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Abstract

Researchers must make numerous choices when conducting factor analyses, each of which can 
have significant ramifications on the model results. They must decide on an appropriate sample 
size to achieve accurate parameter estimates and adequate power, a factor model and estima-
tion method, a method for determining the number of factors and evaluating model fit, and a ro-
tation criterion. Unfortunately, researchers continue to use outdated methods in each of these 
areas. The present article provides a current overview of these areas in an effort to provide 
researchers with up-to-date methods and considerations in both exploratory and confirma-
tory factor analysis. A demonstration was provided to illustrate current approaches. Choosing 
between confirmatory and exploratory methods is also discussed, as researchers often make 
incorrect assumptions about the application of each.
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Using factor analysis (FA) procedures such as exploratory factor analysis (EFA) and confirma-
tory factor analysis (CFA) to investigate latent variables has become common for such areas as 
instrument development, longitudinal data analysis, comparing group means, and so on (see 
Cudeck & MacCallum, 2007). Despite more than 100 years existence of FA, both EFA and CFA 
remain popular and continue to be expanded and updated. Researchers are faced with numerous 
decisions when conducting FA, and the information for making these decisions is often scattered 
throughout the literature, difficult to understand, and/or inconsistent and inconclusive. Fortu-
nately, there exist many general reviews of FA (e.g., Conway & Huffcut, 2003; Costello & 
Osborne, 2005; Fabrigar, Wegener, MacCallum, & Strahan, 1999; Henson & Roberts, 2006; 
Jackson, Gillaspy, & Purc-Stephenson, 2009; Preacher & Maccallum, 2003; Worthington & 
Whittaker, 2006). Therefore, the goal of the this article is to build on these reviews of FA and 
provide an overview and illustration of current FA methods to help researchers decide on: (a) an 
appropriate sample size to achieve accurate parameter estimates and adequate power, (b) a factor 
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model and estimation method, (c) a method to determine the number of factors and evaluating 
model fit, and (d) a rotation criterion.

Sample Size
Although the FA literature has numerous recommendations concerning sample size rules of 
thumb, it is varied, ambiguous, and often lacks validity (MacCallum, Widaman, Zhang, & Hong, 
1999; Marsh, Hau, Balla, & Grayson, 1998). As Marsh (2009) stated on SEMNET: “Golden 
rules or even guidelines about appropriate sample size are very tricky.” This is often because 
such guidelines rely on studies that are limited in generalizability by the investigated conditions, 
such as the models considered, the estimator employed, and so on. Thus, researchers must 
remain aware of the limitations of such rules and ensure that a reasonable level of statistical 
precision and power for model parameter estimates can be obtained from the sample data. This 
can seem like an arduous task because precision and power are dependent on not just sample 
size but also on other factors such as the size of the hypothesized model (e.g., indicators per 
factor), the distribution of the variables (e.g., degree of multivariate normality), the estimation 
method (e.g., maximum likelihood estimation), the strength of association between variables 
(e.g., items and factors), the reliability of variables, and the amount and pattern of missing data 
and how it is dealt with or what missing data method is used (e.g., multiple imputation). Because 
of the numerous recommendations in FA literature, researchers are often confused. Fortunately, 
viable methods do exist to help determine appropriate sample size(s).

It is important to emphasize that appropriate sample size relies on the precision and power of 
the models parameter estimates. Precision is a test of how consistent or well the parameters and 
their standard errors are estimated. Power is defined as 1 minus the probability of committing a 
Type 2 error, with .80 most commonly defined as adequate power (Cohen, 1988). When consid-
ering the appropriateness of a model, it is important to have narrow confidence intervals around 
parameter estimates to ensure that the model’s parameters are accurately estimated (see Kelley 
& Maxwell, 2003). Approaches to determine adequate sample size, commonly focus on statisti-
cal power because, generally, when adequate power is achieved, precision of parameter estimates 
will also be realized. But researchers often convolute the two, so it is important to realize that 
both precision and power must be considered.

One of the most well-known approaches for evaluating power of the likelihood ratio test in FA 
was developed by Satorra and Saris (1985; see also Brown, 2006; Kim, 2005). With the Satorra–
Saris method, researchers compare a null model to an alternative model consisting of population 
or true values. The null model is the same as the alternative model except for the single parameter 
being tested. Note that the null model is nested in the alternative model. Unfortunately, this 
method is limited because (a) of the difficulty of defining an alternative model or an alternative 
parameter value to be tested, (b) of the difficulty in testing every parameter, (c) not all alternative 
models are testable, (d) researchers have to make exact estimates of the population values, and 
(e) it does not evaluate the precision of parameter estimates. Other authors have applied the 
Satorra–Saris method using bootstrapping (e.g., Yuan & Hayashi, 2003). The bootstrap method 
can be used with nonnormal and missing data, but it requires a large raw data set to determine 
power (see Brown, 2006).

Muthén and Muthén (2002) circumvented the raw data requirement and the lack of parameter 
precision estimates by using a Monte Carlo approach to simulate raw data from known parame-
ters at various sample sizes. Like the Satorra–Saris method, the Muthén–Muthén approach 
requires parameter population values. The Muthén–Muthén approach can be used with different 
types of models, data, and estimation methods enabling researchers to specify a wide range of 
models that will reflect the particular types of variables (e.g., continuous, categorical, etc.) and 
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distributions (normal, nonnormal, etc.) encountered in their work. Another important advantage 
of the Muthén–Muthén approach is that it randomly generates multiple samples from the popula-
tion values, thus enabling researchers to evaluate the precision of the parameter estimates and 
their standard errors and, consequently, the confidence intervals. It is important to check preci-
sion because if parameter and standard error estimates are inaccurate at a sample size, the power 
estimates will be irrelevant.

Another method introduced by MacCallum, Browne, and Sugawara (1996) calculates power 
based on the root mean square error of approximation (RMSEA). The difficulty in applying the 
MacCallum–Browne–Sugawara method stems from the current debate about the strict use of 
cutoffs with approximate fit indexes (AFIs) and whether or not fit indexes are even appropriate 
for evaluating models (e.g., Marsh, Hau, & Wen, 2004; Vernon & Eysenck, 2007). In general, 
there exists little empirical support for the use of universal cutoff values for RMSEA to deter-
mine adequate model fit because to achieve a specific level of power the cutoff value of RMSEA 
depends on the specification of the model, the degrees of freedom, and the sample size (Chen, 
Curran, Bollen, Kirby, & Paxton, 2008). Unfortunately, the MacCallum–Browne–Sugawara 
method does not take all of these into account when calculating power based on RMSEA.

How then should researchers proceed when deciding on sample size? It is clear that determin-
ing an appropriate sample size based on rules of thumb is insufficient. There have been numerous 
rules-of-thumb recommendations of appropriate sample sizes based on sample size relative to 
the number of parameters being estimated (e.g., Jackson, 2007), the number of variables per fac-
tor (e.g., Marsh et al., 1998), and so on, but the limitation of these recommendations is the 
model(s) evaluated and the conditions studied. In other words, sample size is very much depen-
dent on many factors that are inconsistent across models. Even though they are limited by requi-
site empirical data or prior knowledge, the Satorra–Saris method using bootstrapping and/or the 
Muthén–Muthén method using Monte Carlo simulation are reasonable approaches for determin-
ing sample size. Barrett (2007) and McIntosh (2007) provide a logical view that the Muthén–
Muthén Monte Carlo approach is the best method for evaluating power because it enables 
researchers to integrate a wide variety of commonly encountered conditions into their model and 
evaluate precision of the parameter and standard error estimates.

It is important to note that regardless of what method is chosen for power determination and 
precision evaluation, researchers must be aware of the occurrence of isopower. Isopower is the 
phenomenon that different models, along with changes in other factors, can result in the same 
amount of power when testing a given null hypothesis (MacCallum, Lee, & Browne, 2010). As 
MacCallum et al. state, it is important for researchers to recognize this and consider altering the 
conditions and examine how this affects power or hold power constant and examine alternative 
sets of conditions that yield the same power. At minimum, researchers should state that their 
results are not isomorphic and that in all likelihood an infinite number of conditions exist that 
will yield the same power results.

Factor Models and Estimation Methods
A second consideration for researchers conducting FA is deciding on a model and the procedure 
to estimate the model parameters. The two main factor models associated with EFA or the unre-
stricted factor model include the component model and the common factor model, and numerous 
estimation or factor extraction methods exist for these models (see Gorsuch, 1983; Kaplan, 
2009; Widaman, 2007). The main difference between these two models is that the component 
model assumes no measurement error and the common factor model attempts to account for 
measurement error. Principal component analysis (PCA) is one of the more frequently used 
component model–based factor extraction methods for EFA. Despite evidence that PCA can 
produce similar results to true factor analysis when measurement reliability is high and/or the 
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number of factored variables/items increases (Gorsuch, 1983; Guadagnoli & Velicer, 1988, 
Thompson, 2004), PCA assumes measurement without error and is, therefore, less likely to 
generalize to CFA than EFA estimation methods of the common factor model.1 In addition, PCA 
and EFA have different goals resulting in different outcomes, and PCA can produce inflated 
values of variance accounted for by the components (Gorsuch, 1997; McArdle, 1990; Widaman, 
2007). All of this casts doubt on the use of PCA for depicting psychological and educational 
data. A widespread method used to estimate the common factor model is iterative principal axis 
factoring (PAF). PAF does afford the advantage of operating under the common factor model, 
thus taking into account measurement error. But along with PCA, PAF does not require data 
distributional assumptions and is, therefore, a nonstatistical estimation method (Kaplan, 2009). 
Thus, neither PCA nor PAF provide standard errors that would enable researchers to statistically 
test model fit and model parameters, such as factor loadings.

One of the most commonly used statistical estimation methods for estimating parameters of 
the common factor model is the maximum likelihood (ML) procedure. Because ML estimation 
acknowledges that sample data are being analyzed (i.e., makes distributional assumptions), 
researchers can statistically evaluate the hypothesis that there are a certain number of factors that 
predict the relationships among interfactor correlations, indicators/items, and factor loadings. 
Though ML is a common estimation method for CFA models, it is less commonly used for esti-
mating EFA models. With the advent of ML-based EFA methods in well-known structural equa-
tion (SEM) modeling packages (e.g., Mplus; Muthén & Muthén, 1998-2010) and papers 
promoting the use of EFA as an appropriate alternative to post hoc model modification within 
CFA (Asparouhov & Muthén, 2009; Browne, 2001; Sass & Schmitt, 2010; Schmitt & Sass, in 
press), ML-based EFA is likely to become more common in the psychological and educational 
sciences. With a sufficient sample size, proper model specification, and multivariate normality, 
ML will provide accurate standard errors, which can be used to test overall model fit, along with 
hypothesis tests of the interfactor correlations, factor loadings, and other model parameters.

The assumption of multivariate normality is especially important because response scales for 
measurement instruments are often not normally distributed when the ML parameter estimates 
are based on correlation or covariance matrices with ordinal variables. In other words, ordinal 
data, though purported to come from continuous normally distributed constructs, can result in 
categories (e.g., 1 = strongly agree, 2 = agree, 3 = disagree, 4 = strongly disagree) that are not 
continuous and are not normally distributed. Thus, the empirical attributes of the data do not 
match the assumptions of the estimation method. This can result in biased parameters and stan-
dard error ML estimates (Beauducel & Herzberg, 2006; Flora & Curran, 2004; Lei, 2009; 
Rhemtulla, Brosseau-Liard & Savalei, 2010). 

Three viable alternatives for estimating FA models for ordinal data are robust continuous ML 
estimation, robust least  squares (LS) estimation, and robust weighted least squares (WLS) esti-
mation (Beauducel & Herzberg, 2006; Bentler & Yuan, 1999; Flora & Curran, 2004; Forero, 
Maydeu-Olivares, & Gallardo-Pujol, 2009; Holgado -Tello, Chacón -Moscoso, Barbero-García, 
& Vila -Abad, 2010; Lei, 2009; Rhemtulla, Brosseau-Liard & Savalei, 2010).2  Robust LS and 
WLS use polychoric correlations and robust ML uses standard Pearson correlations and all three 
rely on adjustments to the chi-square test statistic (c2), all of which can result in accurate param-
eter estimates and test statistics depending data and model conditions (see Rhemtulla, Brosseau-
Liard & Savalei, 2010). 

Like ML estimation, robust LS and WLS are a statistical estimation procedure; thus, standard 
errors are available for testing the overall factor structure and individual parameters (e.g., factor 
loadings). With robust LS and WLS, the differences in chi-square (χ2) values do not follow a χ2 
distribution; therefore, a two-step procedure using the DIFFTEST option in Mplus is necessary 
to obtain the correct χ2 difference test when comparing nested models (Muthén & Muthén, 
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1998-2010).3 Robust WLS is available in Mplus as weighted least square mean-and-variance 
adjusted (WLSMV) c2 test statistic estimation, robust LS as ULSMV, and robust ML as MLR.4 

Two additional FA approaches that are important to mention because they are becoming more 
common in FA are formative measurement (e.g., Bollen & Davis, 2009) and Bayesian estimation 
(e.g., Muthén, 2010; Muthén & Asparouhov, 2010). In traditional FA items are reflective, which 
means the items depend on the latent construct or are reflections of the construct. Thus, variation 
in the construct results in variation in the indicators or items. From a formative perspective, the 
latent construct is dependent on the items, which means the latent construct is formed by the 
items. When the construct is formative, these models are often called causal indicator models 
because the items are “causing” the latent construct. Although there may be practical and statisti-
cal advantages to specifying indicators as formative, whether to use a formative of reflective 
specification should rest on the hypothesized theoretical relationship between the indicators and 
the latent construct(s). Roberts and Thatcher (2009), and Brown (2006) provide overviews for 
fitting models with formative indicators.

Bayesian estimation for FA models incorporates prior information to provide more accurate 
parameter estimates, and unlike ML estimation, Bayesian estimation does not depend on nor-
mally distributed large samples. Thus, distributions can be nonnormal, and performance is better 
for small samples when using Bayesian estimation methods. Another benefit of Bayesian estima-
tion is that many models that are computationally difficult or impossible with ML estimation 
(e.g., models with categorical outcomes) can be estimated with Bayesian estimation. Lastly, 
Bayesian estimation allows for a wider range of models that can be analyzed. Though beyond the 
scope of this article, it is important that researchers begin to become familiar with Bayesian esti-
mation because it is widely accepted and used in statistics, and is available in popular SEM 
software (e.g., Mplus).

In  summary, when data are continuous, PAF and ML estimation are viable options for esti-
mating the common factor model. MLE has the advantage of producing test statistics for hypoth-
esis testing, whereas PAF is feasible when sample participants are fewer than 50 (de Winter, 
Dodou, & Wieringa, 2009). Although PCA is popular and has been frequently employed by 
researchers, researchers should use it cautiously and realize its limitations for conducting FA 
with psychological and educational data. When data are ordinal with two to five categories 
researchers should consider robust LS, robust WLS or Bayesian estimation as each may produce 
more accurate parameter estimates when compared to robust ML continuous estimation. 
However, robust ML should also be considered for fewer categories when structural parameters 
(e.g., interfactor correlations) are of primary interest, when evaluating model fit, and when the 
underlying distribution is non-normal and/or when the thresholds are asymmetrical (e.g., when 
most of the response fall into one category). Researchers are also strongly encouraged to con-
sider Bayesian analysis as it has been shown to outperform robust methods such as WLSMV 
(Asparouhov & Muthén, 2010a). Although other models and estimators are available for general 
latent variable analysis (see Asparouhov & Muthén, 2009; Bollen, Kirby, Curran, Paxton, & 
Chen, 2007; Esposito Vinzi, Chin, Hensler, & Wang, 2010), a discussion of these is beyond the 
scope of this article. The estimators discussed provide researchers with a wide range of options 
for analyzing different types of data in the context of FA.

Selecting the Number of Factors and Model Fit Criteria
Selecting the number of factors. Selecting the number of factors is an important part of construct 

validation in FA, which is commonly done in the context of EFA. Because over- or under-factor-
ing (e.g., selecting too few/many factors) can result in significant modeling error, with underfac-
toring generally considered to be more detrimental of the two, appropriate methods must be used 
when determining the number of factors. As is true of most any statistical method, there are a 
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multitude of methods for selecting the appropriate number of factors (see Fabrigar et al., 1999; 
Hayton, Allen, & Scarpello, 2004; Zwick & Velicer, 1986 for an overview). Some of the more 
well-known methods include the eigenvalue-greater-than-1 rule or Kaiser criterion (K1), the 
screen test, which is a visual plot of the eigenvalues, the minimum average partial (MAP) 
method, the χ2 −based tests or the likelihood ratio test (LRT), and parallel analysis (PA). Other 
more recent methods that have been proposed include root mean square error adjustment (Browne 
& Cudeck, 1992), bootstrap methods (Lambert, Wildt, & Durand, 1990), and TETRAD  
(Glymour, 1982; Scheines, Spirtes, Glymour, Meek, & Richardson, 1998; Yu, Popp, DiGangi, & 
Jannasch-Pennell, 2007). Of these methods, PA and MAP has proven to be the most accurate and 
K1 the most inaccurate. Despite this, PA remains underutilized; thus, it will be the focus of this 
article (Hayton et al., 2004).

Parallel analysis uses a series of randomly generated data sets that “parallel” factors of 
the original data set in terms of sample size and number of variables (Horn, 1965). The ratio-
nale being that if real nonrandom factors exist then eigenvalues generated from the real data 
will be larger than the randomly generated eigenvalues. In general, simulation research has 
indicated that PA is the best empirical method for determining the number of factors in FA 
and PCA (Dinno, 2009) and has been recommended as the method of choice by journal edi-
tors (Thompson & Daniel, 1996) and others (e.g., Hayton et al., 2004; Henson & Roberts, 
2006).

When modeling ordered categorical (e.g., Likert-type scales) item responses with FA, the 
distributional form may be nonnormal. It has been stated that PA is inappropriate for nonnormal 
distributions and modified approaches have been suggested (Hayton et al., 2004; Horn, 1965; 
Liu & Rijmen, 2008; O’Connor, 2000). But because PA randomly generates eigenvalues over 
multiple iterations, the central limit theorem should make the distribution of the data negligible. 
In fact, simulation work has shown that PA does not vary by the distributional assumptions made 
about the data (Dinno, 2009; Glorfeld, 1995). Another important point to note is FA based on the 
common factor model (e.g., EFA) must be modified. Fortunately, Dinno (2010) has developed a 
program called paran that is available in R (R Development Core Team, 2010; Dinno, 2001-
2009) for doing PA for either EFA or PCA. If there is a large amount of missing data and/or data 
are not missing completely at random then researchers should handling missing data prior to 
conducting PA or consider using a PA method that allows for missing data, such as the approach 
outline by Liu and Rijmen (2008).5

Model-fit criteria. Despite evidence that indicates the LRT applied to EFA can results in too 
many factors, LRT is the only method grounded in distributional statistical theory (Hayashi, 
Bentler, & Yuan, 2007). Because of this and the fact that multiple criteria, along with sound theo-
retical reasoning, should be used when making factor retention decisions (Fabrigar et al., 1999; 
Henson & Roberts, 2006; Thompson & Daniel, 1996), LRT is a reasonably viable method that 
can help researchers select the appropriate number of factors (see Hayashi et al., 2007). Because 
of the LRT’s tendency of overfactoring, researchers should use the LRT in conjunction with the 
standardized root mean square residual (SRMR) to evaluate improvement of fit due to each addi-
tional factor (Asparouhov & Muthén, 2009). Thus, it is recommended that the number of factors 
be determined with PA, and then evaluated using the LRT and the SRMR for improvement of 
model fit. This should work to prevent incorrect decisions being made with the LRT and still 
allow researchers to evaluate the hypothesized number of factors and factor structure within 
sound statistical theory. Although the LRT is used to compare models for factor selection, it 
should not be used to compare models when the base model is misspecified because it can result 
in inflated Type 1 and Type 2 errors (Yuan & Bentler, 2004).

Along with the χ2 tests of model fit, AFIs that are sample independent are often used and/or 
required in applied FA research to evaluate and compare models with different numbers of 
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factors (see Marsh, Hau, & Grayson, 2005, for an overview of AFIs). It is important to note that 
there is currently a great deal of debate concerning the validity of approximate fit statistics (e.g., 
Marsh et al., 2004; Vernon & Eysenck, 2007), so they should only be used as supplementary 
indicators to the χ2 test of model fit. As Marsh et al. (2004) accurately summarized, rules-of-
thumb cutoffs for AFIs should not be viewed as “golden rules,” but as “preliminary interpreta-
tions that must be pursued in relation to the specific details of their research” (p. 321).

Bentler (2007) recommends limiting the reporting of fit indices to the SRMR or the average 
absolute standardized residual and at most two additional fit indices. Thus, the root mean square 
error of approximation (RMSEA), the comparative fit index (CFI), and the SRMR were used for 
the illustration below. It is recommended that the RMSEA be no greater than 0.06 (Hu & Bentler, 
1999). Hu and Bentler stated that CFI values exceeding 0.95 indicate adequate model fit for 
continuous outcomes, and Yu (2002) found that a value of 0.96 was acceptable for ordered cat-
egorical outcomes. For the SRMR, values less than 0.08 indicate acceptable fit (Hu & Bentler, 
1999). Nevertheless, it is important to remember these model fit statistics are simply guidelines 
and should not be interpreted as golden rules (Marsh et al., 2004).6

Another problem with assessing model fit is the well-known criticism of the χ2 test for having 
severe dependence on sample size. This means that any model misspecifications will be detected 
by the χ2 test with a large enough sample size, which has led to numerous AFIs (Hu & Bentler, 
1998; Miles & Shevlin, 2007; Saris, Satorra, & van der Veld, 2009). Furthermore, as Saris et al. 
(2009) have shown, the χ2 test is not only affected by sample size and the size of the misspecifi-
cation but also by other model characteristics. Thus, global fit indexes, including χ2 test and 
AFIs, should only be used for preliminary and exploratory interpretations as a researcher moves 
from a close fitting model to a near exact fitting model. It is then important to carefully evaluate 
a hypothesized model for specific sources of misfit (e.g., factor loadings) when using global fit 
indexes, such as the χ2, because models with irrelevant misspecifications might be rejected if the 
sample is large, and models with substantial misspecifications might not be rejected if the sample 
is small (McDonald & Marsh, 1990; McIntosh, 2007; Saris et al., 2009). Because various factors 
influence both the χ2 and AFIs sensitivity to detect model misspecification, it is important to 
move beyond global model evaluation methods as the only way to evaluate models.

Saris et al. (2009) have done just that in proposing a method for evaluating fit by examining 
individual parameters as sources of model misspecification. Because the χ2 test and the AFIs 
cannot easily be used to test individual model parameters, the Saris–Satorra–van der Veld method 
should be used as complement to overall model testing. The Saris–Satorra–van der Veld approach 
examines specific misspecifications in the model by determining the power of the modification 
index (MI) test, which takes into account factors other than sample size. Saris et al. showed that 
the power of the MI test to detect a misspecification in a particular parameter (e.g., factor load-
ings) can be used in conjunction with the MI and the expected parameter change (EPC) for that 
parameter. The MI and EPC are both produced by standard SEM programs, such as Mplus, for 
most relevant model parameters. The Saris–Satorra–van der Veld approach combines the signifi-
cance or nonsignificance of the MI test and the high or low power of the MI test to distinguish 
four possible situations.

In the first situation, the MI is significant and the power of the MI test is low. Thus, because 
the test is not overly sensitive (i.e., low power) and the MI significant, it is clear that there is a 
misspecification in the model. In the second situation the reverse is true: The MI is not signifi-
cant and the power of the MI is high. Thus, there is no misspecification of the parameter being 
evaluated. The third situation is a little more complex because the MI is significant, but the 
power of the test is high. This might be a misspecification, but it also might be that the MI is 
significant because it has high sensitivity. When this occurs, it is recommended that the EPC be 
evaluated. If the EPC is small it can be concluded there is no serious misspecification, but if the 
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EPC is large then the parameter is misspecified. The last situation occurs when the MI is not 
significant and the power of the MI test is low. There is then not enough information to make a 
decision. This highlights the fact that nonsignificant MIs do not necessarily indicate that mis-
specifications are not present; thus, it is important that researchers make model specification and 
modification decisions that have both substantive and statistical underpinnings. The Saris–
Satorra–van der Veld method can be implemented using a program called Jrule or Judgment Rule 
Aid, which reads the MI and EPC values from either LISREL (Van der Veld, Saris, & Satorra, 
2011) or Mplus (Oberski, 2009).

Lastly, another underutilized component of EFA is statistical hypothesis testing of the factor 
pattern loadings (see Cudeck & O’Dell, 1994). Even in reviews of appropriate methods for con-
ducting EFA, hypothesis testing of factor pattern loadings are rarely mentioned (e.g., Fabrigar  
et al., 1999; Henson & Roberts, 2006). Historically, hypothesis testing of factor loadings within 
EFA has been given little consideration due to computational complexity of the estimated stan-
dard errors (Jennrich, 2007). Fortunately, the standard errors have recently become more readily 
available for EFA in programs such as Mplus. Hypothesis testing of standard errors are discussed 
and demonstrated in the Illustration, as well as in Schmitt and Sass (2011).

Rotation Criteria
Despite concerns that have been raised with EFA, it remains an accepted approach for research-
ers, partly because there has been a realization that CFA can be rather restrictive and even inap-
propriate when used in an exploratory fashion (Asparouhov & Muthén, 2009; Browne, 2001; 
Gorsuch, 1983). For example, CFA is often implemented assuming that each indicator perfectly 
depicts (i.e., all cross-loadings are zero) each factor. Because this unrealistic assumption often 
results in ill-fitting CFA models, researchers will turn to MIs for guidance in modifying their a 
priori hypothesized model. Unfortunately, this can result in post hoc model modifications that 
are not based on theory, which can lead to a model fitting by chance (MacCallum, Roznowski, 
& Necowitz, 1992). With the advent of advanced EFA methods, fitting CFA models by chance 
can be avoided.

One of the more important rationales for the continued use of EFA has been the introduction 
and application of exploratory structural equation modeling (ESEM; Asparouhov, & Muthén, 
2009; Marsh et al., 2009; Marsh, Liem, Martin, Morin, & Nagengast, 2011). As discussed, a 
long-standing problem in applying FA is that CFAs are unable to replicate the factor structures 
produced by EFAs. This is commonly a result of the limiting nature of CFA because indicators 
only load on single factors and all cross-loadings are constrained to zero. This can distort the true 
factor structure and result in spuriously large interfactor correlations (Marsh et al., 2009; Schmitt 
& Sass, 2011). Because ESEM provides a viable method to circumvent some of the shortcom-
ings of CFA and uses an EFA approach, being aware of and appropriately using different rotation 
criteria is as critical as ever.

In EFA, rotating factors is essential because even though clusters of variables may be obvious 
in the correlation matrix without factor rotation they are unlikely to be identified by the initial 
factor extraction methods (Gorsuch, 1983). Because researchers often choose rotation criteria 
based on the presence or absence of interfactor correlations (e.g., oblique or orthogonal), it is 
important that they become more acquainted with the different rotation methods. Unfortunately, 
it is common for researchers to give little rational for choice of rotation method (Henson & 
Roberts, 2006; for example, Promax, Quartimin, Equamax, etc.) or to consider how the selected 
rotation criterion may influence factor structure interpretation (Sass & Schmitt, 2010; Schmitt & 
Sass, in press). Instead, a rotation method is often arbitrarily based on how frequently it appears 
in the literature, which is generally the orthogonal Varimax criterion (Fabrigar et al., 1999; Ford, 
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MacCallum, & Tait, 1986; Henson & Roberts, 2006; Russell, 2002). But most psychological and 
educational factors are correlated, so assuming factors are uncorrelated and using the Varimax 
criterion produces unrealistic factor structures. When factors are not allowed to correlate, item 
loadings will become inflated if the factors are truly correlated. Because oblique rotation meth-
ods generally produce accurate and comparable factor structures to orthogonal methods even 
when interfactor correlations are negligible, it is strongly recommend that researchers only use 
oblique rotation methods because they generally result in more realistic and more statistically 
sound factor structures.

Thus, researchers must be aware of the potential factor structure that may result from their data 
(see Schmitt & Sass, 2011). For example, more complex factor structures may result when research-
ers are developing and testing a new measure. With such measures, items may relate strongly to 
multiple factors (e.g., more and larger cross-loadings), so researchers should consider employing a 
rotation method that will allow for larger cross-loadings, such as CF-Equmax or CF-Facparsim. 
But if a measurement instrument has been well developed (e.g., fewer and smaller cross-loadings), 
researchers should consider Geomin or CF-Quartimax, because they are likely to produce a cleaner 
factor structures that are similar to CFA. Researchers may also want to consider multiple rotation 
criteria in an effort to better delineate the factor structure.

It is important to realize that the FA review in this article is not exhaustive; thus, researchers 
are encouraged to consult the references for further details. Researchers should also realize that 
each decision they make concerning how to conduct FA will have important implications for the 
validity of factor structures or lack thereof. Remaining cognizant of this, a demonstration will 
now be used to illustrate some of the previously discussed FA methods.

Illustration
A real data set was analyzed to illustrate some of the FA topics. The data consists of 26 psycho-
logical tests administered by Holzinger and Swineford (1939) to 145 students and has been used 
by numerous authors to demonstrate the effectiveness of FA. Of the 26 tests, 8 are used here and 
hypothesized to be formed by 2 constructs: a visual construct consisting of visual perception, 
cubes, paper form board, and flags, and verbal construct consisting of general information, 
paragraph comprehension, sentence completion, and word classification.

The first step when conducting FA is to determine the appropriate number of factors. To do 
this, a PA was performed using the R paran package (R Development Core Team, 2006; Dinno, 
2009). Paran produces adjusted and unadjusted eigenvalues. The adjusted eigenvalues are cor-
rected for sampling error that may result from finite or small samples. Because the sample for the 
Holzinger–Swineford data are not overly large and the bias statistics from paran (i.e., the differ-
ence between the adjusted and unadjusted eigenvalues for each factor) where rather large, 
adjusted eigenvalues were used to determine the appropriate number of factors. The PA results 
indicated a two-factor solution with adjusted eigenvalues of 2.76 and 0.36 using a cutoff of 
eigenvalues greater than zero for factor retention, which supports the hypothesized verbal and 
visual constructs. Note that most authors propose comparing the eigenvalues from the real and 
random data sets (e.g., Hayton et al., 2004), but an adjusted eigenvalue cutoff of greater than 1 
for PCA and adjusted eigenvalue cutoff of greater than 0 for FA can be used because they are 
mathematically equivalent (Dinno, 2010; Horn, 1965).7 Note that PA is used as a preliminary 
step of determining the number of factors, whereas model fit and evaluation statistics, such as the 
LRT, are used below to help “confirm” the factor structure.

The next step is to evaluate the sample size for both the precision and power of parameter 
estimates.8,9 The Muthén–Muthén Monte Carlo approach using Mplus and outlined by Muthén 
and Muthén (2002) was used (Brown, 2006, p. 424; Muthén & Muthén, 1998-2010, p. 375). 
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Population values for the factor loadings were set to 0.60, factor cross-loadings to 0.10, residual 
variance to 0.56, and interfactor correlation to 0.60.10 Because the factor structure was hypothe-
sized to have small cross-loadings, the Geomin rotation criterion was used. Geomin rotation is 
modified automatically in Mplus because the Epsilon parameter changes as a function of the 
number of parameters, which can be overridden by the user. For the current example epsilon was 
set to 0.05 because it resulted in better parameter and standard error estimates. Muthén and 
Muthén (2002) recommend three criteria for determining a sample size to achieving an adequate 
level of precision for a particular model: (1) bias for parameters and their standard errors should 
not exceed 10% for any parameter. (2) parameters that are being assessed in terms of power (e.g., 
factor loadings) should not have standard error bias greater than 5%, and (3) coverage should be 
between 0.91 and 0.98. If these minimum precision criteria are met, then an adequate sample size 
is achieved when power is 0.80 or greater. Note that Muthén and Muthén (2002) recommend 
10,000 replications to achieve adequate values for evaluating precision.

In general, parameter bias for factor loadings, interfactor correlation, and residual variances 
were less than 10%, which met the first criteria. But the second criteria was not met because bias 
for the standard errors where larger than 5% for most parameters. Coverage was between 0.91 
and 0.98 for all parameters except the factor cross-loadings. The power results for all parameters 
except the cross-loadings where above 0.80, but these results are not stable because of the sig-
nificant bias exhibited in the standard error result of the Monte Carlo simulation. One obvious 
way to increase the precision of the standard errors would be to increase the sample size. But as 
de Winter et al. (2009) demonstrated, large factor loadings, fewer factors, and greater numbers 
of items can result in reliable solutions for small samples. Since this data set has a fixed sample 
size, but more items are available, it would seem prudent to reestimate power with more items. 
Although beyond the scope of the current demonstration, researchers are encouraged to run sev-
eral Monte Carlo simulations varying different factors, such as the number of items, to optimize 
precision and power.

The Montel Carlo results can also be used to evaluate fit indices, such as the χ2. Based on the 
Monte Carlo simulation, the χ2 observed value of 0.05 for which the critical value was exceeded 
was the same as the expected value of 0.05, and the observed χ2 value of 22.36 is close to the 
theoretical or expected value of 22.38. The bias for the χ2 value is less than 0.1%, which indicates 
that the χ2 distribution will be accurately approximated with a sample of 145 participants.

The third step is to fit the two-factor EFA model and evaluate model fit and parameter esti-
mates. In order to demonstrate differences between EFA and CFA, a CFA model was also fit to 
the data. There are several important decisions that need to be made at this point, with the first 
being the choice of estimator. Since the Holzinger–Swineford data are comprised of continuous 
variables, ML estimation will be used. But if the data are ordinal or categorical, then it is recom-
mended that researchers consider a robust WLS estimator, such as WLSMV or Bayesian estima-
tion.11,12 A nice characteristic of ML estimation in FA packages, such as Mplus, Lisrel, AMOS, 
EQS, Mx, and so on, is that when the data contain missing responses all the available information 
is used to estimate the model. This results in consistent and efficient parameter estimates and test 
statistics, assuming data are missing completely at random (MCAR) or missing at random 
(MAR).13,14 Conventional missing data methods (e.g., listwise deletion, simple or single imputa-
tion) will remove participants even if one response is missing or impute data using outdated 
methods, which can result in biased parameter estimates and standard errors (see Enders, 2010).

The next decision is the choice of rotation method.15 Recall that there exist numerous rotation 
methods that can be divided up into those that reduce cross-loadings (e.g., simple structure) and 
those that allow for larger cross-loadings (e.g., complex structure; see Sass & Schmitt, 2010; 
Schmitt & Sass, in press). It should be noted that previous recommendations have focused on the 
obliqueness or orthogonality of the factor structures (e.g., Henson & Roberts, 2006), but since 
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most factors within the behavioral sciences are correlated (i.e., oblique) it seems fruitless to 
debate which is more theoretically appropriate. Moreover, oblique rotation methods will gener-
ally produce near-identical results to their orthogonal counterparts for uncorrelated factors; thus, 
this decision is moot and researchers should focus on hypothesized factor complexity when 
choosing an oblique rotation method. Because the Holzinger–Swineford data are thought to pro-
duce factor structures with few or mostly negligible cross-loadings, Geomin or CF-Quartimax 
would be appropriate choices for rotation methods. For illustration purposes Geomin, 
CF-Quartimax, CF-Equamax, and CF-Facparsim were used (see Table 1). Now that the estimator 
and rotation method have been decided upon, the model can be evaluated.

In order to evaluate the two-factor model the χ2 test of model fit, the AFIs and the LRT were 
used to compare models. The one-factor EFA model provided evidence of ill fit, χ2(20) = 69.07, 
p < .01; RMSEA = 0.13, CFI = 0.88, SRMR = 0.08. For the two-factor solution the χ2(13) = 
10.70, p = .64; RMSEA = 0.00, CFI = 1.00, SRMR = 0.02, and thus, was not statistically signifi-
cant and provided evidence for a two-factor model. The three-factor solution also indicated ade-
quate fit, χ2(7) = 3.74, p = .81; RMSEA = 0.00, CFI = 1.00, SRMR = 0.02; thus, it was used to 
compare the models using the LRT and the SRMR. The χ2 

diff
 (6) = 6.96, p = .32, was not statisti-

cally significant and the ΔSRMR = 0.00 indicating the three-factor model did not fit significantly 
better than the two-factor model.

To further assess the appropriateness of the two-factor model the factor loadings were evalu-
ated using their standard errors to determine whether or not they were statistically significant 
(Table 1). Using a correction procedure from Cudeck and O’Dell (1994) for correlated factors, 
the new α level can be computed as α*= α/d

u
, where α is the initial significance level (α =.05) and 

d
u
 = im – m(m – 1), with i equal to the number of variables/items and m the number of factors. 

Bolded values are statistically significant at a two-tailed α* =.004 (z
α*

 = 2.88).16 Expectedly, 
Geomin and CF-Quartimax produced statistically nonsignificant cross-loadings, whereas 
CF-Equamax and CF-Facparsim produced larger cross-loadings that in some cases where statis-
tically significant. It can also be seen that as the factor loadings increased the interfactor correla-
tions decreased. This is again a byproduct of the chosen rotation method where allowing for 
larger cross-loadings will generally result in a decrease in the interfactor correlations.

Because the cross-loadings were small indicating relatively simple factor structure, a CFA 
models was estimated and the Saris–Satorra–van der Veld procedure was also employed to test 

Table 1. Rotated Factor Loading Pattern Results for Holzinger–Swineford Data

Geomin
CF-

Quartimax CF-Equamax CF-Facparsim CFA

Variable F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

Visual perception 0.55 0.11 0.56 0.10 0.57 0.09 0.59 0.06 0.66 0.00
Cubes 0.56 −0.05 0.55 −0.06 0.55 −0.06 0.55 −0.08 0.50 0.00
Paper form board 0.43 0.12 0.44 0.11 0.45 0.10 0.47 0.08 0.53 0.00
Flags 0.76 0.00 0.76 0.00 0.76 −0.01 0.77 −0.04 0.72 0.00
General information 0.14 0.68 0.18 0.66 0.24 0.63 0.32 0.59 0.00 0.78
Paragraph comprehension 0.01 0.79 0.06 0.76 0.13 0.73 0.22 0.69 0.00 0.80
Sentence completion −0.17 0.99 −0.11 0.96 −0.02 0.92 0.09 0.87 0.00 0.86
Word classification 0.12 0.64 0.16 0.62 0.22 0.59 0.29 0.55 0.00 0.72
Interfactor correlation 0.55 0.51 0.44 0.37 0.59

Note. Boldface numbers indicate statistically significant factor loadings.
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individual parameter misspecifications in the model. For the CFA model, its fit of the two-factor 
model, χ2(19) = 22.40, p = .26; RMSE = 0.04, CFI = 0.99, SRMR = 0.04, was similar to the EFA 
two-factor model. Notice that the CFA model had the highest interfactor correlations because the 
cross-loadings were fixed to zero. Of most interest in the current example were the individual 
factor loadings. To implement the Saris–Satorra–van der Veld procedure Jrule was used to exam-
ine the power and significance of potential cross-loadings by setting the misspecification cutoff, 
δ, to 0.40, Type 1 error rate to 0.05 and power to 0.80 (see Saris et al., 2009). The misspecifica-
tion cutoff for examining the cross-loadings must be set by multiplying the standard deviation of 
the observed variables by 0.40 for all eight items. For example, the cutoff for the visual percep-
tion item would be 6.89 × 0.40 = 2.76, which is then entered in Jrule.17 Results indicated that the 
CFA model was specified reasonably well as all eight of the cross-loadings were not misspecified 
by being set to zero. If Jrule had indicated misspecification(s) researchers could take several 
approaches including, but not limited to: evaluating statistical significance of possible cross-
loadings, removing items, allowing the items to remain in the CFA, or modeling the cross-load-
ings in an ESEM model (see Marsh et al., 2011 and the CFA or EFA discussion below).  

Like most hypothesis testing, researchers need to be aware that statistical significance does 
not automatically mean that a model does not fit and/or a factor loading is practically meaning-
ful. In terms of the χ2 test of model fit, it is good to have a large sample in order to find points of 
model misspecification, but because models are often complex and have hundreds, if not thou-
sands, of degrees of freedom, there are many ways an FA model can be incorrect. Researchers 
also need to be aware that the detection of model misspecification increases with larger samples, 
and the same is true for the statistical tests of the factor loadings. A large sample can result in 
small cross-loadings being statistically significant, so researchers need also evaluate magnitude. 
This is not a criticism of statistical hypothesis testing; it is just meant to emphasize the need to 
integrate sound statistical tests with theory and practical significance.

CFA or EFA?
Within the context of this illustration, it is worth discussing some important differences between 
EFA and CFA. Researchers often erroneously assume that CFA is only used to verify or confirm 
hypothesized models, but researchers often apply CFA in an exploratory manner. Researchers 
often use MIs to modify CFA models, but when this occurs the perceived CFA becomes explor-
atory in nature (Bollen, 1989; Brown, 2001) and may be inappropriate (e.g., Asparouhov & 
Muthén, 2009; Byrne, 2001; Gerbing & Hamilton, 1996; Gorsuch, 1983; MacCallum et al., 
1992; Marsh et al., 2011; Mulaik, 1972). Table 1 also illustrates when items relate only to a 
single factor, as in CFA, then both the factor loadings and interfactor correlations can become 
unrealistically inflated. In this sense, CFA very closely mirrors the results of the Geomin crite-
rion within EFA.

On a final note, researchers should be aware that it is reasonable to follow up a poor-fitting 
CFA model with an EFA. Thus, researchers should consider a follow-up EFA when an adequate-
fitting CFA model can only be obtained by model respecification based on the modification 
indices that are unsupported by theory, or when poor fit results and a large number of modifica-
tion indices make CFA model respecification impossible. This does not mean that modification 
indices should never be used and/or CFA models should never be modified post hoc. It simply 
means that researchers should carefully consider all possibilities when a hypothesized model 
does not fit and realize that EFA is often more suitable for further “exploration” of poor fitting 
CFA models. In general, EFA can be used to (a) explore poorly fitting CFA models, (b) explore 
factor structures without strong hypotheses, and (c) confirm a factor structure based on strong 
hypotheses when the independent cluster assumption of CFA is unrealistic, such as ESEM (see 
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Marsh et al., 2011). Thus practically speaking, EFA and CFA are mostly differentiated by includ-
ing or not including cross-loadings, respectively, and are not only “exploratory” or only “confir-
matory” as CFA can be used to explore with MIs and EFA can be used to confirm when a priori 
cross-loadings are hypothesized.

Conclusion
The goal of this article was to outline and illustrate important and current methods in factor 
analysis. It is not meant to be exhaustive review of the literature or a complete step-by-step tuto-
rial but is simply meant to provide a blueprint as to what researchers should consider and how 
they should proceed when conducting factor analysis. By no means is this the only way to pro-
ceed, but no matter how a researcher decides to conduct a factor analytic study and evaluate a 
model, it is important that they at least consider sample size, factor models and estimation meth-
ods, procedures for determining the number of factors and evaluating model fit, and rotation 
criteria. Researchers are encouraged to explore further the references provided when more depth 
is required and/or desired on a particular topic. And though relatively current, researchers con-
ducting factor analysis need to stay abreast of the methods and realize that this article will soon 
become fodder for past-tense citations and more up-to-date methods. Hopefully, by carefully 
considering each of these important areas/methods, the science of factor analysis, and really the 
science of the interrelatedness of variables, will continue to move forward in an accurate and 
replicable fashion. Because, as is true of most sciences, factor analysis has come a long way, but 
it still has a long way to go.
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Notes

1. PCA is often incorrectly assumed to be an EFA method of factor extraction, but it is technically not a 
member of the FA family of estimation methods that fall under the common factor model.

2. Robust WLS is a variant of full WLS which was developed for non-normal continuous data and is 
often called the asymptotically distribution free (ADF) estimator when all outcome variables are con-
tinuous (Brown, 1984; Flora & Curran, 2004).

3. The WLSMV estimator should not be used when comparing EFA nested models with Mplus, but WLS 
(full WLS) or WLSM (robust WLS with mean-adjusted χ2 test statistic) can be used. 

4.  Similar procedures are available in Lisrel (Jöreskog & Sörbom, 2001) and EQS (Bentler, 2010).
5. The PA procedure developed by Liu and Rijmen (2008) was developed for use with ordinal data, but 

Dinno (2010) demonstrated that the proliferation of the data should not affect PA results.
6. The fit statistics and their respective cut-offs are appropriate for ML estimation methods. Researchers 

should check for appropriate fit statistics based on the estimator they use.
7. Random eigenvalues and a plot of eigenvalues is available from paran.
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 8. Because the sample size n = 145 is set for the current example, it was evaluated for power and accu-
racy of parameter estimates post hoc. In general, it would be more likely for researchers to evaluate 
different sample sizes a priori to determine an adequate sample size. This can be done in Mplus by 
specifying different sample sizes for the hypothesized model.

 9. As discussed below, ML estimation and Geomin rotation were used for the Monte Carlo simulation.
10. To standardize the item variance scale to one, the residuals were calculated based on the factor load-

ings, cross-loadings, and interfactor correlation (see Gorsuch, 1983, pp. 29-30; Sass & Schmitt, p. 83).
11. WLSMV uses all available data with limited pair-wise information, which is a more restrictive varia-

tion of the full information ML estimation method, thus it has been show that Bayesian estimation 
outperforms WLSMV with categorical or ordinal data in the context (Asparouhov & Muthén; 2010a; 
Asparouhov & Muthén; 2010b).

12. At this time Bayesian estimation for EFA is not available in Mplus.
13. ML used when missing data is present is commonly called full information maximum likelihood 

(FIML), but be aware that ML is always a full information estimator. 
14. ML estimation with missing data requires raw data input as opposed to a correlation or variance-

covariance matrix that can be used when there is no missing data.
15.  Note that the χ2 test statistic along with approximate fit indexes will not change across rotation 

methods.
16.  Note that other correction procedures are available.
17.  The variance of the latent variables must be set to one or if the first item is used to set the scale then 

standard deviation of the observed variable must be divided by the standard deviation of the latent 
trait and then multiplied by 0.40. 
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