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Exploratory factor analysis (EFA) is a frequently used multivariate analysis technique in statistics.

Jennrich and Sampson (1966) solved a significant EFA factor loading matrix rotation problem

by deriving the direct Quartimin rotation. Jennrich was also the first to develop standard errors

for rotated solutions, although these have still not made their way into most statistical software

programs. This is perhaps because Jennrich’s achievements were partly overshadowed by the

subsequent development of confirmatory factor analysis (CFA) by Jöreskog (1969). The strict

requirement of zero cross-loadings in CFA, however, often does not fit the data well and has

led to a tendency to rely on extensive model modification to find a well-fitting model. In such

cases, searching for a well-fitting measurement model may be better carried out by EFA (Browne,

2001). Furthermore, misspecification of zero loadings usually leads to distorted factors with over-

estimated factor correlations and subsequent distorted structural relations. This article describes an

EFA-SEM (ESEM) approach, where in addition to or instead of a CFA measurement model, an

EFA measurement model with rotations can be used in a structural equation model. The ESEM

approach has recently been implemented in the Mplus program. ESEM gives access to all the

usual SEM parameters and the loading rotation gives a transformation of structural coefficients

as well. Standard errors and overall tests of model fit are obtained. Geomin and Target rotations

are discussed. Examples of ESEM models include multiple-group EFA with measurement and

structural invariance testing, test–retest (longitudinal) EFA, EFA with covariates and direct effects,

and EFA with correlated residuals. Testing strategies with sequences of EFA and CFA models are

discussed. Simulated and real data are used to illustrate the points.

The latent variable measurement specification in structural equation modeling (SEM; Bollen,

1989; Browne & Arminger, 1995; Jöreskog & Sorbom, 1979; Muthén, 1984) uses the Jöreskog

(1969) confirmatory factor analysis (CFA) model. Based on theory and prior analyses, the

CFA measurement model specifies a number of factor loadings fixed at zero to reflect a

hypothesis that only certain factors influence certain factor indicators. Often a simple structure

is specified where each indicator is influenced by a single factor; that is, there are no cross-

Correspondence should be addressed to Tihomir Asparouhov, Mplus, 3463 Stoner Ave., Los Angeles, CA 90066,
USA. E-mail: tihomir@statmodel.com
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398 ASPAROUHOV AND MUTHÉN

loadings, sometimes referred to as variable complexity of one. The number of such zero loading

restrictions is typically much larger than the number of restrictions needed to identify the

factor analysis measurement model, which as in exploratory factor analysis (EFA) with m

factors is m2 restrictions on the factor loadings, factor variances, and factor covariances. The

use of CFA measurement modeling in SEM has the advantage that researchers are encouraged

to formalize their measurement hypotheses and develop measurement instruments that have

a simple measurement structure. Incorporating a priori substantive knowledge in the form

of restrictions on the measurement model makes the definition of the latent variables better

grounded in subject-matter theory and leads to parsimonious models.

The use of CFA measurement modeling in SEM also has disadvantages and these are likely

to have contributed to poor applications of SEM where the believability and replicability of

the final model is in doubt. Although technically appealing, CFA requires strong measurement

science that is often not available in practice. A measurement instrument often has many small

cross-loadings that are well motivated by either substantive theory or by the formulation of the

measurements. The CFA approach of fixing many or all cross-loadings at zero may therefore

force a researcher to specify a more parsimonious model than is suitable for the data. Because

of this, models often do not fit the data well and there is a tendency to rely on extensive model

modification to find a well-fitting model. Here, searching for a well-fitting measurement model

is often aided by the use of model modification indexes. A critique of the use of model searches

using modification indexes is given, for example, in MacCallum, Roznowski, and Necowitz

(1992). In such situations of model uncertainty, Browne (2001) advocates exploratory rather

than confirmatory approaches:

Confirmatory factor analysis procedures are often used for exploratory purposes. Frequently a

confirmatory factor analysis, with pre-specified loadings, is rejected and a sequence of modifications

of the model is carried out in an attempt to improve fit. The procedure then becomes exploratory

rather than confirmatory.—In this situation the use of exploratory factor analysis, with rotation of

the factor matrix, appears preferable.—The discovery of misspecified loadings : : : is more direct

through rotation of the factor matrix than through the examination of model modification indices.

(p. 113)

Furthermore, misspecification of zero loadings in CFA tends to give distorted factors.

When nonzero cross-loadings are specified as zero, the correlation between factor indicators

representing different factors is forced to go through their main factors only, usually leading

to overestimated factor correlations and subsequent distorted structural relations.

For the reasons just given, it is important to extend SEM to allow less restrictive measurement

models to be used in tandem with the traditional CFA models. This offers a richer set of a

priori model alternatives that can be subjected to a testing sequence. This article describes an

exploratory structural equation modeling (ESEM) approach, where in addition to or instead of

CFA measurement model parts, EFA measurement model parts with factor loading matrix

rotations can be used. For each EFA measurement model part with m factors, only m2

restrictions are imposed on the factor loading matrix and the factor covariance matrix. ESEM

gives access to all the usual SEM parameters, such as residual correlations, regressions of

factors on covariates, and regressions among factors. Multiple-group analysis with intercept

and mean structures are also handled. The ESEM approach has recently been implemented in

the Mplus program.
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EXPLORATORY STRUCTURAL EQUATION MODELING 399

EFA is a frequently used multivariate analysis technique in statistics. Jennrich and Sampson

(1966) solved a significant EFA factor loading matrix rotation problem by deriving the direct

Quartimin rotation. Jennrich was also the first to develop standard errors for rotated solutions.

Cudeck and O’Dell (1994) provided a useful discussion on the benefits of considering standard

errors for the rotated factor loadings and factor correlation matrix in EFA. However, EFA

standard errors have still not made their way into most statistical software programs (Jennrich,

2007), perhaps because Jennrich’s achievements were partly overshadowed by the subsequent

development of CFA by Jöreskog (1969). The work to be presented can therefore also be seen as

a further development and modernization of EFA, continuing the classic psychometric work that

was largely abandoned. Three examples can be mentioned. Correlated residuals among factor

indicators sharing similar wording can confound the detection of more meaningful factors

using conventional EFA; allowing such parameters in an extended EFA can now give new

measurement insights. Comparing EFA factor loadings across time in longitudinal studies or

across groups of individuals can now be done using rigorous likelihood-ratio testing without

the researcher being forced to switch from EFA to CFA.

It should be made clear that the development in this article is not intended to encourage a

complete replacement of CFA with EFA measurement modeling in SEM. Instead, the intention

is to add further modeling flexibility by providing an option that in some cases is more closely

aligned with reality, reflecting more limited measurement knowledge of the researcher or a more

complex measurement structure. There will still be many situations where a CFA approach is

preferred. Apart from situations where the measurement instruments are well understood, this

includes applications where a CFA specification lends necessary stability to the modeling. As

one example, multitrait, multimethod (MTMM) modeling relies on CFA specification of both

the trait and the methods part of the model. Although it is in principle possible with the methods

presented here to let the trait part be specified via EFA, leaving the methods part specified as

CFA, this might not provide easy recovery of the data-generating parameter values.

In ESEM, the loading matrix rotation gives a transformation of both measurement and

structural coefficients. Extending the work summarized in Jennrich (2007), ESEM provides

standard errors for all rotated parameters. Overall tests of model fit are also obtained. With EFA

measurement modeling, the reliance on a good rotation method becomes important. This article

discusses the Geomin rotation (Yates, 1987), which is advantageous with variable complexity

greater than one (Browne, 2001; McDonald, 2005). Target rotation (Browne, 2001) is a less-

known rotation technique that conceptually is situated in between EFA and CFA, which is

also implemented in the general ESEM framework. Examples of ESEM models are presented

including multiple-group EFA with measurement invariance.1 Testing strategies with sequences

of EFA and CFA models are discussed. Simulated and real data are used to illustrate the points.

The outline of this article is as follows. First a simple ESEM model is presented. Next

the general ESEM model is described as well as an outline of the estimation method. The

ESEM modeling is then expanded to include constrained rotation methods that are used to

estimate, for example, measurement-invariant ESEM models and multiple-group EFA models.

Various rotation criteria and their properties are described after that. An empirical example is

1Examples of ESEM models illustrating structural invariance testing, EFA with covariates and direct effects, and
EFA with correlated residuals are available in Bengt Muthén’s multimedia presentation on this topic available at
http://www.ats.ucla.edu/stat/mplus/seminars/whatsnew_in_mplus5_1/default.htm
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400 ASPAROUHOV AND MUTHÉN

also presented to illustrate the advantages of ESEM in real-data modeling. Several simulation

studies are then presented. The choice of the rotation criterion is also discussed. The article

concludes with a summary of the presented methodology.

SIMPLE EXPLORATORY STRUCTURAL EQUATION MODEL

Suppose that there are p dependent variables Y D .Y1; : : : ; Yp/ and q independent variables

X D .X1; : : : ; Xq/. Consider the general structural equation model with m latent variables

˜ D .˜1; : : : ; ˜m/

Y D � C ƒ˜ C KX C © (1)

˜ D ’ C B˜ C �X C — (2)

The standard assumptions of this model are that the © and — are normally distributed residuals

with mean 0 and variance covariance matrix ‚ and ‰, respectively. The model can be extended

to multiple-group analysis, where for each group model (1-2) is estimated and some of the

model parameters can be the same in the different groups. The model can also be extended

to include categorical variables and censored variables as in Muthén (1984) using limited-

information weighted least squares estimation. For each categorical and censored variable Y �

is used instead of Y in Equation 1, where Y � is an underlying unobserved normal variable.

For each categorical variable there is a set of parameters £k such that

Y D k , £k < Y � < £kC1 : (3)

Thus a linear regression for Y � is equivalent to a Probit regression for Y . Similarly, for censored

variables with a censoring limit of c

Y D

(

Y � if Y � c

c if Y � c
(4)

All of the parameters in the preceding model can be estimated with the maximum likelihood

estimation method, however, this structural model is generally unidentified and typically many

restrictions need to be imposed on the model. Otherwise the maximum likelihood estimates

will be simply one set of parameter estimates among many equivalent solutions.

One unidentified component is the scale of the latent variable. Two different approaches

are generally used to resolve this nonidentification. The first approach is to identify the scale

of the latent variable by fixing its variance to 1. The second approach is to fix one of the ƒ

parameters in each column to 1. The two approaches are generally equivalent and a simple

reparameterization can be used to obtain the parameter estimates from one to the other scales.

In what follows the first approach is taken. It is assumed that the variance of each latent

variable is 1. Later on the model is expanded to include latent factors with scale identified by

the second method. It is also assumed in this section that all ƒ parameters are estimated.

Even when the scale of the latent variable is identified, however, there are additional

identifiability issues when the number of latent factors m is greater than 1. For each square
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EXPLORATORY STRUCTURAL EQUATION MODELING 401

matrix H of dimension m one can replace the ˜ vector by H˜ in model (1-2). The parameters

in the model will be altered as well. The ƒ will be replaced by ƒH�1 , the ’ vector is replaced

by H’, the � matrix is replaced by H �, the B matrix is replaced by HBH�1 and the ‰

matrix is replaced by H ‰HT . Because H has m2 elements the model has a total of m2

indeterminacies. In the discussion that follows two specific models are considered. The first

model is the orthogonal model where ‰ is restricted to be the identity matrix; that is, the latent

variables have no residual correlation. The second model is the oblique model, where ‰ is

estimated as an unrestricted correlation matrix; that is, all residual correlations between the

latent variables are estimated as free parameters. Later on the model is generalized to include

structured variance–covariance matrices ‰.

First consider the identification issues for the orthogonal model. For each orthogonal matrix

H of dimension m, that is, a square matrix H such that HHT D I , one can replace the

˜ vector by H˜ and obtain an equivalent model. That is because the variance H˜ is again

the identity matrix. Again the ƒ matrix is replaced by ƒH�1 and similarly the rest of the

parameters are changed. EFA offers a solution to this nonidentification problem. The model is

identified by minimizing

f .ƒ�/ D f .ƒH�1/ (5)

over all orthogonal matrices H , where f is a function called the rotation criteria or simplicity

function. Several different simplicity functions have been utilized in EFA; see Jennrich and

Sampson (1966) and Appendix A. For example, the Varimax simplicity function is

f .ƒ/ D �

p
X

iD1

 

1

m

m
X

j D1

œ4
ij �

�

1

m

m
X

j D1

œ2
ik

�2
!

: (6)

These functions are usually designed so that among all equivalent ƒ parameters the simplest

solution is obtained.

Minimizing the simplicity function is equivalent to imposing the following constraints on

the parameters ƒ (see Archer & Jennrich, 1973):

R D ndg

 

ƒT @f

@ƒ
�

@f

@ƒ

T

ƒ

!

D 0: (7)

where the ndg refers to the nondiagonal entries of the matrix. Note that the preceding matrix

is symmetric and therefore these are m.m � 1/=2 constraints. These constraints are in addition

to the m.m C 1/=2 constraints that are directly imposed on the ‰ matrix for a total of m2

constraints needed to identify the model.

The identification for the oblique model is developed similarly. The simplicity function

f .ƒ�/ D f .ƒH�1/ (8)

is minimized over all matrices H such that diag.H ‰HT � I / D 0; that is, matrices H such

that all diagonal entries of H ‰HT are 1. In this case minimizing the simplicity function is
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402 ASPAROUHOV AND MUTHÉN

equivalent to imposing the following constraints on the parameters ƒ and ‰

R D ndg.ƒT @f

@ƒ
‰�1/ D 0 (9)

The preceding equation specifies m.m � 1/ constraints because the matrix is not symmetric.

These constraints are in addition to the m constraints that are directly imposed on the ‰ matrix

for a total of m2 constraints needed to identify the model.

Note, however, that the requirement for m2 constraints is only a necessary condition and

in some cases it might be insufficient. A simple implicit method for determining model

identifiability is to compute the Fisher information matrix. In most cases the model is identified

if and only if the Fisher information matrix is not singular (see Section 4.7.4 in Silvey, 1970).

This method can be used in the ESEM framework as well. The identification of the rotated

solution is established by computing the bordered information matrix (see Appendix C), which

is algebraically equivalent to the Fisher information matrix. The rotated solution is identified if

and only if the bordered information matrix is not singular. An overview of alternative explicit

methods for establishing identifiability is given in Hayashi and Marcoulides (2006).

If the dependent variables are on different scales the elements in the ƒ matrix will also be

on different scales, which in turn can lead to imbalance of the minimization of the simplicity

function and consequently lead to a suboptimal ƒ� solution. In EFA this issue is resolved by

performing a standardization of the parameters before the rotation. Let †d be a diagonal matrix

of dimension p where the i th diagonal entry is the standard deviation of the Yi variable. The

standardized parameters ƒ are then †�1
d ƒ; that is, in EFA:

f .†�1
d ƒH�1/ (10)

is minimized over all oblique or orthogonal matrices H . An equivalent way of conducting

the EFA is to first standardize all dependent variables so that they have 0 mean and variance

1 and then complete the rotation analysis using the unstandardized ƒ matrix. Alternative

standardization techniques are described in Appendix B.

The structural equation model (1-2) is similarly standardized to avoid any undesired effects

from large variation in the scales of the dependent variables. Define the diagonal matrix

†d D
p

diag.ƒ‰ƒT C ‚/ (11)

and the normalized loadings matrix ƒ0 as

ƒ0 D †�1
d ƒ: (12)

The simplicity function

f .ƒ0H�1/ (13)

is then minimized over all oblique or orthogonal matrices H . Denote the optimal matrix H by

H�. Call this matrix the rotation matrix. Denote the optimal ƒ0 by ƒ�
0 . Call ƒ�

0 the rotated
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EXPLORATORY STRUCTURAL EQUATION MODELING 403

standardized solution. Note that after the rotation the optimal ƒ� matrix should be obtained in

the original scale of the dependent variables

ƒ� D †d ƒ�
0 : (14)

Note here that formally speaking the squares of the diagonal entries of †d are not the variances

of Yi . That is because the standardization factor as defined in Equation 11 does not include

the remaining part of the structural model such as the independent variables X as well as

Equation 2. Nevertheless the simpler standardization factor defined in Equation 11 will reduce

generally any discrepancies in the scales of the dependent variables. In addition, Equation 11

simplifies the computation of the asymptotic distribution of the parameters because it does not

include the variance covariance of the independent variables X , which typically is not part

of the model. The model usually includes conditional on X distributional assumptions and

estimation only for the dependent variables. Note also that if the model does not include any

covariates or other structural equations (i.e., if the model is equivalent to the standard EFA

model) then the standardization factor †d is the standard deviation just like in EFA.

The exploratory structural equation model described earlier can be estimated simply by

constrained maximum likelihood estimation. This however, is not the algorithm implemented

in Mplus. The parameter constraints (9-7) are rather complicated and constrained maximization

is more prone to convergence problems in such situations. The algorithm used in Mplus is based

on the gradient projection algorithm (GPA) developed in Jennrich (2001, 2002).

In the traditional EFA, the rotation of the factors affects only the parameters ƒ and the ‰

matrix. In the exploratory structural equation model described earlier nearly all parameters are

adjusted after the optimal rotation H� is determined. The following formulas describe how the

rotated parameters are obtained:

�� D � (15)

ƒ� D ƒ.H�/�1 (16)

K� D K (17)

‚� D ‚ (18)

’� D H�’ (19)

B� D H�B.H�/�1 (20)

�� D H�� (21)

‰� D .H�/T ‰H� (22)

Note also that in selecting the optimal factor rotation H� we only use the measurement

part of the model (i.e., only the ƒ0 parameter), which is computed from the ƒ, ‰, and ‚

parameters. In this treatment the focus is on simplifying the loadings structure with the rotation.

The structural part of the model is subsequently rotated but in this treatment the rotation does

not simplify the structural part of the model in any way.
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404 ASPAROUHOV AND MUTHÉN

Alternative approaches that somehow incorporate all structural parameters are possible, but

such an approach would lead to additional computational complexities that might be difficult

to justify. In addition, such an approach would be difficult to interpret. The rotation is designed

to simplify the loading structure so that the factors have a clear interpretation. The structural

parameters, on the other hand, are not a target for simplification. Typically we are interested

in more significant coefficients among B , �, and K and are not interested in producing as few

as possible significant coefficients using the rotation.

GENERAL EXPLORATORY STRUCTURAL EQUATION MODEL

The general ESEM model is described again by the equations

Y D � C ƒ˜ C KX C © (23)

˜ D ’ C B˜ C �X C — (24)

where the factors ˜i can be divided in two groups, exploratory factors and confirmatory factors.

Let ˜1, ˜2; : : : ; ˜r be the exploratory factors and ˜rC1; : : : ; ˜m be the confirmatory factors. The

confirmatory factors are identified the same way factors are identified in traditional SEM

models, for example, by having different factor indicator variables for each of the factors. The

group of exploratory factors is further divided into blocks of exploratory latent variables that

are measured simultaneously. Suppose that a block of exploratory latent variables consists of

˜1, ˜2; : : : ; ˜b . For each exploratory block a block of dependent factor indicator variables are

assigned. Suppose the Y1, Y2; : : : ; Yc are the indicator variables assigned to the exploratory

block. Note that different exploratory blocks can use the same factor indicators. Similarly

exploratory factors can use the same factor indicators as confirmatory factors. The measurement

model for ˜1, ˜2; : : : ; ˜b based on the indicators Y1, Y2; : : : ; Yc is now based and identified as

the model in the previous section, using an optimal rotation for the exploratory factor block.

Equation 24 uses all the confirmatory and exploratory factors. If H� represents a combined

optimal rotation matrix that consists of the optimal rotations for each of the exploratory factor

blocks, the rotated estimates are obtained from the set of unidentified parameters again via

Equations 15 through 22.

There are certain restrictions that are necessary to impose on the flexibility of this model.

Exploratory factors have to be simultaneously appearing in a regression or correlated with. For

example, if a factor in an exploratory block is regressed on a covariate Xi all other factors in

that block have to be regressed on that covariate. Similarly, if a variable is correlated with an

exploratory factor, the variable has to be correlated to all other variables in that exploratory

block; that is, these covariance parameters can either be simultaneously 0 or they have to be

simultaneously free and unconstrained.

ESTIMATION

This section describes the procedure used to estimate the ESEM model, including the estimates

for the asymptotic distribution of the parameter estimates. The estimation consists of several
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EXPLORATORY STRUCTURAL EQUATION MODELING 405

steps. In the first step using the maximum likelihood estimator an SEM model is estimated

where for each exploratory factor block the factor variance–covariance matrix is specified as

‰ D I , giving m.m C 1/=2 restrictions, and the exploratory factor loading matrix for the

block has all entries above the main diagonal, in the upper right corner, fixed to 0, giving the

remaining m.m � 1/=2 identifying restrictions. This model is referred to as the starting value

model or the initial model or the unrotated model. It is well known that such a model can be

subsequently rotated into any other exploratory factor model with m factors. The asymptotic

distribution of all parameter estimates in this starting value model is also obtained. Then for

each exploratory block or simple ESEM model the variance–covariance matrix implied for the

dependent variable based only on

ƒƒT C ‚ (25)

and ignoring the remaining part of the model is computed. The correlation matrix is also

computed and using the delta method the asymptotic distribution of the correlation matrix and

the standardization factors are obtained. In addition, using the delta method again the joint

asymptotic distribution of the correlation matrix, standardization factors, and all remaining

parameters in the model are computed. A method developed in Asparouhov and Muthén

(2007) is then used to obtain the standardized rotated solution based on the correlation matrix

and its asymptotic distribution. See Appendix C for a summary of this method. This method

is also extended to provide the asymptotic covariance of the standardized rotated solution,

standardized unrotated solution, standardization factors, and all other parameters in the model.

This asymptotic covariance is then used to compute the asymptotic distribution of the optimal

rotation matrix H and all unrotated model parameters. The optimal rotation matrix H is

computed as follows

H D M �1
0 M �

0 (26)

where M0 is a square matrix that consists of the first m rows of ƒ0 and similarly M �
0 is a

square matrix that consists of the first m rows of ƒ�
0 . Finally all rotated parameters and their

asymptotic distribution are obtained using Equations 15 through 22 and the delta method.

This estimation method is equivalent to the constrained maximum likelihood method based

on Equation 7 or Equation 9. The estimation of the starting value model may give noncon-

vergence. A random starting value procedure is implemented in Mplus for this estimation. In

addition, a random starting value procedure is implemented in Mplus for the rotation algorithms

that are prone to multiple local minima problems.

CONSTRAINED ROTATION

Factor analysis is often concerned with invariance of measurements across different populations

such as defined by gender and ethnicity (e.g., Meredith, 1993). Studies of measurement

invariance and population differences in latent variable distribution are commonplace through

multiple-group analysis (Jöreskog & Sörbom, 1979). A similar situation occurs for longitudinal

data where measurement invariance is postulated for a factor model at each of the time points.

Analysis of measurement invariance, however, has been developed and used only with CFA
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406 ASPAROUHOV AND MUTHÉN

measurement specifications. Although related methods have been proposed in EFA settings

(see Meredith, 1964, and Cliff, 1966), they only attempt to rotate to similar factor patterns.

The methods of this article introduce multiple-group EFA and multiple-group analysis of EFA

measurement parts in SEM. This development makes it possible for a researcher to not have

to move from EFA to CFA when studying measurement invariance.

This section describes ESEM models constraining the loadings to be equal across two or

more sets of EFA blocks. For example, in multiple-group analysis it is of interest to evaluate a

model where the loading matrices are constrained to be equal across the different groups. This

can easily be achieved in the ESEM framework by first estimating an unrotated solution with

all loadings constrained to be equal across the groups. If the starting solutions in the rotation

algorithm are the same, and no loading standardizing is used, the optimal rotation matrix will

be the same, and in turn the rotated solutions will also be the same. Thus obtaining a model

with invariant rotated ƒ� amounts to simply estimating a model with invariant unrotated ƒ,

which that is a standard task in maximum likelihood estimation.2

When an oblique rotation is used, an important modeling possibility is to have the ‰ matrix

also be invariant across the groups or alternatively to be varying across the groups. These

models are obtained as follows.3 To obtain varying ‰ across the groups one simply estimates

an unrotated solution with ‰ D I in the first group and an unrestricted ‰ matrix in all other

groups. Note that unrestricted here means that ‰ is not a correlation matrix but the variances

of the factors are also free to be estimated. It is not possible in this framework to estimate

a model where in the subsequent groups the ‰ matrix is an unrestricted correlation matrix,

because even if in the unrotated solution the variances of the factors are constrained to be 1,

in the rotated solution they will not be 1. However, it is possible to estimate an unrestricted

variance ‰ in all but the first group and after the rotation the rotated ‰ will also be varying

across groups.

Similarly, when the rotated and unrotated loadings are invariant across groups one can

estimate two different models in regard to the factor intercept and the structural regression

coefficients. These coefficients can also be invariant or varying across groups simply by

estimating the invariant or group-varying unrotated model. Note that in this framework only full

invariance can be estimated; that is, it is not possible to have measurement invariance for one

EFA factor but not for the other if the two EFA factors belong to the same EFA block. Similar

restrictions apply to the factor variance covariance, intercepts, and regression coefficients. If

the model contains both EFA factors and CFA factors all of the usual possibilities for the CFA

factors are available.

ROTATION CRITERIA

When the EFA specification is used in ESEM instead of CFA the choice of the rotation

procedure becomes important. This section considers the properties of some key rotation

2Note again, however, that Mplus will automatically use RowStandardizationDCovariance, so that differences
across groups in the residual variances ‚ do not cause differences in the rotated solutions (see Appendix B).

3Using again RowStandardizationDCovariance the estimated unrotated solution with equality of the loadings across
groups and all ‰ D I leads to a rotated solution with equality in the rotated loadings as well as in the ‰ matrix (see
Appendix B).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
8
 
1
3
 
A
u
g
u
s
t
 
2
0
0
9



EXPLORATORY STRUCTURAL EQUATION MODELING 407

criteria: Quartimin, Geomin, and the Target criteria. Further rotation criteria are given in

Appendix A.4

The choice of the rotation criterion is to some extent still an open research area. Generally

it is not known what loading matrix structures are preserved by each rotation criterion. The

simulation studies presented in this article, however, indicate that the Geomin criterion is

the most promising rotation criterion when little is known about the true loading structure.5

Geomin appears to be working very well for simple and moderately complicated loading

matrix structures. However, it fails for more complicated loading matrix structures involving

three or more factors and variables with complexity 3 and more; that is, variables with three or

more nonzero loadings. Some examples are given in the simulation studies described later. For

more complicated examples the Target rotation criterion will lead to better results. Additional

discussion on the choice of the rotation criterion is presented later.

Following are some general facts about rotation criteria. Let f be a rotation criterion, ƒ0 be

the loading matrix, and ‰ be the factor covariance. The oblique rotation algorithm minimizes

f .ƒ/ D f .ƒ0H�1/ (27)

over all matrices H such that diag.H ‰HT / D 1, whereas the orthogonal rotation algorithm

minimizes Equation 27 over all orthogonal matrices H . The matrix ƒ0 is called an f � invariant

loading structure if Equation 27 is minimized at H D I ; that is, Equation 27 is minimized at the

loading matrix ƒ0 itself, regardless of the value of ‰. The invariant structures presented here

are the ones that attain the global unconstrained minimum for the rotation criteria. Typically

the global unconstrained rotation function minimum is 0. If ƒ0 is the true simple structure,

rotations based on f will lead to ƒ0 regardless of the starting solution. There is a second

requirement for this to happen; namely, ƒ0 has to be the unique minimum of f , up to a

sign change in each factor and factor permutation. If it is not, the rotation algorithm will

have multiple solutions and generally speaking the rotation algorithm may not be identified

sufficiently.

A sufficient condition for rotation identification has been described in Howe (1955), Jöreskog

(1979) and Mulaik and Millsap (2000). Consider a factor analysis model with m factors. In

general, m2 restrictions have to be imposed on the parameters in ƒ and ‰ for identification

purposes. For oblique rotation m factor variances are fixed to 1 and therefore additional m.m�1/

constraints have to be imposed. It should be noted that not all sets of m.m�1/ constraints will

lead to identification. Consider the case when the constraints are simply m.m � 1/ loading

parameters fixed at 0. The following two conditions are sufficient conditions for rotation

identifiability.

1. Each column of ƒ has m � 1 entries specified as zeroes.

2. Each submatrix ƒs , s D 1; : : : ; m, of ƒ composed of the rows of ƒ that have fixed zeros

in the sth column must have rank m � 1.

These conditions are sufficient for rotation identification purposes regardless of what the

value of the correlation matrix ‰ is. Conditions 1 and 2 can also be used to establish identifi-

4All of these rotation criteria are implemented in Mplus.
5The Geomin rotation is now the default rotation criterion in Mplus.
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408 ASPAROUHOV AND MUTHÉN

ability of the rotation criteria. Rotation functions are generally designed so that the optimally

rotated loading matrix has many zero loadings. If these zero loadings satisfy conditions 1 and 2

then the rotation method is sufficiently identified. This approach will be used with the Geomin

and the Target rotation methods.

Identifiability of the rotated solution of an ESEM model can be broken into two parts. First,

the unrotated solution has to be uniquely identified. Second, the optimal rotation has to be

uniquely identified. Conditions 1 and 2 can only be used to establish the identifiability of the

optimal rotation, but they cannot be used to establish identifiability of the unrotated solution

(see Bollen & Jöreskog, 1985). The implicit information matrix method can be used to establish

identifiability for each of the two parts. If the information matrix of the unrotated solution is

not singular then the unrotated solution is identified. If the bordered information matrix (see

Appendix C), is also not singular, then the optimal rotation is also uniquely identified, and

therefore the ESEM model is uniquely identified as well.

In general one needs to know what structures are invariant under which rotation criteria

so that one can make a proper rotation criterion selection for the type of structure for which

one is searching. In the next three sections the Quartimin, Geomin, and Target rotation criteria

and their invariant loading structures are described. Let the loading matrix ƒ be a matrix with

dimensions p and m.

Quartimin

The rotation function for the Quartimin criterion is

f .ƒ/ D

p
X

iD1

m
X

j D1

m
X

l¤j

œ2
ij œ2

il : (28)

If each variable loads on only one factor (i.e., each row in ƒ has only one nonzero entry), then

ƒ is Quartimin invariant, and this rotation criterion will work perfectly for recovering such

a factor loading structure. Note that in this case the minimum of the rotation function is the

absolute minimal value of 0. Note also that this fact is independent of the number of variables

or the number of factors. Usually no other rotation criteria can be as effective as Quartimin

for these kinds of simple loading structures in terms of Mean Squared Error (MSE) of the

parameter estimates. However, rotation criteria such as Geomin will generally produce rotation

results similar to Quartimin.

Geomin

The rotation function for the Geomin rotation criterion is

f .ƒ/ D

p
X

iD1

 

m
Y

j D1

.œ2
ij C –/

!1=m

(29)

where – is a small constant. The original purpose of this constant is to make the rotation function

differentiable when there are zero loadings, but by varying the constant one can actually create

different rotation criteria.
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EXPLORATORY STRUCTURAL EQUATION MODELING 409

Note that if – D 0 and one entry in each row is zero, the Geomin rotation function is zero;

that is, the rotation function is already minimized and the minimization process does not help

in the identification of the remaining entries in the row. If, however, – > 0 this problem is

resolved to some extent. Note also that the Geomin rotation function is simply the sum of

the rotation functions for each of the rows, but the rotation function for each row cannot be

minimized separately because the loading parameters are not independent across rows. They

can only vary according to an oblique or orthogonal rotation. Thus even when – D 0 and each

row contains a zero, the nonzero entries in the row can be identified through the sufficient

conditions 1 and 2 earlier.

The known Geomin-invariant loading structures are now described. Consider first the case

when the parameter – is 0 (or a very small number such as 10�5). The Geomin function is 0

for all ƒ structures that have at least one 0 in each row; that is, structures with at least one

zero in each row are Geomin invariant. This is a very large set of loading structures. However,

in many cases there is more than one equivalent ƒ structure with at least one zero in each

row. Suppose that p � m.m � 1/ for oblique rotations (and p � m.m � 1/=2 for orthogonal

rotations) where p is the number of dependent variables and m is the number of factors and

that the sufficient conditions 1 and 2 are satisfied. Then the ƒ structure is unique and will

therefore be completely recovered by the Geomin criterion. Even in this case however, there

could be multiple solutions that reach the 0 rotation function value because a different set of

0 locations can lead to a different rotated solution.

The Geomin rotation criterion is known to frequently produce multiple solutions, or mul-

tiple local minima with similar rotation function values. The role of the – value is to im-

prove the shape of the rotation function, so that it is easier to minimize and to reduce the

number of local solutions. Models with more factors are more likely to have more local

solutions and are more difficult to minimize. Thus larger – values are typically used for

models with more factors.6 Note, however, that multiple solutions is not a problem but rather

an opportunity for the analysis. See Rozeboom (1992) and the rotation choice later in this

article.

Another reason to include a positive – value in the Geomin rotation function is the fact that

if – D 0 the rotation function is not differentiable. Differentiability is important for convergence

purposes as well as standard error estimation. For example, if – < 10�5, the convergence can

be very slow and the prespecified maximum number of iterations can be exceeded.

Target

Conceptually, target rotation can be said to lie in between the mechanical approach of EFA

rotation and the hypothesis-driven CFA model specification. In line with CFA, target loading

values are typically zeros representing substantively motivated restrictions. Although the targets

influence the final rotated solution, the targets are not fixed values as in CFA, but zero targets

can end up large if they do not provide good fit. An overview with further references is given

in Browne (2001), including reference to early work by Tucker (1944).

6The Mplus default for – for two factors is 0.0001, for three factors is 0.001, and for four or more factors it is
0.01.
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410 ASPAROUHOV AND MUTHÉN

The target rotation criterion is designed to find a rotated solution ƒ� that is closest to

a prespecified matrix B. Not all entries in matrix B need to be specified. For identification

purposes at least m � 1 entries have to be specified in each column for oblique rotation and

.m � 1/=2 entries have to be specified in each column for orthogonal rotation. The rotation

function is

f .ƒ/ D

p
X

iD1

m
X

j D1

aij .œij � bij /2 (30)

where aij is either 1 if bij is specified or 0 if bij is not specified. The most common specification

choice for bij is 0. Specifying many of the target loadings as 0 can be a very useful and effective

way to rotate the loading structure into a hypothesized simple structure.

The known Target invariant loading structures can be described as follows. If all targets in

the rotation function are correct then the ƒ matrix minimizes the rotation criteria. In addition,

if at least m.m � 1/ zero targets are specified that satisfy the sufficient conditions 1 and 27

then the ƒ matrix is the unique minimum and therefore it is Target invariant.

For example, consider a three-factor EFA model with nine measurement variables. Data

are generated and estimated according to this model with the following parameter values.

The factor variance–covariance ‰ is the identity matrix and the loading matrix ƒ is as

follows:

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 .0/ .0/

1 0 0

1 0 0

.0/ 1 .0/

.0/ 1 0

0 1 0

0 .0/ 1

0 0 1

0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

(31)

The residual variances of the dependent variables are 1. The simulation study is based on 100

samples of size 1,000. The data are analyzed using an EFA model with target rotation where

the targets are the entries in the parentheses in the preceding matrix

œ41 D œ51 D œ12 D œ72 D œ13 D œ43 D 0 (32)

Obviously condition 1 is satisfied. Consider now the submatrices ƒs . Because the sth column

of ƒs by definition consists of all zeroes, that column will not contribute to the rank of

ƒs and thus the sth column can be removed for simplicity. In the preceding example the

7Mplus checks these conditions. If they fail, Mplus will automatically suggest alternative targets.
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submatrices are

ƒ1 D

�

œ42 œ43

œ52 œ53

�

D

�

1 0

1 0

�

ƒ2 D

�

œ11 œ13

œ71 œ73

�

D

�

1 0

0 1

�

ƒ3 D

�

œ11 œ12

œ41 œ42

�

D

�

1 0

0 1

�

The ranks of these matrices are as follows: rank.ƒ1/ D 1, rank.ƒ2/ D 2, rank.ƒ3/ D 2.

Thus the submatrix ƒ1 does not satisfy the identifying condition 2 and it has to be modified;

that is, the targets in column 1 have to be modified. This is confirmed in the simulation. From

the 100 samples, 13 samples recognized the model as a nonidentified model. For the remaining

samples many of the parameters have large standard error estimates and generally all parameter

estimates are biased. The average absolute bias for all loading parameters is 0.511. The average

standard error for the loading parameters is 1.393. Such large standard errors indicate a poorly

identified model.

The reason that the nonidentification is not recognized in all samples is as follows. Whereas

for the true parameter values rank.ƒ1/ D 1, for individual samples the rank. Oƒ1/ may actually

be 2 because of variation in the data generation and thus 87 of the 100 samples were considered

identified. However, that identification is very poor because Oƒ1 is generally quite close to ƒ1;

that is, it is nearly singular and has deficiency in the rank.

Now consider an alternative target specification. Replace the target œ51 D 0 with the target

œ71 D 0. All other targets remain the same. The new submatrix ƒ1 now is

ƒ1 D

�

œ42 œ43

œ72 œ73

�

D

�

1 0

0 1

�

which clearly has rank 2 and the model is now well identified. The results of the simulation

confirm this. The average absolute bias for the loading estimates is now 0.003, and the average

standard error for the loading estimates is 0.039.

Note that conditions 1 and 2 are generally only sufficient conditions for identification. These

conditions are strictly speaking not necessary. A necessary condition is the fact that there should

be at least m.m � 1/ targets, because that will lead to the m.m � 1/ constraints needed for

identification purposes. The preceding simulation example, however, suggests that for practical

purposes one could treat conditions 1 and 2 also as necessary conditions.

For orthogonal rotations the identification requirements are similar, however, now only

.m � 1/=2 targets should be specified in each column, because the ‰ matrix has m.m � 1/=2

additional constraints, beyond the m factor variances fixed at 1. If m is even .m � 1/=2 is not

an integer, so in that case the total number of targets has to be at least m.m � 1/=2 while each

column can contain a different number of targets. Again, however, all submatrices ƒs have to

be of full rank.
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412 ASPAROUHOV AND MUTHÉN

AN EMPIRICAL EXAMPLE

An example is analyzed to highlight both the EFA extensions and the SEM extensions made

possible with ESEM. The example concerns a teacher-rated measurement instrument capturing

aggressive and disruptive behavior among a sample of U.S. students in Baltimore public schools

(Ialongo et al., 1999). A total of 248 girls and 261 boys were observed in 27 classrooms over

Grades 1 through 3. The instrument consists of 13 items scored as 1 (almost never) through

6 (almost always). A first analysis considers Grade 3 gender differences in the factors behind

the 13 items, using multiple-group EFA to study measurement invariance and differences in

factor means, variances, and covariances. A second analysis studies antecedents of Grade 3

aggressive and disruptive behavior where the exploratory factors are related to covariates, in

this case Grade 1 factors for aggressive and disruptive behavior and a poverty index. Several

additional latent variable analysis features are illustrated that are new in the context of an

exploratory measurement structure. First, the items are treated as continuous normal variables

in the estimation, but due to the skewed distributions, nonnormality robust ¦2 model testing

and standard errors will be used.8 Second, the data are hierarchical with students nested within

classrooms so that ¦2 model testing and standard errors that also take the cluster sample feature

into account are used9 (for an overview of these techniques, see Asparouhov & Muthén, 2005).

An alternative modeling approach for this example that includes classroom-level modeling and

not just cluster sampling adjustments is presented in Muthén and Asparouhov (2008). Third,

the analysis involves using Lagrangian multipliers (modification indexes) to search for sources

of model misfit in the presence of nonnormality and hierarchical data.

These two examples have model features that have not been possible to accommodate until

now. In the first example, a simultaneous EFA with factor loading rotation is performed in

several groups, testing different degrees of across-group invariance of measurement and factor

distribution parameter arrays. In the second example, a structural equation model is formulated

for a measurement model at two time points, testing EFA measurement invariance across

time and also allowing the estimation of rotated structural regression coefficients. These new

possibilities represent path-breaking additions to EFA and SEM.

Multiple-Group EFA of Gender Invariance

The design of the measurement instrument suggests that three factors related to aggressive and

disruptive behavior in the classroom can be expected: verbal aggression, person aggression,

and property aggression. Strong gender differences are expected. Separate analyses of females

and males find that a three-factor exploratory structure fit the data reasonably well. A two-

group analysis of females and males with no equality restrictions across groups combines

these two analyses and results in ¦2 D 145 with 84 df, nonnormality scaling correction factor

c D 1:416, comparative fit index (CFI) D 0.972, and root mean squared error of approximation

(RMSEA) D 0.053. Adding factor loading matrix invariance results in ¦2 D 191 with 114 df,

nonnormality scaling correction factor c D 1:604, CFI D 0.964, and RMSEA D 0.052. A

¦2 difference test does not reject the added loading invariance hypothesis at the 1% level,

8This uses the Mplus MLR estimator.
9This uses the Mplus Type D Complex feature.
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TABLE 1

Two-Group Exploratory Factor Analysis Estimates for Grade 3

Aggressive and Disruptive Behavior

Items Verbal Person Property

Stubborn 1.19 0.00 �0.01
Breaks rules 0.73 0.22 0.01
Harms others and property 0.01 0.43 0.18

Breaks things �0.02 0.01 0.31

Yells at others 0.94 0.19 �0.03
Takes others’ property 0.36 0.02 0.25

Fights 0.36 0.62 �0.02
Harms property 0.13 0.03 0.36

Lies 0.77 0.00 0.18

Talks back to adults 0.87 �0.03 0.17

Teases classmates 0.58 0.34 0.02
Fights with classmates 0.42 0.49 0.03
Loses temper 0.87 0.15 �0.00
Females

Factor means 0.00 0.00 0.00
Factor variances 1.00 1.00 1.00
Factor correlations

F2 0.76
F3 0.38 0.61

Males
Factor means 0.35 0.69 0.80
Factor variances 1.18 2.70 5.75
Factor correlations

F2 0.54
F3 0.52 0.65

Note. Values in bold are significant at the 5% level.

¦2 D 47 with 30 df (p D :02).10 Adding measurement intercept invariance to the loading

invariance gives ¦2 D 248 with 124 df, nonnormality scaling correction factor c D 1:517,

CFI D 0.942, and RMSEA D 0.063. A ¦2 difference test clearly rejects the added intercept

invariance hypothesis, ¦2 D 133 with 10 df. The modification indexes (MI) for the model with

intercept invariance point to especially strong noninvariance for the item breaks rules, with

MI D 18. The expected parameter change value for this parameter indicates that males have a

significantly higher intercept, that is, a higher expected score given the factor value. Letting the

intercept for breaks rules be different across gender while testing for gender invariance of the

factor covariance matrix leads to a strong rejection by the ¦2 difference test, ¦2 D 191 with

6 df. The Geomin-rotated solution for the model with invariant loadings, invariant intercepts

except for break rules, and noninvariant factor covariance matrix is presented in Table 1. Here

the – value for the Geomin criterion is – D 0:001.

Table 1 shows that the factor loadings give a clear interpretation of the factors in terms

of verbal-, person-, and property-related aggressive and disruptive behavior. Note that the

10The ¦2 difference testing using MLR is done as shown at www.statmodel.com/chidiff.shtml
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414 ASPAROUHOV AND MUTHÉN

loading estimates are not in the usual EFA metric, but correspond to items that are not

standardized to unit variance and where the variances vary across items. For males the factors

are also not standardized to unit variances.11 Several items have significant cross-loadings,

indicating that a simple structure CFA is not suitable. In terms of the factor distributions,

males have significantly higher means on all factors and are also more heterogeneous on all

factors except verbal. It is interesting to note that much of the attention in factor-analytic

group comparisons is focused on factor loading similarity, with less or no attention paid to

the measurement intercepts. With invariant loadings, scores consisting of sums of items with

large loadings are often used as proxies for the factors. If the intercepts are not invariant,

however, the use of such scores gives a distorted view of group differences. This distortion

is avoided in this analysis focusing on factor mean differences under partial measurement

invariance.

Multiple-Group SEM with a Time-Invariant EFA Measurement Structure

In this section, the previous two-group, three-factor EFA model is expanded into a two-group

structural equation model by regressing the Grade 3 factors on the corresponding Grade 1

factors. A covariate lunch is also added that predicts the three factors at both time points,

where lunch is a dichotomous student family poverty index (free lunch recipient). Adding to

the Grade 3 measurement model for females and males, measurement invariance is specified

with respect to the factor loadings across the two grades. For simplicity, across-grade invariance

is not specified for the measurement intercepts, and the study of factor mean differences across

grade is not considered here. Factor covariance matrices are allowed to vary across the grades.

This model results in ¦2 D 998 with 637 df, nonnormality scaling correction factor c D 1:382,

CFI D 0.945, and RMSEA D 0.041. A ¦2 difference test of across-grade loading invariance

does not show a strong indication of factor loading noninvariance, resulting in ¦2 D 49 with 29

df and p D :01. Geomin rotation gives a factor loading pattern similar to that of the two-group

EFA for Grade 3 in Table 1.

Interesting gender differences emerge in the factor relationships across grades. For females

the three Grade 1 factors do not significantly predict the three Grade 3 factors, but for males

the verbal- and person-related factors have significant and positive relations over the grades.

For females, the lunch poverty index has no significant effect on the factors at either grade,

whereas for males lunch has a significant positive effect on the verbal and person factors in

Grade 1.

In this framework it is not possible to regress only one of the exploratory factors on the

poverty index variable. All three factors have to be regressed on that variable. This is necessary

because even if only one factor is regressed on the poverty index variable after the rotation all

three rotated factors will have nonzero regression coefficients. Similarly, each of the Grade 3

factors has to be regressed on each of the Grade 1 factors rather than only on its corresponding

factor. Note also that in this example the regression coefficients of the Grade 3 factors on the

Grade 1 factors are subject to rotation twice (see Equation 20), once to rotate the Grade 1

factors and a second time to rotate the Grade 3 factors.

11Mplus also provides a standardized solution. This results in different loadings across groups due to different
group variances for items and factors
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EXPLORATORY STRUCTURAL EQUATION MODELING 415

SIMULATION STUDIES

A series of simulation studies is now presented to illustrate the performance of the ESEM

analysis. General considerations of the use of simulation studies with EFA and ESEM are

presented in Appendix D. The simulation studies are conducted with Mplus 5.1. The Mplus

input for the first simulation is given in Appendix E.12

Small Cross-Loadings

One of the advantages of ESEM is that small cross-loadings do not need to be eliminated from

the model. Given the lack of standard errors for the rotated solution in most EFA software,

common EFA modeling practice is to ignore all loadings below a certain threshold value such as

0.3 on a standardized scale (see Cudeck & O’Dell, 1994). In subsequent CFA such loadings are

typically fixed to 0 (e.g., van Prooijen & van der Kloot, 2001). Small model misspecifications

such as these, however, can have a relatively large impact on the rest of the model.

In the following simulation study data are generated according to a two-factor model with

10 indicator variables Yj and one covariate X . Denote the two factors by ˜1 and ˜2. The model

is specified by the following two equations

Y D � C ƒ˜ C © (33)

˜ D B X C — (34)

where © is a zero mean normally distributed residual with covariance matrix ‚ and — are zero

mean normally distributed residuals with covariance matrix ‰. The following parameter values

are used to generate the data. The intercept parameter � D 0, the residual covariance ‚ is a

diagonal matrix with the value 0.36 on the diagonal. The loading matrix ƒ is

ƒ D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0:8 0

0:8 0

0:8 0

0:8 0:25

0:8 0:25

0 0:8

0 0:8

0 0:8

0 0:8

0 0:8

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(35)

The values œ42 D œ52 D 0:25 represent the small cross-loadings. The true value for ‰ is

‰ D

�

1 0:5

0:5 1

�

12A tutorial on Mplus simulation studies with ESEM is available in Mplus 5.1, Examples Addendum available at
www.statmodel.com/ugexcerpts.shtml. In addition, all Mplus input and outputs for the simulation studies presented in
this article are available by e-mail from the second author (bmuthen@ucla.edu).
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416 ASPAROUHOV AND MUTHÉN

The true values for the regression slopes are

B D

�

0:5

1

�

:

The covariate X has a standard normal distribution. The simulation study uses 100 samples of

size 1,000. The samples are then analyzed by ESEM based on Geomin rotation with – D 0:0001,

ESEM based on Geomin rotation with – D 0:01, ESEM based on Quartimin rotation, and the

CFA-SEM model where the two cross-loadings œ42 and œ52 are held fixed to 0. All methods

produced unbiased estimates for � and ‚ parameters. The results for the remaining parameters

are presented in Tables 2 and 3.

It is clear from these results that the consequences of eliminating small cross-loadings in

the SEM analysis can result in substantial bias in the rest of the parameter estimates as well

as poor confidence interval coverage. Among the three ESEM methods the best results were

obtained by the Geomin method with – D 0:0001. The Quartimin method and Geomin with

– D 0:01 showed some small biases that lead to poor confidence interval coverage. In contrast,

ESEM based on Geomin rotation with – D 0:0001 produces results with little bias for all

TABLE 2

Comparison of ESEM and CFA-SEM with Small Cross-Loadings: Average Parameter Estimates

Parameter

True

Value CFA-SEM

ESEM

Quartimin

ESEM

Geomin (0.01)

ESEM

Geomin (0.0001)

œ11 0.80 0.75 0.84 0.82 0.81
œ21 0.80 0.75 0.83 0.82 0.80
œ31 0.80 0.75 0.83 0.82 0.81
œ41 0.80 0.99 0.84 0.82 0.81
œ51 0.80 0.99 0.84 0.83 0.81
œ61 0.00 0.00 0.01 0.01 0.00
œ71 0.00 0.00 0.01 0.01 0.00
œ81 0.00 0.00 0.01 0.01 0.00
œ91 0.00 0.00 0.01 0.01 0.00
œ101 0.00 0.00 0.01 0.01 0.00
œ12 0.00 0.00 �0.06 �0.03 �0.01
œ22 0.00 0.00 �0.06 �0.03 �0.01
œ32 0.00 0.00 �0.06 �0.04 �0.01
œ42 0.25 0.00 0.18 0.21 0.24
œ52 0.25 0.00 0.18 0.21 0.23
œ62 0.80 0.80 0.80 0.80 0.80
œ72 0.80 0.80 0.80 0.79 0.80
œ82 0.80 0.80 0.80 0.80 0.80
œ92 0.80 0.80 0.80 0.79 0.80
œ102 0.80 0.80 0.80 0.80 0.80
“1 0.50 0.61 0.56 0.54 0.52
“2 1.00 1.00 1.00 1.00 1.00
§12 0.50 0.61 0.55 0.53 0.51

Note. CFA-SEM D confirmatory factor analysis-structural equation modeling; ESEM D exploratory structural
equation modeling.
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TABLE 3

Comparison of ESEM and CFA-SEM with Small Cross-Loadings:

Confidence Intervals Coverage

Parameter CFA-SEM

ESEM

Quartimin

ESEM

Geomin (0.01)

ESEM

Geomin (0.0001)

œ11 0.54 0.77 0.85 0.90
œ21 0.48 0.87 0.97 0.97
œ31 0.48 0.82 0.93 0.95
œ41 0.00 0.78 0.86 0.95
œ51 0.00 0.76 0.88 0.95
œ61 1.00 0.98 0.97 1.00
œ71 1.00 0.95 0.94 0.97
œ81 1.00 0.96 0.98 1.00
œ91 1.00 0.95 0.95 1.00
œ101 1.00 0.95 0.92 0.97
œ12 1.00 0.05 0.50 0.95
œ22 1.00 0.05 0.46 0.96
œ32 1.00 0.02 0.38 0.97
œ42 0.00 0.24 0.66 0.91
œ52 0.00 0.09 0.67 0.89
œ62 0.99 0.98 0.97 0.98
œ72 0.99 0.95 0.94 0.97
œ82 0.94 0.96 0.96 0.96
œ92 0.95 0.97 0.97 0.99
œ102 0.94 0.97 0.97 0.97
“1 0.13 0.59 0.83 0.94
“2 0.96 0.97 0.97 0.97
§12 0.01 0.44 0.77 0.93

Note. CFA-SEM D confirmatory factor analysis-structural equation modeling; ESEM
D exploratory structural equation modeling.

parameters and coverage near the nominal 95% level. A simulation study based on samples

with only 100 observations reveals very similar results to the ones presented in Tables 2 and 3;

that is, these results appear to be independent of the sample size.

The chi-square test of fit for the model is also affected by the elimination of small cross-

loadings. Using a simulation with 500 samples of size 1,000 the SEM model is rejected 100%

of the time and the ESEM model is rejected only 7% of the time. For a sample size of 100

the rejection rate for the SEM model is 50% and for the ESEM model it is 10%. These results

show that small, inconsequential cross-loadings can lead to a correct chi-square rejection of an

otherwise well-constructed SEM model. Using approximate fit measures for the SEM model,

such as CFI/Tucker–Lewis Index (TLI), RMSEA, and standardized root mean squared residual

(SRMR), one can avoid this rejection problem to a substantial degree. Using samples of size

1,000 and the RMSEA measure with a cutoff value of 0.06 the model is rejected only 50% of

the time. Using the SRMR measure with cutoff value of 0.08, the model is never rejected.

The simulation study presented here is not as easy to interpret as traditional simulation

studies especially when it comes to comparing different rotation methods. To provide proper

interpretation of the results one has to first accept the notion that the loading matrix presented
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418 ASPAROUHOV AND MUTHÉN

TABLE 4

Rotation of Population Loading Matrix

ƒ ƒq ƒ0:01 ƒ0:0001

0.80 0.00 0.80 �0.07 0.82 �0.03 0.80 �0.01
0.80 0.00 0.80 �0.07 0.82 �0.03 0.80 �0.01
0.80 0.00 0.80 �0.07 0.82 �0.03 0.80 �0.01
0.80 0.25 0.80 0.18 0.82 0.21 0.80 0.24
0.80 0.25 0.80 0.18 0.82 0.21 0.80 0.24
0.00 0.80 0.01 0.83 0.01 0.79 0.00 0.80
0.00 0.80 0.01 0.83 0.01 0.79 0.00 0.80
0.00 0.80 0.01 0.83 0.01 0.79 0.00 0.80
0.00 0.80 0.01 0.84 0.01 0.79 0.00 0.80
0.00 0.80 0.01 0.84 0.01 0.79 0.00 0.80

in Equation 35 is the simplest possible loading matrix among all rotated versions of that matrix.

In particular, one has to accept the notion that ƒ given in Equation 35 is simpler than rotations

of ƒ that have no zero loading values. If this simplicity notion is accepted, then the simulation

study can be interpreted in the traditional sense; that is, the matrix ƒ given in Equation 35 is

the true loading matrix that has to be estimated by the rotated loading matrix Oƒ. Now suppose

that, for some reason, an analyst decides that another rotated version of ƒ is simpler than the

one given in Equation 35. In that case, the preceding simulation study would be irrelevant and

a different rotation criterion, that targets the alternative rotated version of ƒ, would have to be

explored.

To illustrate the preceding point, consider the rotation results on the population level. Using

the rotation algorithms with the true population parameters ƒ, ‰, and ‚ one can obtain the

optimal rotations on the population level.13 Denote the ƒ rotations obtained by Quartimin,

Geomin with – D 0:01, and Geomin with – D 0:0001 by ƒq , ƒ0:01, and ƒ0:0001, respectively.

Denote the corresponding ‰ rotations by ‰q , ‰0:01, and ‰0:0001, respectively.14 These matrices

are presented in Tables 4 and 5. Finite sample based rotated parameter estimates are essentially

consistent estimates of the rotated population values presented in Table 4 and 5. All four of

these rotated solutions are equivalent in terms of model fit because the matrices are rotations

of each other. To decide which rotation is optimal one has to consider the notion of simplicity.

Which of the four ƒ matrices should be considered the simplest and the most interpretable?

Regardless of the arguments and notion of simplicity in this example, one inevitably reaches

the conclusion that the matrix ƒ is the simplest. Therefore in the estimation process this matrix

should be considered the desired matrix. It is clear that ƒ0:0001 is the closest to ƒ and that is the

reason why the Geomin rotation with – D 0:0001 produced the best results in the simulation

study. If, however, for some reason one decides that ƒq is the simplest possible matrix, then

obviously the Quartimin rotation would be the optimal rotation method to use. A realistic

13Note that ‚ also influences the rotation through the correlation standardization.
14In Mplus the population-level rotations are obtained by generating a large sample, such as a sample with 1,000,000

observations. In such a large sample the estimated parameters are nearly identical with the population parameters.
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TABLE 5

Rotation of Population Correlation Matrix

‰ ‰q ‰0:01 ‰0:0001

1.00 0.50 1.00 0.55 1.00 0.52 1.00 0.51
0.50 1.00 0.55 1.00 0.52 1.00 0.51 1.00

example where two different loading matrices are quite likely to be considered as the simplest

and most interpretable is described later in this article.

Chi-Square Test of Fit and Likelihood Ratio Testing

Testing various aspects of ESEM can be done the same way as for regular SEM models. The

standard chi-square test of fit that compares a structural model against an unrestricted mean

and variance model can be done for ESEM the same way, using the likelihood ratio test (LRT)

for the two models. For example, consider the question of how many factors are needed in

the ESEM model. One standard approach is to sequentially fit models with 1, 2, : : : , and so

on factors and then use the smallest number of factors for which the test of fit does not reject

the model. Consider the simulation example described in the previous section. Estimating the

model with one factor leads to an average chi-square test of fit of 1,908 with 44 df and 100%

rejection rate; that is, the LRT correctly identifies the one-factor ESEM model as insufficient. In

contrast, for the two-factor ESEM model the average chi-square test of fit is 35 with 34 df and

the rejection rate dropped to 9%; that is, the LRT correctly finds the two-factor ESEM model

well fitting. It is possible to estimate even a three-factor ESEM model, although convergence

problems occur in 30 out of the 100 replications. The average chi-square test of fit for the three-

factor ESEM model is 20 and with 25 df this leads to a 0% rejection rate. The underestimation

of the chi-square test statistic and Type I error in this case is due to overfactoring (see Hayashi,

Bentler, & Yuan, 2007).

Alternatively, the LRT can be used to test directly an m � 1-factor ESEM model against an

m-factor ESEM model, without testing the models against the unrestricted mean and variance

models. In the preceding example, testing the one-factor model against the two-factor model

gives an average chi-square test statistic of 1,873 and with 8 df this leads to a 100% rejection

rate. In certain cases such direct testing can be preferable as it directly tests the hypothesis

of interest, namely, whether or not the additional factor is needed. The direct test will also

be more powerful than the general test of fit model; that is, it will outperform the test of fit

approach in small sample size problems. Note, however, that testing m � 1 factors against m

factors is susceptible to overfactoring and inflated Type I error (see Hayashi et al., 2007).

In practice, however, not all of the residual correlation will be picked up by the unrestricted

loading structure of the ESEM model and strictly using the chi-square test of fit will often lead

to an unreasonable number of factors in the model, many of which contribute little to the overall

model fit. In such cases one can use approximate fit indexes such as SRMR, CFI, and TLI to

evaluate the fit of the model. One can also use the SRMR index to evaluate the improvement

in the fit due to each additional factor. For example, if an additional factor contributes less

than 0.001 decrease in the SRMR, it seems unreasonable to include such factors in the model.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
8
 
1
3
 
A
u
g
u
s
t
 
2
0
0
9



420 ASPAROUHOV AND MUTHÉN

Instead one can use the new ESEM feature, extending the standard EFA, by including residual

covariance parameters in the model in addition to the exploratory factors. Furthermore it is

possible to point out which residual covariances should be included in the model, and thereby

improve factor stability and overall fit, by using standard modeling tools such as modification

indexes, and standardized and normalized residuals.

The LRT can be used also to test an EFA model against a CFA model. Consider again the

simulation example given earlier and the LRT of that model against the CFA model based on

all nonzero loadings, i.e., including the two small cross-loadings. Note first that the two models

are nested. This is not very easy to see because of the parameter constraints imposed on the

ESEM parameters by the rotation algorithm. There are eight loading parameters that are fixed

at 0 in the CFA-SEM but not in the ESEM. However, the ESEM model has two parameter

constraints, imposed by the rotation algorithm, that involve all loading and factor covariance

parameters. To see that the CFA model is nested within the ESEM model, first note that the

ESEM model is equivalent to its starting unrotated solution. The rotated solution has the same

log-likelihood value as the unrotated starting value solution, and any testing of a model against

an ESEM model is essentially a test against the unrotated starting value model. A number of

different unrotated solutions can be used at this point. Two of these are generally convenient

in assessing the model nesting. The first one is the orthogonal starting value where the factor

variance–covariance matrix is the identity matrix and the loadings above the main diagonal

in the upper right corner are all fixed to 0. The second unrotated starting value solution that

can be used is the oblique starting value where the factor variances are fixed to 1, the factor

covariances are free, and each loading column contains exactly m � 1 zeroes in locations that

satisfy the sufficient condition 2. For example, a square submatrix of size m can be selected

from the loading matrix and in this submatrix all values except the main diagonal entries can

be fixed to 0. In the preceding example one can use the oblique starting value solution to assert

the nesting of the CFA and ESEM models. The ESEM model is equivalent to an unrotated

oblique starting value solution with any two loadings from different rows fixed to 0. It is now

clear that the CFA model can be thought of as more constrained than the ESEM model where

the additional constraints simply fix the remaining six loadings at 0.

Conducting the LRT between the ESEM and CFA models for the earlier simulation example,

using 100 samples of size 5,000, the average test statistic is 5.73 and with 6 df that leads to

a rejection rate of only 2%; that is, the LRT correctly concludes that the CFA model with all

eight loadings fixed to 0 is well fitting.

Now consider the situation when both nested models are approximately fitting models; that

is, the models have small misspecifications but the sample size is large enough that even small

misspecifications lead to poor tests of fit. For example, if the data generation given earlier

is altered by adding a residual covariance between Y7 and Y8 of 0.05, using a sample size

of 5,000, both the ESEM and CFA models are rejected by the test of fit 100% of the time

with average chi-square test of fit statistics of 88 and 97, respectively. The average SRMR

measures are 0.004 and 0.005, respectively; that is, both models are fitting approximately in all

100 replications. Conducting the LRT between the CFA and ESEM models provides relatively

good results here as well. The average LRT statistic for testing the CFA model against the

ESEM model is 8.65 and with 6 df, this leads to a 14% rejection rate. This suggests that even

when the models are fitting the data only approximately, the LRT can be used to distinguish

between ESEM and CFA models. The relatively small inflation in the rejection rate is due
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EXPLORATORY STRUCTURAL EQUATION MODELING 421

to the fact that the more flexible ESEM model is able to accommodate more of the model

misspecifications than the CFA model. The inflation, however, is relatively small and the LRT

can clearly be recommended. Even though both the ESEM and CFA models are incorrect in

this simulation, the LRT correctly concludes that the eight loadings are indeed 0.

Multiple-Group ESEM

This section describes a multiple-group example and demonstrates the constrained rotation

technique described earlier for group-invariant loading matrices. Consider a two-group, two-

factor model with 10 dependent variables:

Y D �g C ƒg˜ C © (36)

˜ D ’g C — (37)

where © and — are zero mean residuals with covariance matrices ‚g and ‰g. One common

application of multiple group analysis is to test measurement invariance across the groups; that

is, to test the hypothesis ƒ1 D ƒ2 (see Jöreskog & Sörbom, 1979). Estimating the measurement

invariance model is of interest as well. This simulation study evaluates the performance of the

ESEM technique for the measurement invariance model. Data are generated using the following

parameter values �1 D �2 D 1, ’1 D 0, ’2 D .0:5; 0:8/, ‚1 is a diagonal matrix with all

diagonal values 1, ‚2 is a diagonal matrix with all diagonal values 2,

ƒ1 D ƒ2 D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0:8 0

0:8 0

0:8 0

0:8 0

0:8 0

0 0:8

0 0:8

0 0:8

0 0:8

0 0:8

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

‰1 D

�

1 0:5

0:5 1

�

‰2 D

�

1:5 1

1 2

�

:

The simulation study is conducted for samples with 100 observations in each group as well as

samples with 500 observations in each group. The simulation study is based on 100 samples

for each of the two sample size specifications. For each of the samples the ESEM model is

estimated with the following constraints. The loadings and the intercepts are held equal across
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422 ASPAROUHOV AND MUTHÉN

the two groups.

ƒ1 D ƒ2 (38)

�1 D �2 (39)

In the first group the factor variances are fixed to 1 and the factor means are fixed to 0:

§111 D §221 D 1 (40)

’1 D 0: (41)

In addition, ‚1 and ‚2 are estimated as diagonal matrices, ’2 is estimated as a free vector,

‰2 is estimated as an unrestricted variance matrix, and ‰1 is estimated as an unrestricted

correlation matrix. This model specification is a typical measurement invariance model. Other

sets of identifying restrictions can be similarly specified. The model described earlier has a total

of 54 independent parameters, 10 � parameters, 10 ‚1 parameters, 10 ‚2 parameters, 20 ƒ

parameters, 3 ‰2 parameters, 2 ’2 parameters, and §121, minus the two parameter restrictions

imposed on ‰ and ƒ by the rotation algorithm. The ESEM model is estimated with the Geomin

rotation and – D 0:0001. The average estimate for some of the parameters in the model and

their confidence interval coverage are reported in Table 6. For sample size 500, all parameter

estimates have negligible bias and the coverage is near the nominal 95% level. For sample size

100, the coverage is near the nominal 95% level; however, some of the parameter estimates

show substantial bias, namely, the factor covariance parameter in both groups.

The results in Table 6 indicate that the small sample size properties of the ESEM models

may be somewhat inferior to those of traditional SEM. To investigate the small sample size

parameter biases in the preceding simulation study the samples with 100 observations in each

group are analyzed by the following three methods: the ESEM method with Geomin rotation

and – D 0:0001, the ESEM method with Target rotation using all 0 loadings as targets, and

the SEM with all 0 loadings fixed to 0. In practice both the ESEM-Target method and the

TABLE 6

Two-Group Exploratory Structural Equation Modeling Geomin Analysis

Parameter

True

Value

n D 100

Average

Estimate

n D 500

Average

Estimate

n D 100

Coverage

n D 500

Coverage

œ11 0.80 0.76 0.79 0.92 0.95
œ12 0.00 0.04 0.01 0.97 0.99
§121 0.50 0.42 0.49 0.98 0.98
�11 1.00 0.99 0.99 0.94 0.98
™111 1.00 0.97 1.00 0.93 0.99
’12 0.50 0.47 0.51 0.93 0.91
’22 0.80 0.81 0.82 0.96 0.95
§122 1.00 0.92 0.98 0.92 0.96
§112 1.50 1.58 1.50 0.92 0.96
§222 2.00 2.03 2.02 0.93 0.95
™112 2.00 1.96 1.99 0.96 0.96
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SEM method can be used as a follow-up model to the ESEM-Geomin method. Based on the

ESEM-Geomin method, the ESEM-Target model is constructed by setting all loadings that

are not significantly different from 0 as targets. Similarly, the SEM model is constructed by

setting all loadings that are not significantly different from 0 as loadings that are fixed to 0.

Note that although the parameter estimates for ESEM-Geomin show some small sample size

bias for some parameters, the standard errors produced correct coverage for all parameters;

that is, when evaluating the significance of small loadings for purposes of constructing the

ESEM-Target model and the SEM model, the ESEM-Geomin model will correctly point out

all zero loadings.

The results of this simulation study are presented in Table 7, which contains the average

parameter estimates and the mean squared error (MSE) for the parameter estimates. Small

sample size results should be interpreted very cautiously. Usually there is no theoretical

justification for preferring one method over another for small sample size and usually simulation

studies are used to draw general conclusions. However, there is no guarantee that the results in

one simulation study would be similar to the results of the same simulation study with different

parameters and even in the same simulation study the results can be inconsistent. For example,

in this simulation the covariance in the first group is best estimated by the SEM model, whereas

the covariance in the second group is best estimated by the ESEM-Target model. Nevertheless,

Table 7 seems to give general guidance for reducing small sample size biases. It appears that

the additional information that ESEM-Target and SEM facilitate, namely that some loadings

are small or even 0, does result in a reduction of the small sample size biases and the MSE of

the parameter estimates. In addition, the SEM model does appear to have slightly smaller biases

overall than the ESEM-Target method although this does not appear to be a consistent trend

and for some parameters ESEM-Target produces better results. For many of the parameters the

three methods produce nearly identical results. The SEM model has fewer parameters overall

and thus can be expected in general to produce somewhat smaller biases and smaller MSE.

TABLE 7

Two-Group ESEM Analysis, Small Sample Size Comparison of ESEM-Geomin, ESEM-Target, and SEM

Parameter

True

Value

ESEM

Geomin

Average

Estimate

ESEM

Target

Average

Estimate

SEM

Average

Estimate

ESEM

Geomin

MSE

ESEM

Target

MSE

SEM

MSE

œ11 0.80 0.76 0.77 0.78 0.021 0.022 0.010
œ12 0.00 0.04 0.02 0.00 0.014 0.012 0.000
§121 0.50 0.42 0.45 0.48 0.021 0.014 0.012
�11 1.00 0.99 0.99 0.99 0.016 0.016 0.017
™111 1.00 0.97 0.97 0.98 0.027 0.027 0.025
’12 0.50 0.47 0.48 0.49 0.044 0.043 0.041
’22 0.80 0.81 0.82 0.82 0.041 0.040 0.040
§122 1.00 0.92 0.99 1.04 0.107 0.095 0.101
§112 1.50 1.58 1.59 1.60 0.284 0.291 0.275
§222 2.00 2.03 2.04 2.05 0.305 0.298 0.292
™112 2.00 1.96 1.96 1.96 0.097 0.097 0.096

Note. ESEM D exploratory structural equation modeling; SEM D structural equation modeling; MSE D mean
squared error.
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424 ASPAROUHOV AND MUTHÉN

Conducting this simulation for a sample size of 500 does not lead to any substantial difference

among the three methods. Thus the differences presented in Table 7 are likely to occur only

in small samples.

In addition, the usual chi-square test of fit that compares the estimated ESEM model against

the unrestricted mean and variance two-group model can be used to evaluate the fit of the

model. In this simulation study the model has 76 df. For a sample size of 100, the average test

of fit statistic is 78.25 with a rejection rate at 5%. For a sample size of 500, the average test

of fit statistic is 76.05 with a rejection rate at 5%. This shows that the chi-square test of fit

works well for the ESEM models.

General Factor

In certain EFA applications there is one main factor on which all items load. In addition, there

can be other factors that are specific to the different items. This structure is also referred to as

a bifactor solution in the classic factor analysis text of Harman (1976). For example, consider

a three-factor model with 10 items with the following loading matrix

ƒ D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0

1 0 0

1 0 0

1 0:5 0

1 0:5 0

1 0:5 0

1 0:5 0

1 0 0:5

1 0 0:5

1 0 0:5

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: (42)

If one considers oblique rotations, there is a rotation of the preceding matrix that will have just

one nonzero entry in each row.

ƒ D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0

1 0 0

1 0 0

0 1:12 0

0 1:12 0

0 1:12 0

0 1:12 0

0 0 1:12

0 0 1:12

0 0 1:12

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(43)

‰ D

0

@

1 0:89 0:89

0:89 1 0:80

0:89 0:80 1

1

A (44)
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EXPLORATORY STRUCTURAL EQUATION MODELING 425

Thus rotation criteria such as Quartimin that converge to complexity 1 solutions will not be

able to recover the general factor structure (Equation 42). Geomin with – D 0 has two different

optimal solutions, namely Equations 42 and 43, both leading to a rotation function value of 0.

For very small positive values of – one can expect this to remain so. However, as – increases,

the rotation function can change sufficiently so that some of these multiple solutions are no

longer local solutions. As – increases the rotation function value for Equation 43 will be lower

because it has two zeroes in each row; that is, the loadings matrix (Equation 43) will be the

global minimum and Equation 42 will be at best a local solution. In fact it is not clear whether

Equation 42 will represent a local solution at all. Even with – D 10�4 using 30 random starting

values, the GPA algorithm converged to Equation 43 in all 30 replications. In general it is not

easy to force a minimization algorithm to find local solutions, because minimization algorithms

are designed to find global solutions. The rotation function value for Equation 43 is 0.027 and

for Equation 42 it is 0.214; that is, the two solutions are of a different magnitude. If – is chosen

to be a smaller value, such as 10�6, the rotation function values are closer, but the convergence

process is substantially more difficult. Many more replications are needed for convergence and

the convergence criteria have to be relaxed as well. Using – D 10�6 again most replications

converge to solution Equation 43, but another local solution is found that is different from

both Equations 42 and 43. In addition, in a simulation study, even if the GPA algorithm is

able to find consistently a particular local solution in all samples it is difficult to implement

constraints that will always recognize that particular local solution so that when the results of

the simulation are accumulated the same local solution is used. This investigation shows that

relying on local Geomin solutions might not work well and that from a practical perspective

the loading matrix (Equation 42) should not be considered Geomin invariant.

For orthogonal rotations, however, the loading matrix (Equation 42) is Geomin invariant.

This is demonstrated in the following simulation study that compares Geomin with – D 0:001

with another popular rotation method, Varimax. The simulation study is based on 100 samples

of size 5,000. The data are generated according to the preceding model and using the loading

matrix (Equation 42). The intercept parameters � D 0, the residual variance for the indicator

variables is 1, and the factor covariance matrix ‰ is the identity matrix. The results of the

simulation study are presented in Table 8 for a representative set of parameters. The Geomin

TABLE 8

General Factor Exploratory Structural Equation Modeling Analysis

With Orthogonal Rotation

Parameter

True

Value

Geomin

Average

Varimax

Average

Geomin

Coverage

Varimax

Coverage

œ11 1.00 1.00 0.58 0.91 0.00
œ12 0.00 �0.01 0.57 1.00 0.00
œ13 0.00 0.01 0.58 0.98 0.00
œ41 1.00 1.01 0.90 0.96 0.71
œ42 0.50 0.49 0.37 0.94 0.00
œ43 0.00 0.00 0.47 0.98 0.00
œ81 1.00 1.00 0.45 0.96 0.00
œ82 0.00 �0.01 0.31 0.98 0.00
œ83 0.50 0.50 0.96 0.97 0.00
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426 ASPAROUHOV AND MUTHÉN

method produces unbiased parameter estimates with good confidence interval coverage. In

contrast, the Varimax method produces biased parameter estimates and poor confidence interval

coverage.

The Geomin method, however, has two solutions. The first solution is given in Equation 42

and has rotation function values 0.28. The second solution

ƒ D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0:94 0:33 0

0:94 0:33 0

0:94 0:33 0

1:06 0 0:35

1:06 0 0:35

1:06 0 0:35

1:06 0 0:35

1:06 0 �0:35

1:06 0 �0:35

1:06 0 �0:35

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(45)

has rotation function value 0.30. Using random starting values and the population parameters,

the GPA algorithm converged to the global minimum of 0.28 about half of the time and the

other half it converged to the local minimum of 0.30. When the sample size is sufficiently

large, such as the 5,000 used in this simulation, there will be two solutions, but they will

consistently appear in the same order; that is, the global minimum in all finite sample size

replications will correspond to the global minimum solution in the population model. Thus

an algorithm that always selects the global minimum will essentially always select the same

solution. If however, the sample size is smaller, the global and the local solutions will switch

orders across the replications, and thus an algorithm that always selects the global minimum

will essentially average the two different solutions and thus render useless results.15 A more

advanced algorithm that includes a method for picking the same local solution would avoid

that problem. This issue is important only in simulation studies. In single-replication studies

such as real data analysis, one has to simply evaluate all local solutions and choose the one

that is simplest and easiest to interpret.

When a general factor model is anticipated and oblique rotation is used, the Target rotation

method might be a better alternative. The next section illustrates the Target rotation with a

complex loading structure.

Complexity 3

In this section the advantages of the Target rotation are demonstrated with a complexity 3

example, that is, an example with three nonzero loadings in a row. The three methods compared

in this section are the Target rotation, the Geomin rotation with – D 0:01, and the Geomin

rotation with – D 0:0001. Consider a four-factor 12-indicator factor analysis model with the

intercept parameter � D 0, the covariance matrices ‰ and ‚ as the identity matrices, and ƒ

15Future version of Mplus will include tools for resolving this problem.
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as follows:

ƒ D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 .0/ .0/ .0/

1 0 0 0

1 0:5 0 0

.0/ 1 .0/ .0/

0 1 0:5 0

0 1 0 0

.0/ .0/ 1 .0/

0 0 1 0

0 0 1 0

0 0:5 0:5 1

.0/ .0/ .0/ 1

0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: (46)

The complexity of Y10 is 3. The entries in the parentheses represent the targets for the Target

rotation. One easy way to select targets and avoid any identification problems is to identify pure

factor indicators; that is, identify one variable for each factor that loads only on that variable

just like in this example. The rank condition is then automatically satisfied. When each factor

has a pure indicator one can set all zero loadings for the pure indicators as targets and the

loading matrix is then Target invariant; that is, the estimates are asymptotically unbiased under

the Target rotation. Tables 9 and 10 contain the results of the simulation study based on the

preceding model and conducted over 100 samples of size 5,000. A representative set of loading

parameters is presented in Tables 9 and 10. Both Geomin-based estimations produced biased

estimates. The bias of the estimates based on Geomin with – D 0:01 is smaller. The coverage of

TABLE 9

Complexity 3 Exploratory Structural Equation Modeling Analyses:

Average Estimates

Parameter

True

Value

Geomin

– D 0.0001

Geomin

– D 0.01 Target

œ11 1.00 1.00 1.00 1.00
œ12 0.00 0.00 �0.03 0.00
œ13 0.00 0.00 0.01 0.00
œ14 0.00 0.00 0.00 0.00
œ51 0.00 0.00 0.00 0.00
œ52 1.00 1.00 0.99 1.00
œ53 0.50 0.49 0.45 0.50
œ54 0.00 0.00 0.00 0.00
œ101 0.00 0.00 0.00 0.00
œ102 0.50 0.25 0.44 0.50
œ103 0.50 0.25 0.41 0.50
œ104 1.00 1.12 1.01 1.01
§12 0.00 0.00 0.03 �0.01
§34 0.00 0.22 0.06 0.00
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428 ASPAROUHOV AND MUTHÉN

TABLE 10

Complexity 3 Exploratory Structural Equation

Modeling Analyses: Coverage

Parameter

Geomin

– D 0.0001

Geomin

– D 0.01 Target

œ11 0.94 0.94 0.94
œ12 1.00 0.12 1.00
œ13 0.97 0.87 1.00
œ14 0.97 0.92 1.00
œ51 0.98 0.97 0.94
œ52 0.98 0.97 0.99
œ53 0.99 0.26 0.99
œ54 0.90 0.90 0.95
œ101 0.99 0.93 0.97
œ102 0.50 0.22 0.95
œ103 0.45 0.05 0.97
œ104 0.00 0.94 0.94
§12 0.97 0.61 0.94
§34 0.45 0.08 0.94

the Geomin-based estimation is also quite poor. In contrast, the Target rotation shows negligible

bias and coverage near the 95% nominal level.

One can investigate the source of the Geomin bias by conducting the rotation on the

population values and investigating all local solutions. Using – D 0:0001 Geomin has more

than five local solutions that have similar rotation function values. One of these solutions

corresponds to Equation 46. Thus the simulation study presented here somewhat unfairly

evaluates Geomin. If the algorithm included evaluation of the different local Geomin solutions

and included a constraint to make the additional selection among these solutions so that the

solution corresponding to Equation 46 is always selected, there would be no bias. The bias in

the simulation study is caused by the fact that the average estimates really represent the average

estimates among a mixed sets of local Geomin solutions, instead of the same solution. In real

data examples this is essentially a nonexistent problem because one simply has to consider the

various Geomin local solutions.

CHOOSING THE RIGHT ROTATION CRITERION

In most ESEM applications the choice of the rotation criterion will have little or no effect

on the rotated parameter estimates. In some applications, however, the choice of the rotation

criterion will be critical and in such situations one has to make a choice. This section describes

the underlying principles that one can follow to make that choice.

Choosing the right rotation is essentially a postestimation decision and there is no right

or wrong rotation. The goal of the rotation algorithms is to select the simplest and most

interpretable loading structure. It is ultimately the analyst’s choice and perception of what

the simplest and most interpretable loading structure is. It is the analyst’s choice of what the
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EXPLORATORY STRUCTURAL EQUATION MODELING 429

rotation criterion should be and which of the multiple rotated solutions represents the best

loading structure for that particular application. Understanding the properties of the different

rotation criteria will help the analyst in exploring the various rotation criteria. In particular,

understanding the type of loading structures that each of the rotation criteria can reproduce

(i.e., the invariant loading structures) is essential.

Estimation methods based on fit function optimizations such as the maximum likelihood

and least squares estimation methods would only accept the global optimum as the proper

solution. Local optima are perceived as estimation problems that have to be resolved so that

the global optimum is always obtained. This is not the case, however, when it comes to local

minima for the rotation criteria. Understanding and exploring the ability of rotation criteria

such as Geomin to produce multiple optimal solutions can help the analyst in finding the best

loading structure. It will generally be useful to consider the alternative top two or three Geomin

solutions when such solutions are available.16 Similarly, changing the – value in Geomin is

equivalent to changing the rotation criterion. There is no correct or incorrect – value. Different

values for this parameter produce different rotation criteria that can enable the analyst to fine-

tune the loading matrix. In fact it is important that the analyst explores the sensitivity of the

Geomin solution with respect to the – value. In particular – values such as – D 10�2; 10�3; 10�4

should always be used.

To summarize, there is no statistical reason to prefer one rotation criterion over another,

one – value over another, or one local minimum over another. It is entirely in the hands of the

analyst to make the choice and interpret the results. It is not the data that decide what a simple

loading structure is, it is not the estimator, and it is not the rotation method. The analyst alone

has to decide that. Although for many simple loading structures, such as Equation 31, most

analysts will agree that no alternative rotation of ƒ is simpler and more interpretable, that is

not the case for other loading structures such as Equation 42 and 43. For more complicated

loading structures analysts can disagree on what the simplest loading structure is, even when

the same rotation criterion is used and different local minima are selected. There is no statistical

tool to resolve such disagreement and multiple equally valid solutions can be used.

DISCUSSION

This article has presented a new approach to SEM that extends the types of measurement

models that can be used. Adding the possibility of an EFA measurement specification, strict

loading restrictions in line with CFA are not necessary. The resulting ESEM approach has

the full generality of regular SEM. From an EFA perspective, this implies that EFA can be

performed while allowing correlated residuals, covariates including direct effects on the factor

indicators, longitudinal EFA with across-time invariance testing, and multiple-group EFA with

across-group invariance testing. Several factor loading rotation methods are available, including

Geomin and Target rotation.

16Mplus will automatically run 30 random starting values with the Geomin rotation. More random starting values
can be requested using the rstarts= command. In addition the different rotation values are presented in regular EFA,
as well as the loading structures for the different local minima. The ESEM output in Mplus 5.1 presents only the
Geomin solution with lowest rotation function value.
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430 ASPAROUHOV AND MUTHÉN

The main advantage of the ESEM model over existing modeling practices is that it seam-

lessly incorporates the EFA and SEM models. In most applications with multiple factors the

EFA is used to discover and formulate factors. Usually the EFA is followed by an ad-hoc

procedure that mimics the EFA factor definitions in an SEM model with a CFA measurement

specification. The ESEM model accomplishes this task in a one-step approach and thus it is a

simpler approach. In addition, the ESEM approach is more accurate because it avoids potential

pitfalls due to the challenging EFA to CFA conversion. For example, an EFA-based CFA model

may lead to poor fit when covariates are added to the model. The ESEM approach avoids this

problem by estimating the measurement and structural model parts simultaneously.

Many CFA approaches draw on EFA to formulate a simple structure loading specification.

The EFA is typically carried out without obtaining standard errors and instead rules of thumb

such as ignoring loadings less than 0:3 are used. A CFA based on such an EFA often leads to

a misspecified model using chi-square testing of model fit. Model modification searches might

not lead to the correct model and fit indexes such as CFA may show sufficiently high values

for the model not to be rejected. This article illustrates the possible distortion of estimates that

such a CFA-SEM approach can lead to and shows how ESEM avoids the misestimation.

In many modeling applications SEM is used effectively to test substantive theory that

is built from considerations unrelated to the data. In such situations the ESEM framework

offers an alternative rather than a replacement. If there is a good prior theory then SEM

is a valid and simpler approach. However, in real-data examples, especially examples with

many measurements and factors, it would be impossible to get the correct loading pattern

simply by theoretical considerations. Consider the empirical example discussed in this article.

More than half of the measurements presented in Table 1 are of complexity 2. It would be

difficult to contemplate this model simply by using substantive theory. A simpler SEM model

would provide for a simpler interpretation but would lead to one of three inferior modeling

approaches. The first one would ignore the needed cross-loadings, which in turn would lead to

biased estimates. The second approach would reject the simple SEM model in favor of a more

complicated and more difficult to interpret SEM model perhaps with more factors. The third

approach would adjust gradually the initial theoretical model using data-driven results, such

as residuals or modification indexes. This third approach, however, is inferior to the ESEM

approach because it is essentially an ad-hoc exploratory procedure that resembles manual

factor rotation. ESEM provides a theoretically sound alternative based on well-established,

optimality-driven rotation criteria.

The ESEM framework can also be used to challenge the conventional wisdom that com-

plexity 1 measurements are important to substantive researchers. One can argue that it is

more important to find an accurate set of measurements rather than to find a pure set of

measurements. Consider, for example, a simple MIMIC model. One can use an ESEM model

to test this theoretical model without worrying about correctly specifying the CFA measurement

structure.

ESEM makes possible better model testing sequences. Starting with an EFA measurement

specification of only the number of factors, CFA restrictions can be added to the measurement

model. Chi-square difference testing can be carried out to study the appropriateness of the

CFA restrictions. Previously such testing sequences have been available only outside the SEM

model structure, but they can now be integrated into SEM.
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For many applications the ESEM model can be considered as a replacement of the more

restrictive SEM model. Unlike EFA, which is typically followed by a CFA, the ESEM model

does not need to be followed by a SEM model, because it has all of the features and flexibilities

of the SEM model. Nevertheless, in certain cases it might be beneficial to follow an ESEM

model by a SEM model. For example, in studies with a small sample size, a follow-up

SEM model may have more precise estimates because it has fewer parameters. Constructing a

follow-up SEM model from a given ESEM model is fairly easy, amounting to fixing at 0 all

insignificant loadings. In addition, because the ESEM and SEM models are typically nested, a

rigorous test can be conducted to evaluate the restrictions imposed by the SEM model.

The ESEM modeling framework does not limit the researcher’s ability to incorporate

substantive information in the model. The researcher can use different rotation criteria to reach

the factor pattern that most closely represents the substantive thinking, without sacrificing the

fit of the model.

This article also discusses the performance of rotation techniques in Monte Carlo studies,

showing the advantage of Geomin. Target rotation is shown to provide an approach that bridges

EFA and CFA measurement specification.

Longitudinal and multiple-group analysis with EFA measurement structures greatly expands

the possibilities of both EFA and SEM. This article illustrates multiple-group analysis in both

a real-data and a simulation study.

Another advantage of the ESEM framework is that it easily accommodates EFA simulation

studies. Such studies have been rarely published previously. In this new framework EFA

simulation studies are as simple as SEM simulation studies. Simulation studies can greatly

enhance this research field.

One of the limitations of the ESEM framework is the fact that any structural path between

an exploratory factor and another variable can be included in the model only if such a path

is included for all exploratory factors from the same exploratory block. There are two reasons

for that. First, with a general rotation criteria such as Geomin the exploratory factors are

interchangeable and one would not be able to specify a path using an exploratory factor without

knowing which factor that is. With the target rotation that is not an issue because the factors

are not interchangeable. The second reason is computational. The methodology presented in

this article does not provide a way to construct different structural paths for exploratory factors

from the same block. Expanding the methodology in that direction would be a valuable future

development. Note, however, that this limitation is relatively harmless. If a structural path is

needed between an exploratory variable and another variable, simply adding the same structural

path for all the exploratory factors in the same block will not harm the model beyond making

it less parsimonious. If, indeed, these added structural paths are not needed their estimates

will be near zero and would essentially preserve the correct model. Another limitation of the

presented methodology is that exploratory factors from the same block cannot be regressed

on each other and cannot have a structured variance–covariance matrix such as second-order

factor analysis.

The ESEM approach is implemented in Mplus Version 5.1 and is developed not only for

continuous outcomes with maximum likelihood estimation but also for dichotomous, ordered

categorical, censored, and combinations of such outcomes with continuous outcomes with

limited-information weighted least squares estimation. Other analysis features available include
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432 ASPAROUHOV AND MUTHÉN

model modification indexes, standardized coefficients and their standard errors, estimation of

indirect effects and their standard errors, factor scores, and Monte Carlo simulations.
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APPENDIX A: ADDITIONAL ROTATION CRITERIA

Following is a list of additional rotation criteria implemented in Mplus.

� CF-Varimax

f .ƒ/ D

 

1 �
1

p

!

p
X

iD1

m
X

j D1

m
X

l¤j;lD1

œ2
ij œ2

il C
1

p

m
X

j D1

p
X

iD1

p
X

l¤i;lD1

œ2
ij œ2

lj (A1)

For orthogonal rotations this criterion is equivalent to the Varimax criterion

f .ƒ/ D �

m
X

j D1

 

p
X

iD1

œ4
ij �

1

p

� p
X

iD1

œ2
ij

�2
!

: (A2)

� Quartimin/CF-Quartimax

f .ƒ/ D

p
X

iD1

m
X

j D1

m
X

l¤j;lD1

œ2
ij œ2

il (A3)

For orthogonal rotations this criterion is equivalent to the Quartimax criterion

f .ƒ/ D �
1

4

p
X

iD1

m
X

j D1

œ4
ij (A4)
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� CF-Equamax

f .ƒ/ D
2p � m
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� CF-Parsimax
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� CF-Facparsim, Factor Parsimony

f .ƒ/ D

m
X

j D1

p
X

iD1

p
X
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œ2
ij œ2

lj (A7)

� Crawfer, Crawford-Ferguson family

f .ƒ/ D .1 � k/
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X
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X
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ij œ2
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where k is a parameter.
� Oblimin

f .ƒ/ D

m
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œ2
il/

!

(A9)

where k is the parameter.

APPENDIX B: ROW STANDARDIZATION

Typically the optimal rotation is determined by minimizing the rotation criteria using the

standardized loadings, that is, the loadings standardized to correlation scale as in Equations 10

and 11. An alternative standardization frequently used in practice is the Kaiser standardization.

In that case the optimal rotation is determined by minimizing the rotation criteria

f .D�1
d ƒH�1/ (B1)

over all oblique or orthogonal matrices H where

Dd D
p

diag.ƒƒT / (B2)
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Another alternative approach implemented in Mplus is to determine the optimal rotation by

using the raw loadings matrix, using the original scales of the variables. In that case

f .ƒH�1/ (B3)

is minimized over all oblique or orthogonal matrices H .17

APPENDIX C: EFA STANDARD ERRORS

The asymptotic distribution of the rotated solution is based on the following general fit function

method. Suppose that S0 is a correlation matrix and †0 is the estimated correlation matrix,

based on an EFA model. Let F.S0; †0/ be a general fit function that is minimized to obtain

the EFA parameters ƒ and ‰ under the rotation constraints Equation 7 or Equation 9, and

denote these constraint equations by R. Two examples of such functions are the likelihood fit

function

F.S0; †0/ D ln.j†0j/ C T r.†�1
0 S0/ (C1)

and the least squares fit function

F.S0; †0/ D
X

i<j

.¢0ij � s0ij /2: (C2)

It is possible to obtain the asymptotic distribution of the rotated solutions using the asymptotic

distribution of S0. Using the Lagrange multipliers method the rotated solution is also the local

extremum for the augmented function

F1.S0; †0/ D F.S0; †0/ C LT R (C3)

where L is a vector of new parameters. The asymptotic distribution for the parameters that

minimize the new fit function is obtained, see Theorem 4.1 in Amemiya (1985), by the sandwich

estimator

�

@2F1

.@.™; L//2

��1

Var

�

@F1

@.™; L/

��

@2F1

.@.™; L//2

��1

(C4)

where the second derivative with respect to the model parameters and the new parameters L

is given by

@2F1

.@.™; L//2
D

0

B

B

@

@2F

.@™/2

@R

@™

@R

@™
0

1

C

C

A

: (C5)

17The standardization option is controlled in Mplus by the RowStandardizationD command and the three options
described earlier are RowStandardizationD Correlation, Kaiser, or Covariance.
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The preceding matrix is called the bordered information matrix when the fit function is the

likelihood fit function. In fact, the inverse of that matrix alone can be used as an estimator of the

asymptotic distribution of the maximum likelihood estimates. The middle term in Equation C4

is the variance of the score and is computed as follows:

Var

�

@F1

@.™; L/

�

D
@2F1

@™@S0

Var.S0/

�

@2F1

@™@S0

�T

(C6)

where ™ is the vector of model parameters and

@2F1

@™@S0

D

0

B

@

@2F

@™@S0

0

1

C

A
: (C7)

The general fit function method described earlier is utilized in ESEM as follows. Using the

asymptotic distribution of the unrotated solution, the asymptotic distribution of the estimated

correlation matrix is computed via the delta method. The asymptotic distribution of the rotated

solution is then obtained from the general fit function method by substituting the estimated

correlation matrix for S0 earlier and using either the Equation C1 or C2 fit functions. Because

the fit of the model is perfect, both fit functions lead to the same result.

APPENDIX D: SIMULATION STUDIES WITH ESEM AND EFA

In ESEM, as well as EFA, the order of all factors is interchangeable and each factor is

interchangeable with its negative. These indeterminacies are typically not important. However,

they are important in simulation studies where accumulations across the different replications

are done to evaluate MSE, parameter estimates bias, and confidence interval coverage.

To avoid this problem additional parameter constraints are used. For example, to identify a

factor over its negative the following restriction on the loadings is incorporated

X

i

œij > 0: (D1)

In addition, to make sure that the factors appear consistently in the same order across the

replications the following quantities are computed:

dj D
average index of the large loadings

X

i

œ2
ij

(D2)

where the large loadings are the loadings that are at least 0.8 of the largest loading. For example

suppose that the loadings of a factor are (0.2, 1, 0.9, 0.9, 0, 0.1). The large loadings are loadings

2, 3, and 4, and therefore the average index of the large loadings is 3. The factors are ordered

so that

d1 < d2 < ::: < dm: (D3)
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This rule guarantees that factors with large loadings on the first dependent variables will tend

to appear first.18 In addition, factors that explain more of the dependent variables’ covariance

matrix will appear first. This is the effect of the denominator in the definition of dj .

Simulation studies that are presented here are constructed in a way that ensures that the

order of the factors is the same across the replications as well as the sign of the factors. The

constraints in Equations D1 and D3, however, will not work for any simulation study and

a different set of constraints might have to be used to ensure stable factor order and factor

signs. Simulation studies that do not include proper constraints similar to Equations D1 and

D3 will lead to meaningless results as they will combine factor loadings from different factors

across the replications. Such simulation studies will not give good results and will not provide

any information for the quality of the estimation method. Parameter constraints D1 and D3

are important only for simulation studies. These constraints have no implication for a single

replication analysis such as real data analysis. It is well known that the order of the factor is

exchangeable and that each factor can be replaced with its negative. Because the data do not

contain any information about the order of the factors or their signs, it is up to the analyst to

make that choice.19

A new alignment method is implemented in Mplus Version 5.2. This alignment method

utilizes the starting values provided by the user. The starting values are actually not used

during the optimization routine but are used as true parameter values to compute the coverage

probabilities for the estimated confidence limits. Denote these starting values as œ0ij The new

alignment criteria minimizes the target function

X

i;j

.œ0ij � sj œi¢.j //
2

over all factor permutations ¢ and sign assignments sj D 1 or �1. Thus the solution that is

selected is the one that is the closest to the starting value in the least squares metric.

APPENDIX E: Mplus INPUT

Following is the Mplus input for the small cross-loadings simulation study presented in this

article. Comment lines begin with (!) and are provided here only for clarity. They are not

needed in general.

! this section specifies the simulation framework montecarlo:

names D y1-y10 x;

nobs = 1000;

nreps = 100;

18In simulation studies for SEM models Mplus uses user-specified starting values to ensure that the order of the
factors is the same across the replications. However, ESEM and EFA analysis in Mplus do not use user-specified
starting values.

19Mplus will use the constraints in Equations D1 and D3 even for real data analysis, so the factors and their signs
are always uniquely determined by Mplus.
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! this section specifies the parameters for the data generation model population:

[x@0]; x@1;

f1 by y1-y5*.8 y6-y10*0;

f2 by y1-y3*0 y4-y5*.25 y6-y10*.8;

y1-y10*.36; [y1-y10*0];

f1-f2@1;

f1 with f2*.5;

f1 on x*.5;

f2 on x*1;

! this section specifies the rotation type analysis: rotation D geomin(0.0001);

! this section specifies the model to be estimated and the true

! values to be used for confidence interval coverage rates model:

f1 by y1-y5*.8 y6-y10*0 (*1);

f2 by y1-y3*0 y4-y5*.25 y6-y10*.8(*1);

y1-y10*.36; [y1-y10*0];

f1 with f2*.5;

f1 on x*.5;

f2 on x*1;
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