7. Using a single-level wide

analysis format, Figure 8 shows two versions of continuous random intercept RI-

LTA for 2 binary latent class indicators measured at 3 time points as in the Mood

example. The random intercepts i1, i2, i are continuous latent variables where the

loadings λ capture their different influence on the 2 latent class indicators. Each

indicator’s loading is held equal across time. The two model versions correspond
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to the between-level part Figure 6 and Figure 7, respectively, in that each indicator

has either its own random intercept or share the same random intercept factor

that has different effects on the two latent class indicators. Note that the random

intercept latent variables u on the between level in Figure 7 are not needed in the

single-level setting because the i variable can point directly to the observed latent

class indicators. In other words, the latent intercept variable i in the bottom

part of Figure 8 can be seen as the counterpart to the i factor in Figure 7. It is

interesting that the model in the bottom part of Figure 8 is in the spirit of the

Kenny-Zautra latent trait-state model for continuous observed and latent variables

shown in Figure 3. Between-subject variation in the u outcomes is represented

by a random interept and the c1 − c3 model part represents the within-subject

variation across time.

With a continuous intercept variable and the single random intercept factor

version for R latent class indicators per time point, only R parameters are added

namely the intercept factor loadings for each latent class indicator held equal

across time. Note that in line with the concept of a random intercept, the factor

loadings should not be different across time points because then the intercept

factor does not reflect stable (time-invariant) individual differences (in contrast,

latent trait-state modeling sometimes let loadings for traits be different across

time). For simplicity, the factor loadings are also not allowed to change across the

latent classes.

Consider next the version of RI-LTA that has a binary random intercept

represented by a latent class variable. A simple model version expressed in logit

terms uses the following parameterization for a binary latent class indicator Ut at

time t, latent class j at time t for the latent class variable C, and latent class k
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Figure 8: RI-LTA for 2 binary latent class indicators at 3 time points with a
random intercept: 2 continuous random intercepts versus 1

c1 c2 c3

u11 u12 u31 u32u21 u22

i1 i2

u11

c1 c2 c3

u12 u31 u32u21 u22

i

λ1 λ1 λ1 λ2λ2 λ2

λ1 λ1 λ1 λ2λ2λ2
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for a single random intercept latent class variable I,

logit[P (Ut = 1|Ct = j, I = k)] = α + βj + γk, (6)

where β1 = 0, γ1 = 0 for identification purposes. Here, α is a parameter specific

to the latent class indicator, βj is a parameter specific to the latent class indicator

as well as the latent class of C, and γk is a parameter specific to the latent class

indicator as well as the latent class of I. An interaction term for the combination

of j and k classes is omitted to keep the model parsimonious. As an example for

3 C classes and 2 I classes, the logits for a binary latent class indicator Ut at time

t are

logit[P (Ut = 1|Ct = 1, I = 1)] = α (7)

logit[P (Ut = 1|Ct = 2, I = 1)] = α + β2, (8)

logit[P (Ut = 1|Ct = 3, I = 1)] = α + β3, (9)

logit[P (Ut = 1|Ct = 1, I = 2)] = α + γ2, (10)

logit[P (Ut = 1|Ct = 2, I = 2)] = α + β2 + γ2, (11)

logit[P (Ut = 1|Ct = 3, I = 2)] = α + β3 + γ2. (12)

It is seen that the 6 logits are expressed in terms of 4 parameters. The parameters

do not change over time. For the case of only 2 latent classes for I, J latent classes

for Ct, and R latent class indicators per time point, this binary random intercept

model has R + R(J − 1) + R + 1 parameters beyond those of the C part of the

model: R α parameters, R(J − 1) β parameters, R γ parameters, and 1 latent

class parameter for I. The regular LTA model has R J parameters beyond those
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of the C part of the model. This means that R + 1 parameters are added to the

regular LTA model when using 2 latent classes for I. This is irrespective of the

number of response categories due to assuming a common shift for all response

categories. This is the parameterization used in Eid and Langeheine (1999).

Using maximum-likelihood estimation, the single continuous random intercept

version leads to computations with one dimension of numerical integration. The

binary random intercept version does not involve numerical integration but leads

to one more latent class variable than regular LTA. Both the continuous and

binary random intercept model versions of RI-LTA can be estimated using Mplus

(Muthén & Muthén, 1998-2017).

It should be noted that the regular LTA model is a special case of the RI-LTA

model. In situations where there are no stable between-subject differences, the

continuous random intercept model obtains zero factor loadings while the binary

random intercept model does not find a latent intercept class.

It is clear from Figure 8 that the random intercept variable allows the indicators

to correlate across time beyond what is captured by the latent class variables

Ct being correlated across time in the latent transition part of the model. The

indicator correlation across time is not a typical auto-regressive feature in that the

correlation does not diminish with increasing time distance but is constant in line

with representing a stable, time-constant, between-subject difference. Because it

accounts for some of the correlation across time, it is clear that introducing this

random intercept will affect the estimates of the latent transition probabilities,

especially with respect to staying in the same latent class over time, that is, the

diagonals of the transition probability matrices.

To some extent, random intercept modeling also relaxes the latent class
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assumption of conditional independence among the latent class indicators at a

given time point. In this way, the continuous random intercept version is related to

factor mixture modeling (see, e.g., Lubke & Muthén, 2005, Muthén & Asparouhov,

2006). The random intercept model does not, however, specify a factor for each

time point but a factor that is in common for all time points. Using a factor

mixture model for each time point as the measurement model may reduce the

number of latent classes at each time point but is unlikely to reduce the number

of latent classes in the analysis of all time points due to a one-factor construct

being more restrictive than multiple latent classes in how across-time correlation

is captured.

Unobserved heterogeneity in the form of between-subject variation in the latent

class variable part of the model can be represented by a second-order latent class

variable to represent different transition matrices. For each second-order latent

class, transitions can be viewed as a within-subject process. The mover-stayer

model (see, e.g. Langeheine & van der Pol, 2002) is an example of this with

a particular structure for the transitions and it will be studied in Section 7.

Observed between-subject variation can be studied using groups and covariates

and will be discussed next.

5.1 Groups and covariates

5.1.1 Regular LTA

In regular LTA, it is possible to study group differences in the model parameters in

line with Clogg and Goodman (1985) who presented an approach to a simultanous

analysis of several groups. A strength of the multiple-group approach is its
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Table 3: Logit parameterizations for C2 regressed on C1 and X: Interaction and
main effect model versions

Interaction model

C2

1 2 3

1 α1 + β11 + γ11x α2 + β21 + γ21x 0

C1 2 α1 + β12 + γ12x α2 + β22 + γ22x 0

3 α1 + γ13x α2 + γ23x 0

Main effect model

C2

1 2 3

1 α1 + β11 + γ1x α2 + β21 + γ2x 0

C1 2 α1 + β12 + γ1x α2 + β22 + γ2x 0

3 α1 + γ1x α2 + γ2x 0

generality which allows any parameter to be equal or different across the groups.

An example is the exploration of gender differences in the Lanza and Collins (2008)

dating and sexual risk behavior study. The multiple-group approach can be used

to test for measurement invariance across groups. An alternative approach is to let

covariates representing subject characteristics such as gender, ethnicity, ses, and

age influence the latent class variables as well as their transition probabilities. In

this paper, analysis with covariates is carried out using the logit parameterizations

shown in Table 3 for two latent class variables C1 and C2 where C2 is regressed

on C1 and a covariate X. The regression is expressed as a multinomial logistic
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regression where

P (C2 = c|C1 = k,X = x) = eαc+βck+γckx/

J∑
j=1

eαj+βjk+γjkx, (13)

with αJ = 0, βJk = 0, βc,J = 0, γJkx = 0. Here, α represents the intercepts

for C2, β represents the regression coefficients of C2 regressed on C1, and γ

represents the regression coefficients of C2 regressed on X. This translates the

logit parameters into transition probabilities. Equation (13) model implies that

the log odds comparing a certain C2 category c to the last C2 category J , is

obtained as

log[P (C2 = c|C1 = k,X = x)/P (C2 = J |C1 = k,X = x)] = αc + βck + γckx.

(14)

Exponentation gives the odds. The log odds and odds can also be computed with

the diagonal of the transition table as the reference category showing the odds of

transitioning relative to staying in the same class.

Table 3 shows two model variations. In the most general case shown at the

top, an interaction is allowed between the X variable and the latent class variable

C1 so that the γ parameters vary across the different rows, that is the classes of

C1. Not allowing interactions but only main effects, the bottom part of the table

shows that the γ parameters describing the influence of X are held equal across

the C1 classes. In this way, α1+γ1x and α2+γ2x can be seen as intercepts that are

different for the C2 classes whereas the regressions of C2 on C1 are not affected.
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5.1.2 RI-LTA

With RI-LTA, the intent is to represent between-subject variation by random

intercepts so that the relationships between the latent class variables are based on

within-subject variation only. Because a random intercept of RI-LTA represents

between-subject variation, it is therefore natural to let the random intercept have

different means across groups in a multiple-group approach or be regressed on

covariates in the covariate approach. The multiple-group approach, allowing

for group specific transition probabilities in addition to group specific random

intercept means, is suitable for the RI-LTA purpose because within each group, it

can still be assumed that there is no between-subject variation in the relationships

among the latent class variables. The covariate approach captures observed

heterogeneity among subjects so that conditioning on the covariate values, the

relationships among the latent class variables can be seen as within-subject

relationships.

6 Analyses of the four examples

As a first step, analysis of the four examples listed in Section 2 is described

in terms of model fit, comparing regular LTA with RI-LTA using both a

binary random intercept and a continuous random intercept. Next, latent class

probability estimates are presented and compared between the models. Finally,

the measurement estimates are discussed, showing the new information obtained

by the RI-LTA approaches. All analyses are carried out using Mplus (Muthén &

Muthén, 1998-2017) and scripts are available from the first author.
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6.1 Model fit

Table 4 shows the model fitting results for the four examples. The choice of

model will be based on BIC (smaller values are better). Because of differences in

the number of latent classes and whether or not a continuous random intercept

is present, models cannot be compared using likelihood-ratio chi-square. Also,

due to having many cells in the frequency table for all the categorical outcomes,

frequency table chi-square is not possible due to too many low frequency cells, the

exception being the Life satisfaction example which has only 32 cells and a large

sample. For the RI-LTA with a binary random intercept, the parameterization of

(6) - (12) is used. For the RI-LTA with a continuous random intercept, the simple

model version shown in the bottom part of Figure 8 is used. A non-stationary

model is chosen for the Life satisfaction and Reading proficiency examples

because stationarity was rejected by a likelihoo-ratio chi-square difference test.

A stationary model is chosen for the Mood example because this is the model

considered in Eid and Langeheine (2003). A stationary model is also chosen for

the Dating and sexual risk behavior example because unlike for regular LTA as in

Lanza and Collins (2008), stationarity cannot be rejected for the RI-LTA models.

For all four examples, Table 4 shows that the RI-LTA with a continuous

random intercept is preferrable based on BIC. The improvement in BIC is

especially noteworthy for the Reading proficiency example (in Kaplan, 2008, a

priori zero transition probabilities were specified for the lower triangle entries

but are freely estimated here due to better BIC). For the Dating and sexual risk

behavior example, the likelihood values are the same for the binary and continuous

versions of the random intercept and the continuous case wins out in terms of
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Table 4: Model fitting results

Life Satisfaction (non-stationary). N=5147, T=5, R=1, J=5

Model # parameters loglikelihood BIC

Regular LTA 11 -15326 30745
RI-LTA, binary RI 13 -15268 30646
RI-LTA, continuous RI 12 -15267 30637

Mood (stationary). N=494, T=4, R=2, J=2

Regular LTA 7 -2053 4150
RI-LTA, binary RI 10 -2028 4118
RI-LTA, continuous RI 9 -2018 4093

Reading proficiency (non-stationary). N=3574, T=4, R=5, J=3

Regular LTA 35 -21793 43873
RI-LTA, binary RI 41 -20916 42167
RI-LTA, continuous RI 40 -20329 40984

Dating and sexual risk behavior (stationary). N=2933, T=3, R=5, J=5

Regular LTA 54 -16720 33871
RI-LTA, binary RI 59 -16580 33631
RI-LTA, continuous RI 58 -16580 33623
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BIC merely due to using one parameter less. In the non-stationary version of this

model, the continuous random intercept model encounters a problem of exploding

loadings for the random intercept factor where the best loglikelihood value cannot

be replicated. Discarding the solution with such inadmissible parameter values,

the next best loglikelihood value is replicated with no loading problems. In this

case, the continuous random intercept model has a somewhat better loglikelihood

value and better BIC than the binary random intercept model.

It is instructive to consider in more detail the Life satisfaction example,

comparing the regular LTA model and the RI-LTA with a continuous random

intercept with respect to the fit to the 32 cells of the frequency table. For the

regular LTA model, the model test of fit is 130.25 using the likelihood-ratio chi-

square test for the frequency table and 131.03 using the Pearson chi-square. With

20 degrees of freedom, the regular LTA model is clearly rejected. Adding just one

parameter, the RI-LTA obtains a dramatic improvement in chi-square fit with

values of 13.62 and 13.64, respectively, with 19 degrees of freedom. Table 5 shows

how this improvement in fit is obtained by listing the observed and estimated

frequencies for each of the 32 response patterns for both models. The estimated

frequencies track the observed ones much better for the RI-LTA. While the regular

LTA has 14 instances of standardized residual z-tests greater than 2, RI-LTA has

none.

The Reading proficiency and Dating and sexual risk behavior examples which

use three and five latent classes, respectively, raise the question if fewer latent

classes can be used when analyzed by RI-LTA instead of regular LTA. As judged

by BIC, this was not the case, however.
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Table 5: Model fit for the Life Satisfaction example

Response Response Observed Regular LTA RI-LTA, cont’s RI
# pattern frequency estimate z-score estimate z-score

1 00000 891 786.41 4.05 877.71 0.49
2 00001 176 222.59 -3.19 177.52 -0.12
3 00010 119 149.75 -2.55 123.54 -0.41
4 00011 106 120.41 -1.33 104.40 0.16
5 00100 111 139.99 -2.48 111.77 -0.07
6 00101 60 53.67 0.87 60.55 -0.07
7 00110 52 40.97 1.73 55.99 -0.54
8 00111 92 97.37 -0.55 97.86 -0.60
9 01000 120 151.88 -2.63 135.21 -1.33
10 01001 64 49.54 2.06 60.08 0.51
11 01010 51 33.59 2.59 45.33 0.85
12 01011 187 209.53 -1.59 179.77 0.55
13 01100 54 41.62 1.93 58.38 -0.58
14 01101 50 48.08 0.28 53.79 -0.52
15 01110 49 44.92 0.61 52.40 -0.47
16 01111 176 202.62 -1.91 164.81 0.89
17 10000 237 290.08 -3.21 242.85 -0.38
18 10001 107 98.42 1.99 110.90 -0.37
19 10010 68 61.67 0.81 71.80 -0.45
20 10011 107 78.55 3.23 110.67 -0.35
21 10100 80 65.70 1.78 72.45 0.89
22 10101 75 56.17 2.53 67.77 0.88
23 10110 51 50.80 0.03 59.83 -1.15
24 10111 200 213.19 -0.92 187.57 0.92
25 11000 136 142.83 -0.58 127.40 0.77
26 11001 95 75.14 2.31 98.93 -0.40
27 11010 64 62.57 0.18 68.96 -0.60
28 11011 187 209.53 -1.59 179.77 0.55
29 11100 99 102.73 -0.37 103.01 -0.40
30 11101 165 209.71 -3.15 162.02 0.24
31 11110 172 203.64 -2.26 154.23 1.45
32 11111 1066 992.23 2.61 1084.81 -0.64
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6.2 Latent class estimates

Table 6 - Table 9 show the estimated latent class and transition probabilities for

each of the four examples and each of the three models. For the Life satisfaction

example of Table 6, the high degree of stability seen in the regular LTA solution

is reduced in the two better-fitting random intercept models with the continuous

random intercept model producing much higher probabilities for transitioning

between the Unsatisfied and Satisfied latent classes (0.305 and 0.268 versus 0.126

and 0.000). Note also that the probability in the Satisfied class is higher at both

time points for the continuous random intercept model. A similar picture emerges

in Table 7 for the Mood example.

In the Table 8 Reading proficiency example, the 3 classes Low, Medium

and High correspond to low alphabet knowledge, early word reading, and early

reading comprehension (Kaplan, 2008; p. 464). In this example, the continuous

random intercept model was strongly preferred and shows several transition

probabilities that are different from the regular LTA. Here, the diagonal elements

of the transition tables are not uniformly higher for regular LTA compared to

the continuous random intercept model. Transitioning from Fall to Spring in

Kindergarten, regular LTA underestimates the probability of moving from the Low

to the Medium class and underestimates the probability of staying in the Medium

class. A similar picture emerges for transitions between Spring Kindergarten

and Fall of 1st grade. For the transition table for Fall 1st grade and Spring

1st grade, the regular LTA underestimates the probability of transitioning from

the Low to the High class. Note also the distinct difference in latent class

probabilities. Compared to the regular LTA, the random intercept model has
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Table 6: Latent class and transition probabilities for Life satisfaction example
(transitions from first to second wave)

Regular LTA

Unsatisfied Satisfied

Class probabilities
Time 1 0.395 0.605
Time 2 0.471 0.529

Transition probabilities
Unsatisfied 1.000 0.000
Satisfied 0.126 0.874

RI-LTA, binary RI

Unsatisfied Satisfied

Class probabilities
Time 1 0.362 0.638
Time 2 0.474 0.526

Transition probabilities
Unsatisfied 0.953 0.047
Satisfied 0.203 0.797

RI-LTA, continuous RI

Unsatisfied Satisfied

Class probabilities
Time 1 0.294 0.706
Time 2 0.430 0.570

Transition probabilities
Unsatisfied 0.732 0.268
Satisfied 0.305 0.695
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Table 7: Latent class and transition probabilities for Mood example

Regular LTA

Sad/Unhappy Not sad/Happy

Class probabilities
Time 1 0.492 0.508
Time 2 0.470 0.530
Time 3 0.458 0.542
Time 4 0.451 0.549

Transition probabilities
Sad/Unhappy 0.752 0.248
Not sad/Happy 0.197 0.803

RI-LTA, binary RI

Sad/Unhappy Not sad/Happy

Class probabilities
Time 1 0.444 0.556
Time 2 0.419 0.581
Time 3 0.410 0.590
Time 4 0.407 0.593

Transition probabilities
Sad/Unhappy 0.626 0.374
Not sad/Happy 0.254 0.746

RI-LTA, continuous RI

Sad/Unhappy Not sad/Happy

Class probabilities
Time 1 0.426 0.574
Time 2 0.384 0.616
Time 3 0.375 0.625
Time 4 0.373 0.627

Transition probabilities
Sad/Unhappy 0.507 0.493
Not sad/Happy 0.293 0.707

39



Table 8: Latent class and transition probabilities for Reading proficiency example

Regular LTA

Low Medium High Low Medium High Low Medium High

Class
Probabilities

Time 1 0.694 0.284 0.023
Time 2 0.235 0.635 0.130
Time 3 0.142 0.627 0.232
Time 4 0.041 0.154 0.805

Transition
Probabilities Fall K -– Spring K Spring K -– Fall 1st Fall 1st -– Spring 1st

Low 0.338 0.649 0.012 0.596 0.401 0.002 0.263 0.505 0.232
Medium 0.001 0.652 0.348 0.002 0.837 0.161 0.005 0.132 0.863
High 0.000 0.000 1.000 0.002 0.003 0.994 0.001 0.000 0.999

RI-LTA, binary RI

Low Medium High Low Medium High Low Medium High

Class
Probabilities

Time 1 0.824 0.162 0.014
Time 2 0.208 0.692 0.100
Time 3 0.122 0.723 0.155
Time 4 0.041 0.065 0.894

Transition
Probabilities Fall K -– Spring K Spring K -– Fall 1st Fall 1st -– Spring 1st

Low 0.253 0.738 0.010 0.584 0.404 0.012 0.308 0.464 0.228
Medium 0.000 0.520 0.480 0.000 0.923 0.077 0.004 0.012 0.984
High 0.000 0.000 1.000 0.004 0.000 0.996 0.003 0.000 0.997

RI-LTA, continuous RI

Low Medium High Low Medium High Low Medium High

Class
Probabilities

Time 1 0.948 0.049 0.003
Time 2 0.161 0.818 0.022
Time 3 0.040 0.880 0.080
Time 4 0.010 0.017 0.973

Transition
Probabilities Fall K -– Spring K Spring K -– Fall 1st Fall 1st -– Spring 1st

Low 0.170 0.820 0.010 0.240 0.742 0.018 0.154 0.000 0.845
Medium 0.000 0.819 0.181 0.001 0.931 0.068 0.004 0.019 0.977
High 0.000 0.000 1.000 0.022 0.000 0.978 0.009 0.000 0.991

40



a higher probability of being in the Low class in Fall of Kindergarten, a higher

probability of being in the medium class in Spring of Kindergarten and Fall of 1st

grade, and a higher probability of being in the high class in Spring of 1st grade.

In the Table 9 Dating and sexual risk behavior example, the major differences

in the transition probabilities appear for the last two latent classes. Both

refer to having multiple sexual partners, differing in whether they were exposed

to sexually transmitted diseases (Multi-exposed) or not (Multi-safe). Regular

LTA overestimates the probability of staying in the Multi-safe latent class and

underestimates the probability of staying in the Multi-exposed class. The time 3

probability of the Multi-exposed class is higher for the random intercept models

than for regular LTA.

6.3 Measurement Estimates

The measurement model determines the interpretation of the latent classes. The

measurement model of regular LTA is the conditional distribution [Ut|Ct] for the

outcome Ut at time t conditioned on the latent class variable Ct at the same time

point. With RI-LTA, the distribution of Ut depends not only on Ct but also on

the random intercept I. To compare to regular LTA, the distribution [Ut|Ct] is

obtained when integrating (for a continuous random intercept) or summing (for

a latent class random intercept) over the random intercept I in the distribution

[Ut|Ct, I]. An advantage of RI-LTA is that it also makes it possible to study

how the subject variation captured by the random intercept creates different

measurement models. When I is a latent class variable, [Ut|Ct] can be studied for

each latent class of I to understand the differences in measurement models for the
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Table 9: Latent class and transition probabilities for Dating and sexual risk
behavior example

Regular LTA

Nondaters Daters Monogamous Multi-safe Multi-exposed

Class probabilities
Time 1 0.179 0.295 0.115 0.236 0.174
Time 2 0.134 0.229 0.223 0.209 0.206
Time 3 0.108 0.187 0.280 0.183 0.242

Transition probabilities
Nondaters 0.618 0.177 0.108 0.078 0.019
Daters 0.023 0.553 0.171 0.194 0.059
Monogamous 0.040 0.049 0.665 0.054 0.192
Multi-safe 0.040 0.104 0.170 0.557 0.128
Multi-exposed 0.013 0.020 0.207 0.000 0.760

RI-LTA, binary RI

Nondaters Daters Monogamous Multi-safe Multi-exposed

Class probabilities
Time 1 0.205 0.237 0.076 0.216 0.236
Time 2 0.156 0.206 0.173 0.191 0.275
Time 3 0.127 0.166 0.214 0.177 0.316

Transition probabilities
Nondaters 0.592 0.181 0.092 0.129 0.006
Daters 0.054 0.515 0.103 0.241 0.088
Monogamous 0.049 0.028 0.542 0.167 0.214
Multi-safe 0.060 0.112 0.236 0.408 0.184
Multi-exposed 0.014 0.021 0.145 0.000 0.820

RI-LTA, continuous RI

Nondaters Daters Monogamous Multi-safe Multi-exposed

Class probabilities
Time 1 0.189 0.283 0.090 0.199 0.239
Time 2 0.143 0.220 0.204 0.152 0.281
Time 3 0.116 0.177 0.260 0.123 0.325

Transition probabilities
Nondaters 0.620 0.166 0.087 0.117 0.011
Daters 0.026 0.548 0.138 0.197 0.091
Monogamous 0.040 0.035 0.642 0.040 0.243
Multi-safe 0.058 0.126 0.247 0.357 0.212
Multi-exposed 0.016 0.023 0.172 0.000 0.789
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different random intercept classes. When I is a continuous latent variable, the

variation in the measurement model can be studied for example at one standard

deviation away from the mean of zero.

6.3.1 The Reading proficiency example

The Reading proficiency example provides a good illustration of how to interpret

the measurement model using RI-LTA. It is of special interest because both RI

models fit considerably better than the regular LTA model as seen in Table 4 but

the meaning of the latent classes of C is not fundamentally changed. Instead,

a richer understanding is provided of how the responses to certain latent class

indicators vary across subjects.

It is interesting to compare regular LTA with RI-LTA using a continuous

random intercept. The random intercept factor loadings for the latent class

indicators are positive, significant and of similar magnitude. The top part of

Table 10 shows the estimated conditional probabilities P (Ut = 1|Ct) using regular

LTA on the left and using continuous random intercept RI-LTA on the right. The

RI-LTA estimates are obtained by integrating out the random intercept. It is seen

that these two sets of estimates give the same interpretation. In the low class of

low alphabet knowledge (Class 1), the only moderately high probability of mastery

is seen for letter recognition. Compared to the low class, the medium class (Class

2) of early word reading adds high probabilities of mastery also for beginning

sounds and ending letter sounds. Compared to the medium class, the high class

(Class 3) of early reading comprehension adds a high probability of mastery also

for sight words and a moderately high probability for words in context (WIC).

The middle part of Table 10 shows the measurement model at one standard
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Table 10: Estimated measurement model for Reading proficiency example (Class
1 = low alphabet knowledge, Class 2 = early word reading, Class 3 = early reading
comprehension)

Regular LTA RI-LTA, continuous RI

Classes Classes
1 2 3 1 2 3

Letrec 0.505 0.994 1.000 0.627 0.939 0.979
Begin 0.066 0.917 0.984 0.303 0.806 0.941
Ending 0.013 0.661 0.972 0.167 0.630 0.904
Sight 0.000 0.051 0.985 0.020 0.208 0.808
WIC 0.000 0.001 0.509 0.005 0.058 0.460

RI-LTA, continuous RI

-1 SD +1 SD

Letrec 0.097 0.931 0.990 0.992 1.000 1.000
Begin 0.012 0.515 0.915 0.744 0.996 1.000
Ending 0.004 0.176 0.817 0.391 0.974 0.999
Sight 0.000 0.001 0.464 0.008 0.592 0.999
WIC 0.000 0.000 0.015 0.001 0.059 0.965

RI-LTA, continuous RI, poverty covariate

Poverty (19%) Non-poverty (81%)

Letrec 0.220 0.973 0.996 0.861 0.999 1.000
Begin 0.025 0.692 0.960 0.227 0.962 0.996
Ending 0.008 0.302 0.903 0.071 0.807 0.989
Sight 0.000 0.002 0.706 0.000 0.061 0.984
WIC 0.000 0.000 0.042 0.000 0.003 0.544
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deviation away from the mean of the random intercept. The bold entries of the

-1 SD case indicate instances of large differences in probabilities compared to the

probabilities in the top part. For each of the three classes, the probabilities are

distinctly lower for the more advanced topics/indicators of the class. A similar

picture is seen in the bottom part of the table which is based on a regression

of the random intercept variable on the binary covariate poverty (modeling with

covariates is discussed in Section 8). The random intercept is strongly related to

the poverty covariate and the low and high random intercept values are obtained

as the means of the random intercept for poverty=1 and 0, respectively. It is seen

that the measurement model for poverty=1 has the same pattern of probabilities

as the -1 SD case. In this way, the random intercept variable can be thought of

as an achievement or reading preparedness dimension on which subjects vary.

6.3.2 The Dating and sexual risk behavior example

The Dating and sexual risk behavior example illustrates how the measurement

model varies over the two latent classes of a binary random intercept. The

estimated random intercept latent class percentages are 68 and 32. The

corresponding two sets of measurement estimates are shown in Table 11. The

interpretation of the measurement model is similar to that given in Lanza and

Collins (2008) where the 5 latent classes are described as Nondaters (I), Daters

(II), Monogamous (III), Multipartner safe (IV), and Multipartner exposed (V).

Some details of the interpretations of the 5 classes are, however, challenged which

is noteworthy given the Table 4 finding that this RI-LTA has a considerably better

BIC than the regular LTA.

For the majority class (68 %), Multipartner safe (IV) is no longer clearly
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defined by the two latent class indicators Number of partners in past year (0, 1, 2

or more) and Exposed to STD in past year (No, Yes). For the partners indicator,

1 instead of 2 or more partners is more likely and for the STD exposure indicator,

the probability of STD exposure is as likely as not exposed. For the minority class

(32%), the difference relative to Lanza-Collins is bigger and is again with respect

to the Number of partners and Exposed to STD indicators. The Nondaters class

is not found but is instead similar to the Daters class but with 1 partner instead

of 2 or more. The Monogamous class is similar to Lanza-Collins but with low

probability of STD exposure. The two Multipartner classes are not as clearly

distinguishable.

7 Mover-Stayer modeling

In regular LTA, researchers sometimes explore the need for more than one set of

latent transition probabilities to represent the data well. A common example is

the Mover-Stayer model where a latent class of Stayers is specified to stay in their

time 1 latent class membership throughout all time points with probability 1.

This can be viewed as an attempt to capture between-subject heterogeneity and

is therefore in line with the random intercept theme of this paper, here applied

to the latent class part of the model. The Mover-Stayer latent class variable can

also be regressed on covariates. It is of interest to compare regular LTA with two

sets of transition probabilities to the RI-LTA models for the four examples. This

can be done using BIC.

For the Life satisfaction example, the observed response patterns of Unsatisfied

at all time points and Satisfied at all time points are observed for 891 and 1066
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subjects, respectively. This is 38% of the total sample of 5147 respondents. It

is therefore natural to explore a Mover-Stayer model. As reported in Table 4,

the regular LTA model has 11 parameters, loglikelihood -15326, and BIC 30745.

Adding the Stayer class gives 13 parameters, loglikelihood -15268, and BIC 30646.

The two added parameters are the probability of the Stayer class and the regression

of the latent class variable at the first time point on the Mover-Stayer class

variable. The likelihood-ratio and Pearson chi-square test values for the frequency

table are 14.30 and 14.53, respectively with 18 degrees of freedom. The Mover-

Stayer feature is clearly a big improvement to the regular LTA. 52% are estimated

as belonging to the Stayer class, that is, a higher number than the 38% stayers

observed in the data. It is interesting, however, that the BIC value and the chi-

square fit values are not better than for the two RI-LTA models which do not have

an additional Mover-Stayer feature. As reported in Table 4, the binary version

of the RI-LTA has the same BIC of 30646 with almost the same chi-square test

values of 14.18 for both tests with 18 degrees of freedom. The continuous version

of RI-LTA has a somewhat better BIC of 30637 and a slightly lower chi-square test

value of 13.63 for both tests with 19 degrees of freedom. The choice among these

different models is not as clear cut in this example due to the limited information

available with a single binary latent class indicator at each time point.

For the Mood example, the regular LTA model with stationarity has 7

parameters, loglikelihood value -2053, and BIC value 4150 as reported in Table 4.

Adding the Mover-Stayer feature to the model gives 9 parameters, loglikelihood -

2036, and BIC 4127. The better BIC says that there is a need for Mover and Stayer

classes when using the regular LTA model. The class percentages are estimated

as 64% for Movers and 36% for Stayers. However, the BIC of 4127 is worse than
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for both RI-LTA models which have BICs of 4118 and 4093 for the binary and

continuous random intercept version, respectively. For the binary RI-LTA model,

the addition of the Mover-Stayer component has 12 parameters, loglikelihood -

2016, and BIC 4105. This BIC is better than without Mover-Stayer where BIC was

4118. The continuous RI-LTA model, however, gives a different picture. Adding

the Mover-Stayer component results in 11 parameters, loglikelihood -2016, and

BIC 4100. This BIC is worse than without Mover-Stayer where BIC was 4093.

In conclusion, using the best-fitting RI-LTA model, there is no need for a Mover-

Stayer component in the model.

For the Reading proficiency example, the regular LTA model has 35 pa-

rameters, loglikelihood value -21793, and BIC value 43873 as reported in

Table 4. Adding the Mover-Stayer component to the model gives 38 parameters,

loglikelihood -21725, and BIC 43761. The improved BIC indicates that there is

a need for adding the Mover-Stayer feature. The class percentages are estimated

as 88% for Movers and 12% for Stayers. However, the BIC of 43761 is worse

than for both RI-LTA models which without a Mover-Stayer component have

BICs of 42167 and 40984 for the binary and continuous random intercept version,

respectively.

For the Dating and sexual behavior example, the regular LTA model has

54 parameters, loglikelihood value -16720, and BIC value 33871 as reported in

Table 4. Adding the Mover-Stayer component to the model gives 59 parameters,

loglikelihood -16702, and BIC 33876. Because this BIC value is worse than for the

regular LTA, a Mover-Stayer component is not needed. As reported in Table 4

the two RI-LTA models have better BICs of 33631, and 33623, respectively.

In conclusion, none of the four examples show a need for a Mover-Stayer model
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when the best RI-LTA model is used. In contrast, a need for a Mover-Stayer model

is indicated for three of the four examples when using regular LTA.

8 Groups and Covariates

Two of the four examples have information on covariates. The Reading proficiency

example has a binary covariate indicating whether or not the child’s household is

above the poverty threshold. The Dating and sexual risk behavior example has

four binary covariates, gender and whether the respondent has used cigarettes,

been drunk, or used marijuana in the past year.

A first set of analyses uses multiple-group analysis to explore measurement

invariance across the poverty groups of the Reading proficiency example. To

reduce the risk of distorting the measurement invariance testing, a reasonably

flexible structural model for the latent class part is used here, namely, the main

effect model described in the bottom part of Table 3. For RI-LTA, results are

presented for only the continuous random intercept model to save space.

Table 12 shows the model fitting results when testing measurement invariance

for the Reading proficiency example. Testing measurement invariance across the

poverty groups by comparing models 1 and 2, regular LTA rejects invariance

with a likelihood-ratio chi-square value of 312 for 15 degrees of freedom. BIC

also favors non-invariance. RI-LTA also rejects measurement invariance but the

chi-square value is considerably smaller and BIC favors the invariance model.

This illustrates that regular LTA and RI-LTA can lead to different decisions on

measurement invariance. RI-LTA has a considerably better BIC value than either

of the regular LTA models.
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Table 12: Measurement invariance testing using multiple-group analysis with
poverty groups for the Reading proficiency example: Regular LTA compared to
RI-LTA with a continuous random intercept

Model Measurement # par’s LL BIC Test (df) χ2

1. Regular LTA Invariance 43 -21584 43519
2. Regular LTA Non-invariance 58 -21428 43330 1 vs 2 (15) 312

3. RI-LTA Invariance 49 -20104 40608
4. RI-LTA Non-invariance 64 –20088 40700 3 vs 4 (15) 32

Table 13: Model testing using covariate analysis for the Dating and sexual risk
behavior example: Regular LTA compared to RI-LTA with a continuous random
intercept

Model Covariate influence # par’s LL BIC Test (df) χ2

1. Regular LTA Main effects 81 -15630 31906
2. Regular LTA Main effects and

gender interaction
effects 97 -15621 32016 1 vs 2 (16) 18

3. RI-LTA Continuous RI 56 -15653 31753
4. RI-LTA Continuous RI

and main effects 88 -15461 31624 3 vs 4 (32) 384
5. RI-LTA Continuous RI,

main effects, and
gender interaction
effects 104 -15454 31738 4 vs 5 (16) 14
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Table 13 shows the results of a second set of analyses that explores the influence

of covariates in the Dating and sexual risk behavior example. 1 The regular LTA

model 1 uses the main effect model shown at the bottom of Table 3. Model 2

uses the interaction effect model for regular LTA shown at the top of Table 3

but where the interaction is only with respect to gender and not the other three

covariates. This interaction model was chosen because the possible gender effect

on transitions was mentioned in Lanza and Collins (2008). Contrasting the models

indicates that males and femailes do not have different transitions.

In the RI-LTA model 3, the covariates are allowed to influence the continuous

random intercept while in the RI-LTA model 4 the covariates can also influences

the latent class variables using the main effect parameterization shown at the

bottom of Table 3. Comparing models 3 and 4 shows that the covariate influence

on the latent class variables needs to be included in the model. Model 5

is the RI-LTA counterpart to the regular LTA model 2 which allows gender

interaction effects on the transitions. This indicates that males and femailes do

not have different transitions so in this case there is agreement with regular LTA.

Comparing the best regular LTA model 1 and the best RI-LTA model 4, however,

it is seen that both the loglikelihood and BIC are better for RI-LTA. In addition,

model 1 and model 4 have different covariate effects. The effect of covariates on

the latent class of multipartner-exposed is of special interest. In presenting these

results, the log odds relates this class to the class of monogamous. For the regular

LTA of model 1, significant and positive effects are seen for male and past-year

1In these analyses, the item Had sex in past year was dropped due to a no response
necessitating a zero answer to the item Number of sexual partners, thereby avoiding an
unnecessary violation of conditional independence. The analyses still produce the same 5-class
interpretation.
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marijuana usage at all time points, with an additional significant positive effect

of past-year drunkeness for the first time point. Past-year cigarette use does not

have a significant effect. For the RI-LTA model 4, only male has a significant

effect and it is positive. The covariate effects on the continuous random intercept,

however, are significant and positive for all the covariates. Positive effects increase

the random intercept value which in turn increases the probability of the latent

class indicators being in category 1 versus category 0 for binary indicators and

increases the probabilities of the higher categories relative to the lower categories

for the ordinal indicators. In other words, only male increases the latent class odds

while all covariates increase the odds of answering in a more “extreme” category of

the latent class indicators. The latter effect refers to a between-subject difference

that is stable over time and is unrelated to latent class membership.

9 Discussion

This paper demonstrates the need for replacing regular LTA with random intercept

LTA. Regular LTA suffers from estimating transition probabilities that confound

between- and within-subject influences. In addition, it overlooks information

in the data which relates to measurement. Regular LTA typically assumes

measurement invariance across time but what has been less clear is that it also

implicitly assumes measurement invariance across subjects. Analysis of the four

examples shows that this is not a realistic assumption. By allowing random

intercept variation in the model, the between-subject variation is extracted from

the latent class indicators so that latent class transitions over time refer to within-

subject transitions. This gives a clearer interpretation as well as a better fit of
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the model to the data. While the case of categorical latent class indicators has

been discussed here, the same approach can also be applied to continuous, count,

or nominal latent class indicators. Several additional aspects of modeling with

random intercepts are of interest and are discussed below.

9.1 Computational aspects

The RI-LTA model requires a considerably longer computational time than regular

LTA. The continuous random intercept version is the most time-consuming in

that the maximum-likelihood estimation requires numerical integration but also

because it needs more random starting values to replicate the best loglikelihood.

While much faster than the continuous random intercept version, the binary

random intercept version is also slower than regular LTA due to having one

more latent class variable. Recent advances in CPU speed, multithreading, and

algorithmic improvements, however, have made it practical to estimate RI-LTA

models.

9.2 Other model variations

Several other variations of RI-LTA are possible in order to make the model

more flexible. Following are five such variations that are possible in the latent

variable framework of Mplus (Muthén & Muthén, 1998-2017). First, the typical

assumption of a lag-1 relationship between the latent class variables Ct may

be relaxed. Lag-2 effects were significant per likelihood-ratio chi-square testing

in the four examples using the three model types with the exception of the

continuous random intercept model for the Life satisfaction example. Second,
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the assumption of uncorrelated latent class indicators across time conditional on

the latent classes and the random intercept may be relaxed. Asparouhov and

Muthén (2015) presented a method for this in a regular LTA setting, allowing

correlated “residuals”. Several instances of correlated residuals were found for

these examples using both regular LTA and RI-LTA models. Third, with the

use of a binary random intercept, RI-LTA can be generalized to more than two

classes and more than one latent class variable. In the four examples in this

paper, however, there was no evidence that this was needed. Fourth, the model

can be extended to include other model parts such as distal outcomes and multiple

processes, the latter including the possibility to connect RI-LTA to the random

intercept cross-lagged panel modeling of Hamaker et al. (2015). Fifth, a trend over

time can be accomodated. In the continuous random intercept case, a slope can

be added to the random intercept, e.g. by letting the slope influence the latent

class indicators at each time point using the same loadings as for the random

intercept and allowing a slope mean to influence the outcomes over time. Using a

linear trend, this resulted in a better-fitting model for the Reading example but

not for the other examples.

9.3 Future research on RI-LTA

Despite the promising results obtained by replacing regular LTA with RI-LTA,

further explorations and extensions of this new technique are warranted. It will

be useful to have Monte Carlo simulation studies for different settings, studying

the sample size requirements as a function of number of time points, number of

latent class indicators, number of latent classes, covariates, etc. The susceptibility
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to model mis-specification should be studied. Class enumeration techniques need

to be considered. It will be of interest to develop multi-step analyses for including

covariates and distal outcomes in line with Asparouhov and Muthén (2014) and

Bakk and Kuha (2018). Multilevel versions of RI-LTA are needed when subjects

are nested within schools, organizations, or communities.
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