Mplus Short Courses Topic 3

Growth Modeling With Latent Variables Using Mplus: Introductory And Intermediate Growth Models

Linda K. Muthén Bengt Muthén

Copyright © 2010 Muthén & Muthén <u>www.statmodel.com</u> 03/03/2010

1

2

Table Of Contents

General Latent Variable Modeling Framework	6
Typical Examples Of Growth Modeling	14
Basic Modeling Ideas	23
Growth Modeling Frameworks	27
The Latent Variable Growth Model In Practice	40
Growth Model Estimation, Testing, And Model Modification	54
Simple Examples Of Growth Modeling	63
Covariates In The Growth Model	83
Centering	98
Non-Linear Growth	105
Growth Model With Free Time Scores	107
Piecewise Growth Modeling	119
Intermediate Growth Models	126
Growth Model With Individually Varying Times Of Observation	
And Random Slopes For Time-Varying Covariates	127
Alternative Models With Time-Varying Covariates	137
Regressions Among Random Effects	160
Growth Modeling With Parallel Processes	170
Categorical Outcomes: Logistic and Probit Regression	183
Growth Modeling With Categorical Outcomes	190
References	211

Mplus Background

- Inefficient dissemination of statistical methods:
 - Many good methods contributions from biostatistics, psychometrics, etc are underutilized in practice
- Fragmented presentation of methods:
 - Technical descriptions in many different journals
 - Many different pieces of limited software
- Mplus: Integration of methods in one framework
 - Easy to use: Simple, non-technical language, graphics
 - Powerful: General modeling capabilities
- Mplus versions
 - V1: November 1998
 V2: February 2001
 V3: March 2004
 V5: November 2007
 V5: November 2009
- Mplus team: Linda & Bengt Muthén, Thuy Nguyen, Tihomir Asparouhov, Michelle Conn, Jean Maninger

Statistical Analysis With Latent Variables
A General Modeling Framework

Statistical Concepts Captured By Latent Variables

Continuous Latent Variables

- Measurement errors
- Factors
- Random effects
- Frailties, liabilities
- Variance components
- Missing data

Categorical Latent Variables

- Latent classes
- Clusters
- Finite mixtures
- Missing data

Statistical Analysis With Latent Variables A General Modeling Framework (Continued)

Models That Use Latent Variables

Continuous Latent Variables

- Factor analysis models
- Structural equation models
- Growth curve models
- Multilevel models

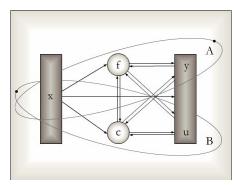
Categorical Latent Variables

- Latent class models
- Mixture models
- Discrete-time survival models
- Missing data models

Mplus integrates the statistical concepts captured by latent variables into a general modeling framework that includes not only all of the models listed above but also combinations and extensions of these models.

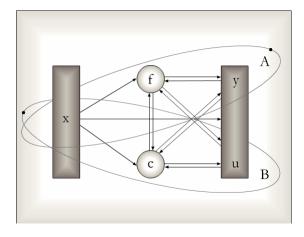
5

General Latent Variable Modeling Framework



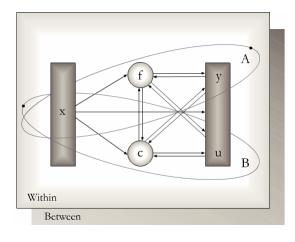
- · Observed variables
 - x background variables (no model structure)
 - y continuous and censored outcome variables
 - categorical (dichotomous, ordinal, nominal) and count outcome variables
- Latent variables
 - continuous variables
 - interactions among f's
 - categorical variables
 - multiple c's

General Latent Variable Modeling Framework

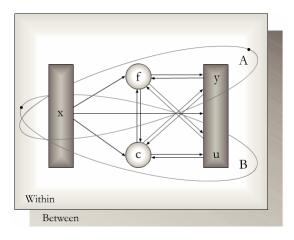


7

General Latent Variable Modeling Framework

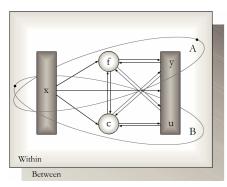


General Latent Variable Modeling Framework



9

General Latent Variable Modeling Framework



- Observed variables
 - x background variables (no model structure)
 - y continuous and censored outcome variables
 - categorical (dichotomous, ordinal, nominal) and count outcome variables
- Latent variables
 - continuous variables
 - $\ interactions \ among \ f\hbox{\'s}$
 - c categorical variables
 - multiple c's

Mplus

Several programs in one

- Exploratory factor analysis
- Structural equation modeling
- Item response theory analysis
- Latent class analysis
- Latent transition analysis
- Survival analysis
- Growth modeling
- Multilevel analysis
- Complex survey data analysis
- Monte Carlo simulation

Fully integrated in the general latent variable framework

11

Overview Of Mplus Courses

- **Topic 1.** August 20, 2009, Johns Hopkins University: Introductory advanced factor analysis and structural equation modeling with continuous outcomes
- **Topic 2.** August 21, 2009, Johns Hopkins University: Introductory advanced regression analysis, IRT, factor analysis and structural equation modeling with categorical, censored, and count outcomes
- **Topic 3.** March 22, 2010, Johns Hopkins University: Introductory and intermediate growth modeling
- **Topic 4.** March 23, 2010, Johns Hopkins University: Advanced growth modeling, survival analysis, and missing data analysis

Overview Of Mplus Courses (Continued)

- **Topic 5.** August 16, 2010, Johns Hopkins University: Categorical latent variable modeling with cross-sectional data
- **Topic 6.** August 17, 2010, Johns Hopkins University: Categorical latent variable modeling with longitudinal data
- **Extra Topic.** August 18, 2010, Johns Hopkins University: What's new in Mplus version 6?
- **Topic 7.** March, 2011, Johns Hopkins University: Multilevel modeling of cross-sectional data
- **Topic 8.** March, 2011, Johns Hopkins University: Multilevel modeling of longitudinal data

13

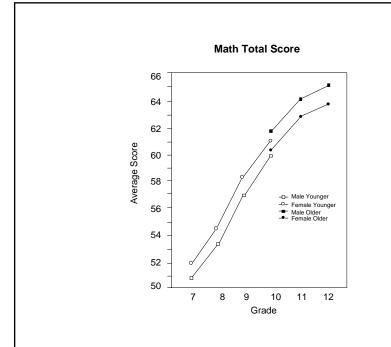
Typical Examples Of Growth Modeling

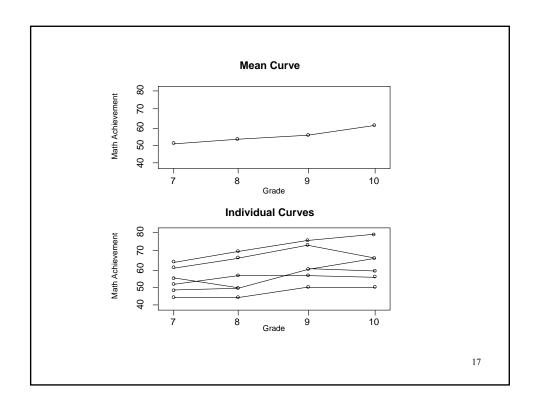
LSAY Data

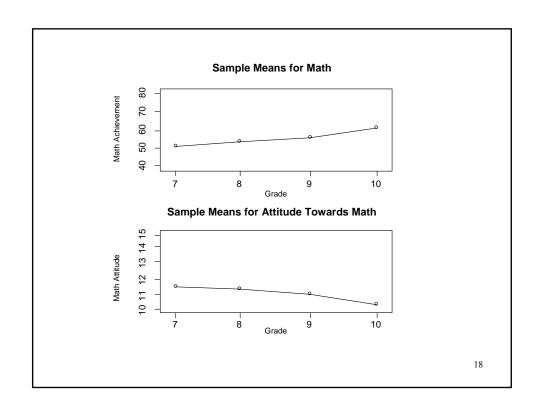
Longitudinal Study of American Youth (LSAY)

- Two cohorts measured each year beginning in 1987
 - Cohort 1 Grades 10, 11, and 12
 - Cohort 2 Grades 7, 8, 9, 10, 11, and 12
- Each cohort contains approximately 60 schools with approximately 60 students per school
- Variables math and science achievement items, math and science attitude measures, and background variables from parents, teachers, and school principals
- Approximately 60 items per test with partial item overlap across grades adaptive tests

15







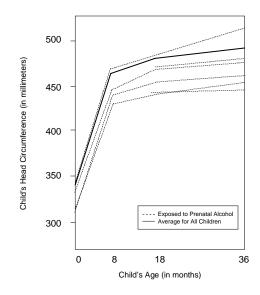
Maternal Health Project Data

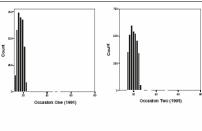
Maternal Health Project (MHP)

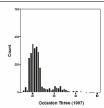
- Mothers who drank at least three drinks a week during their first trimester plus a random sample of mothers who used alcohol less often
- Mothers measured at fourth month and seventh month of pregnancy, at delivery, and at 8, 18, and 36 months postpartum
- Offspring measured at 0, 8, 18 and 36 months
- Variables for mothers demographic, lifestyle, current environment, medical history, maternal psychological status, alcohol use, tobacco use, marijuana use, other illicit drug use
- Variables for offspring head circumference, height, weight, gestational age, gender, and ethnicity

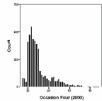
19

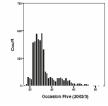
MHP: Offspring Head Circumference











Age range: 13-85

5 occasions: 1991, 1995, 1997, 2000, 2002/3

Boomsma, D.I., Cacioppo, J.T., Muthen, B., Asparouhov, T., & Clark, S. (2007). Longitudinal Genetic Analysis for Loneliness in Dutch Twins. Twin Research and Human Genetics, 10, 267-273.

21

Loneliness In Twins

Males

Females

I feel lonely

Nobody loves me

23

Longitudinal Data: Three Approaches

Three modeling approaches for the regression of outcome on time (n is sample size, T is number of timepoints):

- Use all *n* x *T* data points to do a single regression analysis: Gives an intercept and a slope estimate common to all individuals does not account for individual differences or lack of independence of observations
- Use each individual's *T* data points to do *n* regression analyses: Gives an intercept and a slope estimate for each individual. Accounts for individual differences, but does not account for similarities among individuals
- Use all *n* x *T* data points to do a single random effect regression analysis: Gives an intercept and a slope estimate for each individual. Accounts for similarities among individuals by stipulating that all individuals' random effects come from a single, common population and models the non-independence of observations as show on the next page

Individual Development Over Time

$$(1) y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}$$

(2a)
$$\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$$

(2b) $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$

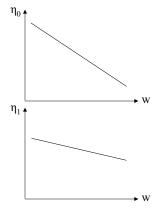
$$t = timepoint$$
 $i = individual$

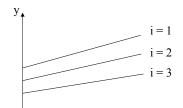
$$(20) \quad \eta_{1i} = \alpha_1 + \gamma_1 \ w_i + \zeta_{1i}$$

$$y = outcome$$
 $x = time score$

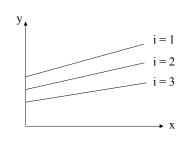
$$w = time-invariant covariate$$

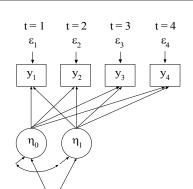
 η_0 = intercept $\eta_1 = \text{slope}$





Individual Development Over Time



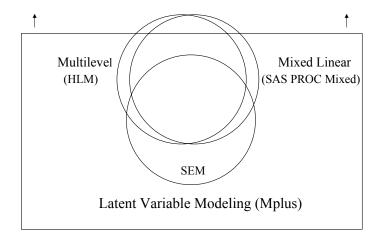


- (1) $y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}$
- (2a) $\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$
- (2b) $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$

Growth Modeling Frameworks

27

Growth Modeling Frameworks/Software



Comparison Summary Of Multilevel, Mixed Linear, And SEM Growth Models

- Multilevel and mixed linear models are the same
- SEM differs from the multilevel and mixed linear models in two ways
 - Treatment of time scores
 - Time scores are data for multilevel and mixed linear models -- individuals can have different times of measurement
 - Time scores are parameters for SEM growth models -time scores can be estimated
 - Treatment of time-varying covariates
 - Time-varying covariates have random effect coefficients for multilevel and mixed linear models -- coefficients vary over individuals
 - Time-varying covariates have fixed effect coefficients for SEM growth models -- coefficients vary over time

29

Random Effects: Multilevel And Mixed Linear Modeling

Individual i (i = 1, 2, ..., n) observed at time point t (t = 1, 2, ..., T).

Multilevel model with two levels (e.g. Raudenbush & Bryk, 2002, HLM).

• Level 1:
$$y_{ti} = \eta_{0i} + \eta_{1i} x_{ti} + \kappa_i w_{ti} + \varepsilon_{ti}$$
 (39)

• Level 2:
$$\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$$
 (40)

$$\eta_{1i} = \alpha_1 + \gamma_1 \, w_i + \zeta_{1i} \tag{41}$$

$$\kappa_i = \alpha + \gamma \, w_i + \zeta_i \tag{42}$$

Random Effects: Multilevel And Mixed Linear Modeling (Continued)

Mixed linear model:

$$y_{ti} = fixed part + random part$$
 (43)

$$y_{ti} = fixed part + random part$$

$$= \alpha_0 + \gamma_0 w_i + (\alpha_1 + \gamma_1 w_i) x_{ti} + (\alpha + \gamma w_i) w_{ti}$$

$$+ \zeta_{0i} + \zeta_{1i} x_{ti} + \zeta_i w_{ti} + \varepsilon_{ti}.$$

$$(43)$$

$$(44)$$

$$+\zeta_{0i} + \zeta_{1i}\chi_{ti} + \zeta_{i}W_{ti} + \varepsilon_{ti}. \tag{45}$$

E.g. "time $\times w_i$ " refers to γ_1 (e.g. Rao, 1958; Laird & Ware, 1982; Jennrich & Sluchter, 1986; Lindstrom & Bates, 1988; BMDP5V; Goldstein, 2003, MLwiN; SAS PROC MIXED-Littell et al. 1996 and Singer, 1999).

31

Random Effects: SEM And Multilevel Modeling

SEM (Tucker, 1958; Meredith & Tisak, 1990; McArdle & Epstein 1987; SEM software):

Measurement part:

$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \kappa_t w_{ti} + \varepsilon_{ti}. \tag{46}$$

Compare with level 1 of multilevel:

$$y_{ti} = \eta_{0i} + \eta_{1i} x_{ti} + \kappa_i w_{ti} + \varepsilon_{ti}. \tag{47}$$

Multilevel approach:

- x_{ti} as data: Flexible individually-varying times of observation
- Slopes for time-varying covariates vary over individuals

Random Effects: SEM And Multilevel Modeling (Continued)

SEM approach:

- x_t as parameters: Flexible growth function form
- Slopes for time-varying covariates vary over time points

Structural part (same as level 2, except for κ_t):

$$\eta_{0i} = \alpha_0 + \gamma_0 \, w_i + \zeta_{0i}, \tag{48}$$

$$\eta_{1i} = \alpha_1 + \gamma_1 \, w_i + \zeta_{1i}, \tag{49}$$

 κ_t not involved (parameter).

33

Random Effects: Mixed Linear Modeling And SEM

Mixed linear model in matrix form:

$$\mathbf{y}_{i} = (y_{1i}, y_{2i}, ..., y_{Ti})'$$
 (51)

$$= X_i \alpha + Z_i b_i + e_i. ag{52}$$

Here, X, Z are design matrices with known values, α contains fixed effects, and b contains random effects. Compare with (43) - (45).

Random Effects: Mixed Linear Modeling And SEM (Continued)

SEM in matrix form:

$$y_i = v + \Lambda \eta_i + K x_i + \varepsilon_i,$$

$$\eta_i = \alpha + B \eta_i + \Gamma x_i + \zeta_i.$$
(53)

$$\eta_i = \alpha + B \, \eta_i + \Gamma \, x_i + \zeta_i \,. \tag{54}$$

$$\begin{aligned} y_i &= \textit{fixed part} + \textit{random part} \\ &= \mathbf{v} + \Lambda \; (I - B)^{-1} \; \alpha + \Lambda \; (I - B)^{-1} \; \Gamma \; x_i + K \; x_i \\ &+ \Lambda \; (I - B)^{-1} \; \zeta_i + \varepsilon_i . \end{aligned}$$

Assume $x_{ti} = x_t$, $\kappa_i = \kappa_t$ in (39). Then (39) is handled by (53) and (40) – (41) are handled by (54), putting x_t in Λ and w_{ti} , w_i in x_i .

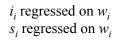
Need for Λ_i , K_i , B_i , Γ_i .

35

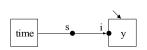
Growth Modeling Approached In Two Ways: Data Arranged As Wide Versus Long

Wide: Multivariate, Single-Level Approach

$$y_{ti} = i_i + s_i \times time_{ti} + \varepsilon_{ti}$$



• Long: Univariate, 2-Level Approach (CLUSTER = id) Within Between



The intercept i is called y in Mplus

Pros And Cons Of Wide Versus Long

- Advantages of the wide approach:
 - Modeling flexibility
 - Unequal residual variances and covariances
 - Testing of measurement invariance with multiple indicator growth
 - Allowing partial measurement non-invariance
 - Missing data modeling
 - Reduction of the number of levels by one (or more)
- · Advantages of the long approach
 - Many time points
 - Individually-varying times of observation with missingness

37

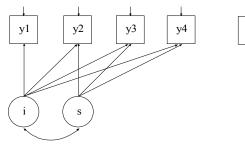
Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

Alternative Models For Longitudinal Data

Growth Curve Model

Auto-Regressive Model



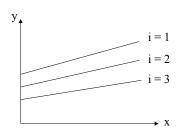
Hybrid Models

Curran & Bollen (2001) McArdle & Hamagami (2001) Bollen & Curran (2006)

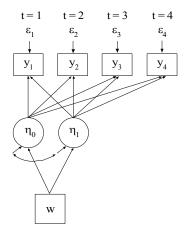
39

The Latent Variable Growth Model In Practice

Individual Development Over Time



- (1) $y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}$
- (2a) $\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$
- (2b) $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$

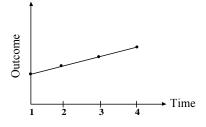


41

Specifying Time Scores For Linear Growth Models

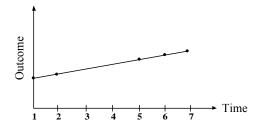
Linear Growth Model

• Need two latent variables to describe a linear growth model: Intercept and slope



- Equidistant time scores for slope:
- 0 3 or
- .2 .3 .1

Specifying Time Scores For Linear Growth Models (Continued)



- Nonequidistant time scores for slope:
- 0 1 4 5 6 or
- 0 .1 .4 .5 .6

43

Interpretation Of The Linear Growth Factors

Model:

$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}, \tag{17}$$

where in the example t = 1, 2, 3, 4 and $x_t = 0, 1, 2, 3$:

$$y_{1i} = \eta_{0i} + \eta_{1i} \, 0 + \varepsilon_{1i}, \tag{18}$$

$$\eta_{0i} = y_{1i} - \varepsilon_{1i}, \tag{19}$$

$$y_{2i} = \eta_{0i} + \eta_{1i} \, 1 + \varepsilon_{2i}, \tag{20}$$

$$y_{3i} = \eta_{0i} + \eta_{1i} 2 + \varepsilon_{3i}, \tag{21}$$

$$y_{4i} = \eta_{0i} + \eta_{1i} \, 3 + \varepsilon_{4i}. \tag{22}$$

Interpretation Of The Linear Growth Factors (Continued)

Interpretation of the intercept growth factor

 η_{0i} (initial status, level):

Systematic part of the variation in the outcome variable at the time point where the time score is zero.

• Unit factor loadings

Interpretation of the slope growth factor

 η_{1i} (growth rate, trend):

Systematic part of the increase in the outcome variable for a time score increase of one unit.

• Time scores determined by the growth curve shape

45

Interpreting Growth Model Parameters

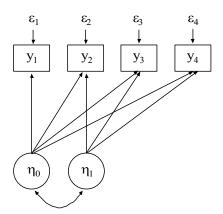
- Intercept Growth Factor Parameters
 - Mean
 - Average of the outcome over individuals at the timepoint with the time score of zero;
 - When the first time score is zero, it is the intercept of the average growth curve, also called initial status
 - Variance
 - Variance of the outcome over individuals at the timepoint with the time score of zero, excluding the residual variance

Interpreting Growth Model Parameters (Continued)

- Linear Slope Growth Factor Parameters
 - Mean average growth rate over individuals
 - Variance variance of the growth rate over individuals
 - Covariance with Intercept relationship between individual intercept and slope values
- Outcome Parameters
 - Intercepts not estimated in the growth model fixed at zero to represent measurement invariance
 - Residual Variances time-specific and measurement error variation
 - Residual Covariances relationships between timespecific and measurement error sources of variation across time

47

Latent Growth Model Parameters And Sources Of Model Misfit



Latent Growth Model Parameters For Four Time Points

Linear growth over four time points, no covariates.

Free parameters in the H_1 unrestricted model:

• 4 means and 10 variances-covariances

Free parameters in the H_{θ} growth model:

(9 parameters, 5 d.f.):

- Means of intercept and slope growth factors
- Variances of intercept and slope growth factors
- Covariance of intercept and slope growth factors
- · Residual variances for outcomes

Fixed parameters in the H_{θ} growth model:

- Intercepts of outcomes at zero
- Loadings for intercept growth factor at one
- Loadings for slope growth factor at time scores
- Residual covariances for outcomes at zero

40

Latent Growth Model Sources Of Misfit

Sources of misfit:

- Time scores for slope growth factor
- Residual covariances for outcomes
- Outcome variable intercepts
- Loadings for intercept growth factor

Model modifications:

- Recommended
 - Time scores for slope growth factor
 - Residual covariances for outcomes
- · Not recommended
 - Outcome variable intercepts
 - Loadings for intercept growth factor

Latent Growth Model Parameters For Three Time Points

Linear growth over three time points, no covariates.

Free parameters in the H_1 unrestricted model:

• 3 means and 6 variances-covariances

Free parameters in the H_{θ} growth model

(8 parameters, 1 d.f.)

- Means of intercept and slope growth factors
- Variances of intercept and slope growth factors
- Covariance of intercept and slope growth factors
- Residual variances for outcomes

Fixed parameters in the H_{θ} growth model:

- Intercepts of outcomes at zero
- · Loadings for intercept growth factor at one
- Loadings for slope growth factor at time scores
- Residual covariances for outcomes at zero

51

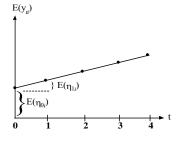
Growth Model Means And Variances

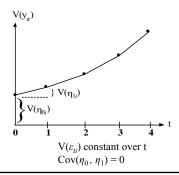
$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti},$$

 $x_t = 0, 1, ..., T - 1.$

Expectation (mean; E) and variance (V):

$$\begin{split} E\left(y_{ti}\right) &= E\left(\eta_{0i}\right) + E\left(\eta_{1i}\right) x_{t}, \\ V\left(y_{ti}\right) &= V\left(\eta_{0i}\right) + V\left(\eta_{1i}\right) x_{t}^{2} \\ &+ 2x_{t} Cov\left(\eta_{0i}, \, \eta_{1i}\right) + \mathrm{V}\left(\varepsilon_{ti}\right) \end{split}$$



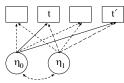


Growth Model Covariances

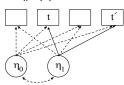
$$y_{ii} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}, x_t = 0, 1, ..., T - 1.$$

$$Cov(y_{ti}, y_{ti}) = V(\eta_{0i}) + V(\eta_{1i}) x_t x_{t'} + Cov(\eta_{0i}, \eta_{1i}) (x_t + x_t) + Cov(\varepsilon_{ti}, \varepsilon_{ti}).$$

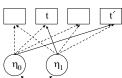
$V\!(\eta_{0t})$:



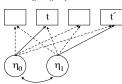
$V(\eta_{1i}) x_t x_{t'}$:



$\operatorname{Cov}(\eta_{0i},\eta_{1i}) x_{\mathsf{t}}$:



$\mathrm{Cov}(\eta_{0i}\,,\eta_{1i})\,x_{\mathsf{t}}\,.\,:$



53

Growth Model Estimation, Testing, And Model Modification

Growth Model Estimation, Testing, And Model Modification

- Estimation: Model parameters
 - Maximum-likelihood (ML) estimation under normality
 - ML and non-normality robust s.e.'s
 - Quasi-ML (MUML): clustered data (multilevel)
 - WLS: categorical outcomes
 - ML-EM: missing data, mixtures
- · Model Testing
 - Likelihood-ratio chi-square testing; robust chi square
 - Root mean square of approximation (RMSEA):
 - Close fit ($\leq .05$)
- · Model Modification
 - Expected drop in chi-square, EPC
- Estimation: Individual growth factor values (factor scores)
 - Regression method Bayes modal Empirical Bayes
 - Factor determinacy

55

CFA Modeling Estimation And Testing

Estimators

In CFA, a covariance matrix and a mean vector are analyzed.

- ML minimizes the differences between matrix summaries (determinant and trace) of observed and estimated variances/covariances
- Robust ML same estimates as ML, standard errors and chisquare robust to non-normality of outcomes and nonindependence of observations (MLM, MLR)

Chi-square test of model fit

Tests that the model does not fit significantly worse than a model where the variables correlate freely – p-values greater than or equal to .05 indicate good fit

 H_0 : Factor model

 H_1 : Free variance-covariance and mean model

If p < .05, H_0 is rejected

Note: We want large p

CFA Modeling Estimation And Testing (Continued)

Model fit indices (cutoff recommendations for good fit based on Yu, 2002 / Hu & Bentler, 1999; see also Marsh et al, 2004)

- CFI chi-square comparisons of the target model to the baseline model greater than or equal to .96/.95
- TLI chi-square comparisons of the target model to the baseline model greater than or equal to .95/.95
- RMSEA function of chi-square, test of close fit less than or equal to .05 (not good at n=100)/.06
- SRMR average correlation residuals less than or equal to .07 (not good with binary outcomes)/.08
- WRMR average weighted residuals less than or equal to 1.00 (also good with non-normal and categorical outcomes – not good with growth models with many timepoints or multiple group models)

57

Degrees Of Freedom For Chi-Square Testing Against An Unrestricted Model

The p value of the χ^2 test gives the probability of obtaining a χ^2 value this large or larger if the H_0 model is correct (we want high p values).

Degrees of Freedom:

(Number of parameters in H_1) – (number parameters in H_0)

Number of H_1 parameters with an unrestricted Σ : p(p+1)/2

Number of H_1 parameters with unrestricted μ and Σ : p + p (p + 1)/2

Chi-Square Difference Testing Of Nested Models

- When a model H_a imposes restrictions on parameters of model H_b , H_a is said to be nested within H_b
- To test if the nested model H_a fits significantly worse than H_b , a chi-square test can be obtained as the difference in the chi-square values for the two models (testing against an unrestricted model) using as degrees of freedom the difference in number of parameters for the two models
- The chi-square difference is the same as 2 times the difference in log likelihood values for the two models
- The chi-square theory does not hold if H_a has restricted any of the H_b parameters to be on the border of their admissible parameter space (e.g. variance = 0)

59

CFA Model Modification

Model modification indices are estimated for all parameters that are fixed or constrained to be equal.

- Modification Indices expected drop in chi-square if the parameter is estimated
- Expected Parameter Change Indices expected value of the parameter if it is estimated
- Standardized Expected Parameter Change Indices standardized expected value of the parameter if it is estimated

Model Modifications

- Residual covariances
- Factor cross loadings

Alternative Growth Model Parameterizations

Parameterization 1 – for continuous outcomes

$$y_{ti} = \mathbf{0} + \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}, \tag{32}$$

$$\eta_{0i} = \boldsymbol{\alpha}_0 + \zeta_{0i}, \tag{33}$$

$$\eta_{1i} = \alpha_1 + \zeta_{1i}. \tag{34}$$

Parameterization 2 – for categorical outcomes and multiple indicators

$$y_{ti} = \mathbf{v} + \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti},$$
 (35)

$$\eta_{0i} = \mathbf{0} + \zeta_{0i},\tag{36}$$

$$\eta_{1i} = \alpha_1 + \zeta_{1i}. \tag{37}$$

61

Alternative Growth Model Parameterizations

Parameterization 1 – for continuous outcomes

- Outcome variable intercepts fixed at zero
- Growth factor means free to be estimated

Parameterization 2 – for categorical outcomes and multiple indicators

- Outcome variable intercepts constrained to be equal
- Intercept growth factor mean fixed at zero

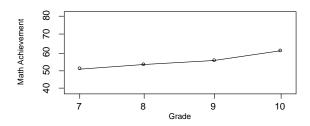
Simple Examples Of Growth Modeling

63

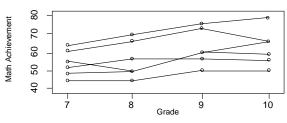
Steps In Growth Modeling

- Preliminary descriptive studies of the data: means, variances, correlations, univariate and bivariate distributions, outliers, etc.
- Determine the shape of the growth curve from theory and/or data
 - Individual plots
 - Mean plot
- Consider change in variance across time
- Fit model without covariates using fixed time scores
- Modify model as needed
- Add covariates

Mean Curve



Individual Curves



65

Input For LSAY TYPE=BASIC Analysis

```
TITLE: Basic run
```

DATA: FILE = lsayfull_dropout.dat;

VARIABLE: NAMES = lsayid schoode female mothed homeres math7

math8 math9 math10 math11 math12

mthcrs7 mthcrs8 mthcrs9 mthcrs10 mthcrs11 mthcrs12;

!lsayid = Student id

!schcode = 7th grade school code !mothed = mother's education

(1=LT HS diploma, 2=HS diploma, 3=Some college,

! 4=4yr college degree, 5=advanced degree)

!homeres = Home math and science resources

!mthcrs7-mthcrs12 = Highest math course taken during each grade

! (0 = no course, 1 - low, basic, 2 = average, 3 = high,

4 = pre-algebra, 5 = algebra I, 6 = geometry,
7 = algebra II, 8 = pre-calc, 9 = calculus)

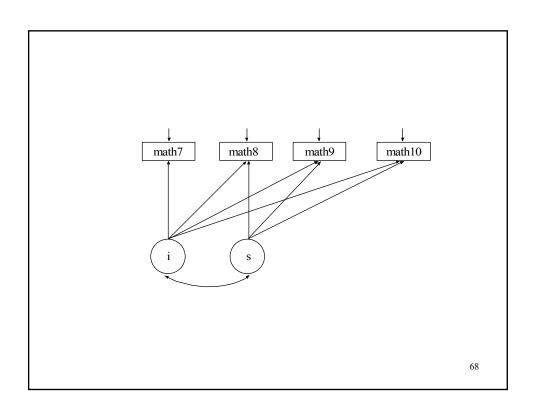
ANALYSIS: TYPE = BASIC; PLOT: TYPE = PLOT3;

SERIES = math7-math10(*);

Sample Statistics For LSAY Data

n = 3102

Means				
	MATH7	MATH8	MATH9	MATH10
	50.356	53.872	57.962	62.250
Covariances				
	MATH7	MATH8	MATH9	MATH10
MATH7	103.868			
MATH8	93.096	121.294		
MATH9	104.328	121.439	161.394	
MATH10	110.003	125.355	157.656	189.096
Correlations				
	MATH7	MATH8	MATH9	MATH10
MATH7	1.000			
MATH8	0.829	1.000		
MATH9	0.806	0.868	1.000	
MATH10	0.785	0.828	0.902	1.000



Input For LSAY Linear Growth Model Without Covariates

TITLE: Growth 7 - 10, no covariates

DATA: FILE = lsayfull_dropout.dat;

VARIABLE: NAMES = lsayid schoode female mothed homeres

math7 math8 math9 math10 math11 math12

mthcrs7 mthcrs8 mthcrs9 mthcrs10 mthcrs11 mthcrs12;

USEV = math7-math10;
MISSING = ALL(9999);

MODEL: i BY math7-math10@1;

s BY math7@0 math8@1 math9@2 math10@3;

[math7-math10@0];

[i s];

OUTPUT: SAMPSTAT STANDARDIZED RESIDUAL MODINDICES (3.84);

Alternative language:

MODEL: i s | math7@0 math8@1 math9@2 math10@3;

69

Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

Model Results

		Estimates	S.E.	Est./S.E.	Two-Tailed P-Value
I	BY				r-value
	MATH7	1.000	0.000	999.000	999.000
	MATH8	1.000	0.000	999.000	999.000
	MATH9	1.000	0.000	999.000	999.000
	MATH10	1.000	0.000	999.000	999.000
S	BY				
	MATH7	0.000	0.000	999.000	999.000
	MATH8	1.000	0.000	999.000	999.000
	MATH9	2.000	0.000	999.000	999.000
	MATH10	3.000	0.000	999.000	999.000

Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

	Estimates	S.E.	Est./S.E.	Two-tailed P-value
Means				
I	50.202	0.180	279.523	0.000
S	3.939	0.059	66.460	0.000
Intercepts				
MATH7	0.000	0.000	999.000	999.000
MATH8	0.000	0.000	999.000	999.000
MATH9	0.000	0.000	999.000	999.000
MATH10	0.000	0.000	999.000	999.000

71

Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

	Estimates	S.E.	Est./S.E.	Two-tailed P-value
Residual Varianc	es			
MATH7	17.430	1.002	17.400	0.000
MATH8	18.440	0.750	24.596	0.000
MATH9	16.184	0.757	20.561	0.000
MATH10	17.219	1.301	13.230	0.000
Variances				
I	86.159	2.606	33.067	0.000
S	4.792	0.295	16.262	0.000
I WITH				
S	8.031	0.654	12.276	0.000
R-Square Observed				
Variable	R-Square			
MATH7	0.832			
MATH8	0.853			
MATH9	0.895			72
MATH10	0.912			12

Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

Tests Of Model Fit

Chi-Square Test of Model Fit 86.541 Value Degrees of Freedom P-Value 0.0000

CFI/TLI

0.992 CFI 0.990 TLI

RMSEA (Root Mean Square Error Of Approximation)

Estimate

Estimate 0.073 90 Percent C.I. 0.060 0.086

Probability RMSEA <= .05 0.002

SRMR (Standardized Root Mean Square Residual) Value 0.047

Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

Modification Indices

		M.I.	E.P.C.	Std.E.P.C.	StdYX E.P.C.	
BY Stat	ements					
I	BY MATH7	18.291	0.013	0.123	0.012	
I	BY MATH8	15.115	-0.008	-0.073	-0.006	
S	BY MATH7	22.251	0.178	0.389	0.038	
S	BY MATH8	24.727	-0.120	-0.263	-0.023	
WITH St	atements					
MATH9	WITH MATH7	18.449	-2.930	-2.930	-0.174	
MATH9	WITH MATH8	31.311	4.767	4.767	0.276	
MATH10	WITH MATH7	30.282	5.742	5.742	0.331	
MATH10	WITH MATH8	54.842	-6.353	-6.353	-0.357	
MATH10	WITH MATH9	31.503	14.816	14.816	0.888	74

Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

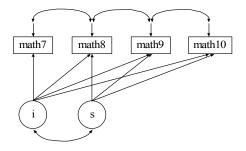
Modification Indices

M.I. E.P.C. Std.E.P.C. StdYX E.P.C.

Means/Intercepts/Thresholds
[MATH7] 18.011 0.671 0.671 0.066
[MATH8] 12.506 -0.362 -.362 -0.032

75

Linear Growth Model Without Covariates: Adding Correlated Residuals



MODEL:

i s | math7@0 math8@1 math9@2 math10@3; math7-math9 PWITH math8-math10;

Output Excerpts LSAY Linear Growth Model Without Covariates: Adding Correlated Residuals

Tests Of Model Fit

Chi-Square Test of Model Fit Value

18.519 Degrees of Freedom 0.0000 P-Value

CFI/TLI

0.998 CFI TLI

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.052 90 Percent C.I. 0.032 Probability RMSEA <= .05 0.404 0.032 0.074

SRMR (Standardized Root Mean Square Residual) Value

Output Excerpts LSAY: Adding Correlated Residuals (Continued)

		Estimates	S.E.	Est./S.E.	Two-tailed P-value
S	WITH				
I		6.133	1.379	4.447	0.000
MATH7	WITH				
MATE	H8	-5.078	2.146	-2.366	0.018
MATH8	WITH				
MATH	H9	4.917	0.916	5.365	0.000
MATH9	WITH				
MATH	H10	17.062	2.983	5.720	0.000
Means					
I		50.203	0.180	279.431	0.000
S		3.936	0.059	66.693	0.000

Output Excerpts LSAY: Adding Correlated Residuals (Continued)

Estimates	S.E.	Est./S.E.	Two-tailed P-value
92.038	4.167	22.085	0.000
3.043	0.789	3.858	0.000
11.871	3.466	3.425	0.001
14.027	1.980	7.085	0.000
32.596	2.609	12.492	0.000
33.857	4.815	7.032	0.000
	92.038 3.043 11.871 14.027 32.596	92.038 4.167 3.043 0.789 11.871 3.466 14.027 1.980 32.596 2.609	92.038 4.167 22.085 3.043 0.789 3.858 11.871 3.466 3.425 14.027 1.980 7.085 32.596 2.609 12.492

79

Output Excerpts LSAY: Adding Correlated Residuals (Continued)

ESTIMATED	MODEL	AND RE	SIDUALS	(OBSERVED	-	ESTIMATED)
Mod	del Est	imated	Means/	Intercepts	/ ፐት	resholds

		MATH7	MATH8	MATH9	MATH10		
1		50.203	54.140	58.076	62.012		
Residuals for Means/Intercepts/Thresholds							
		MATH7	MATH8	MATH9	MATH10		
1		0.153	-0.267	-0.114	0.238		
Standardized Residuals (z-scores) for							
Means	/Interc	epts/Thresho	lds				
		MATH7	MATH8	MATH9	MATH10		
1		4.198	-4.109	-1.256	5.199		
Normalized Residuals for Means/Intercepts/Thresholds							
		MATH7	MATH8	MATH9	MATH10		
1		0.834	-1.317	-0.478	0.904		

Output Excerpts LSAY: Adding Correlated Residuals (Continued)

 ${\tt Model\ Estimated\ Covariances/Correlations/Residual}$ Correlations

	MATH7	MATH8	MATH9	MATH10
MATH7	103.910			
MATH8	93.093	121.375		
MATH9	104.304	121.441	161.339	
MATH10	110.437	125.700	158.025	190.083
Residu	als for Covaria	nces/Correlati	ons/Residual	Correlations
	MATH7	MATH8	MATH9	MATH10
MATH7	-0.041			
MATH8	0.002	-0.081		
MATH9	0.024	-0.002	0.055	
MATH10	-0.434	-0.345	-0.368	-0.987
				81
				01

Output Excerpts LSAY: Adding Correlated Residuals (Continued)

 ${\tt Standardized\ Residuals\ (z-scores)\ for\ Covariances/Correlations/Residual\ Corr}$

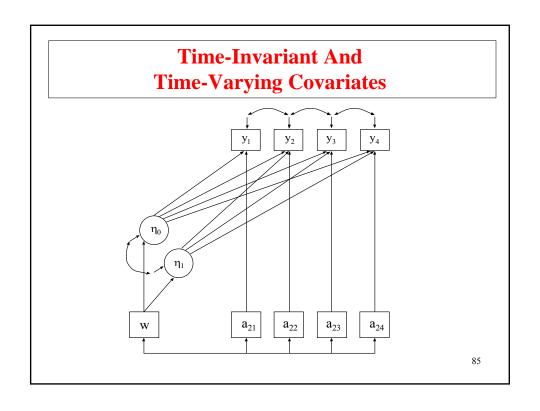
	MATH7	MATH8	MATH9	MATH10
MATH7	999.000			
MATH8	999.000	999.000		
MATH9	0.279	999.000	0.297	
MATH10	999.000	999.000	999.000	999.000
Normalized Correlations	Residuals	for Covariance	s/Correlation	s/Residual
	MATH7	MATH8	MATH9	MATH10
MATH7	-0.016			
MATH8	0.001	-0.025		
MATH9	0.008	-0.001	0.012	
MATH10	-0.130	-0.092	-0.081	-0.185
				82

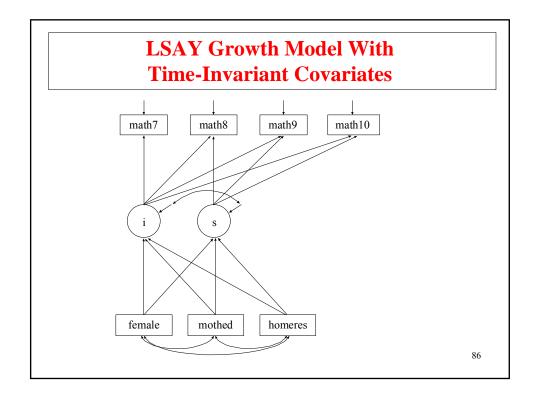
Covariates In The Growth Model

83

Covariates In The Growth Model

- Types of covariates
 - Time-invariant covariates—vary across individuals not time, explain the variation in the growth factors
 - Time-varying covariates—vary across individuals and time, explain the variation in the outcomes beyond the growth factors





Input Excerpts For LSAY Linear Growth Model With Time-Invariant Covariates

TITLE: Growth 7 - 10, no covariates

DATA: FILE = lsayfull_dropout.dat;

VARIABLE: NAMES = lsayid schoode female mothed homeres

math7 math8 math9 math10 math11 math12

mthcrs7 mthcrs8 mthcrs9 mthcrs10 mthcrs11 mthcrs12;

MISSING = ALL (999);

USEVAR = math7-math10 female mothed homeres;

ANALYSIS: !ESTIMATOR = MLR;

MODEL: i s | math7@0 math8@1 math9@2 math10@3;

i s ON female mothed homeres;

Alternative language:

MODEL: i BY math7-math10@1;

s BY math7@0 math8@1 math9@2 math10@3;

[math7-math10@0];

[i s];

i s ON female mothed homeres;

27

Output Excerpts LSAY Growth Model With Time-Invariant Covariates

n = 3116

Tests Of Model Fit for ML

Value

Chi-Square Test of Model Fit 33.611 Value Degrees of Freedom P-Value 0.000 CFI/TLI 0.998 CFI 0.994 TLI RMSEA (Root Mean Square Error Of Approximation) Estimate 0.032 0.021 0.044 90 Percent C.I. Probability RMSEA <= .05 0.996 SRMR (Standardized Root Mean Square Residual)

88

0.010

Output Excerpts LSAY Growth Model With Time-Invariant Covariates (Continued)

Tests Of Model Fit for MLR

Chi-Square Test of Model Fit		
Value	33.290 *	
Degrees of Freedom	8	
P-Value	0.0001	
Scaling Correction Factor	1.010	
for MLR		
CFI/TLI		
CFI	0.997	
TLI	0.993	
RMSEA (Root Mean Square Error Of Approximation)		
Estimate	0.015	
90 Percent C.I.	0.021	0.043
Probability RMSEA <= .05	0.996	
SRMR (Standardized Root Mean Square Residual)		
Value	0.010	0.0
		89

Output Excerpts LSAY Growth Model With Time-Invariant Covariates (Continued)

Selected Estimates For ML

		Estimate	S.E.	Est./S.E.	Two-Tailed
					P-Value
I	ON				
	FEMALE	2.123	0.327	6.499	0.000
	MOTHED	2.262	0.164	13.763	0.000
	HOMERES	1.751	0.104	16.918	0.000
S	ON				
	FEMALE	-0.134	0.116	-1.153	0.249
	MOTHED	0.223	0.059	3.771	0.000
	HOMERES	0.273	0.037	7.308	0.000

Output Excerpts LSAY Growth Model With Time-Invariant Covariates (Continued)

	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
S WITH				_
I	4.131	1.244	3.320	0.001
Residual Vari	ances			
I	71.888	3.630	19.804	0.000
S	3.313	0.724	4.579	0.000
Intercepts				
I	38.434	0.497	77.391	0.000
S	2.636	0.181	14.561	0.000

91

Output Excerpts LSAY Growth Model With Time-Invariant Covariates (Continued)

R-Square

Observed	
Variable	R-Square
MATH7	0.876
MATH8	0.863
MATH9	0.817
MATH10	0.854
Latent	
Variable	R-Square
I	.204
S	.091

Output Excerpts LSAY Growth Model With Time-Invariant Covariates (Continued)

TECHNICAL 4 OUTPUT

ESTIMATES DERIVED FROM THE MODEL

ESTIMATED MEANS FOR THE LATENT VARIABLES

I	S	FEMALE	MOTHED	HOMERES	
50.219	3.944	0.478	2.347	3.118	

93

Output Excerpts LSAY Growth Model With Time-Invariant Covariates (Continued)

ESTIMATED COVARIANCE MATRIX FOR THE LATENT VARIABLES

	I	s	FEMALE	MOTHED	HOMERES
I	90.264				
S	6.411	3.647			
FEMALE	0.350	-0.058	0.250		
MOTHED	3.226	0.373	-0.024	1.088	
HOMERES	5.901	0.891	-0.071	0.467	2.853

ESTIMATED CORRELATION MATRIX FOR THE LATENT VARIABLES

_	I	S	FEMALE	MOTHED	HOMERES
I	1.000				
S	0.353	1.000			
FEMALE	0.074	-0.061	1.000		
MOTHED	0.326	0.187	-0.047	1.000	
HOMERES	0.368	0.276	-0.084	0.265	1.000
					0.4

Model Estimated Average And Individual Growth Curves With Covariates

Model:

$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}, \qquad (23)$$

$$\eta_{0i} = \alpha_0 + \gamma_0 \, w_i + \zeta_{0i} \,, \tag{24}$$

$$\eta_{1i} = \alpha_1 + \gamma_1 \, w_i + \zeta_{1i} \,, \tag{25}$$

Estimated growth factor means:

$$\hat{E}(\eta_{0i}) = \hat{\alpha}_0 + \hat{\gamma}_0 \overline{w} \,, \tag{26}$$

$$\hat{E}(\eta_{1i}) = \hat{\alpha}_1 + \hat{\gamma}_1 \overline{w} . \tag{27}$$

Estimated outcome means:

$$\hat{E}(y_{ti}) = \hat{E}(\eta_{0i}) + \hat{E}(\eta_{1i}) x_t. \tag{28}$$

Estimated outcomes for individual i:

$$\hat{y}_{ti} = \hat{\eta}_{0i} + \hat{\eta}_{1i} x_t \tag{29}$$

where $\hat{\eta}_{0i}$ and $\hat{\eta}_{1i}$ are estimated factor scores. \hat{y}_{ti} can be used for prediction purposes.

95

Model Estimated Means With Covariates

Model estimated means are available using the TECH4 and RESIDUAL options of the OUTPUT command.

Estimated Intercept Mean = Estimated Intercept +

Estimated Slope (Female)*Sample Mean (Female) + Estimated Slope (Mothed)*Sample Mean (Mothed) + Estimated Slope (Homeres)*Sample Mean (Homeres)

38.43 + 2.12*0.48 + 2.26*2.35 + 1.75*3.12 = 50.22

Estimated Slope Mean = Estimated Intercept +

Estimated Slope (Female)*Sample Mean (Female) + Estimated Slope (Mothed)*Sample Mean (Mothed) + Estimated Slope (Homeres)*Sample Mean (Homeres)

2.64 - 0.13*0.48 + 0.22*2.35 + 0.27*3.11 = 3.94

Model Estimated Means With Covariates (Continued)

Estimated Outcome Mean at Timepoint t =

Estimated Intercept Mean + Estimated Slope Mean * (Time Score at Timepoint t)

Estimated Outcome Mean at Timepoint 1 =

$$50.22 + 3.94 * (0) = 50.22$$

Estimated Outcome Mean at Timepoint 2 =

$$50.22 + 3.94 * (1.00) = 54.16$$

Estimated Outcome Mean at Timepoint 3 =

$$50.22 + 3.94 * (2.00) = 58.11$$

Estimated Outcome Mean at Timepoint 4 =

$$50.22 + 3.94 * (3.00) = 62.05$$

97

Centering

Centering

- Centering determines the interpretation of the intercept growth factor
- The centering point is the timepoint at which the time score is zero
- A model can be estimated for different centering points depending on which interpretation is of interest
- Models with different centering points give the same model fit because they are reparameterizations of the model
- Changing the centering point in a linear growth model with four timepoints

```
Timepoints 1 2 3 4

Centering at

Time scores 0 1 2 3 Timepoint 1

-1 0 1 2 Timepoint 2

-2 -1 0 1 Timepoint 3

-3 -2 -1 0 Timepoint 4
```

99

Input Excerpts For LSAY Growth Model With Covariates Centered At Grade 10

```
MODEL: i s | math7@-3 math8@-2 math9@-1 math10@0;
```

i s ON female mothed homeres;
math7-math9 PWITH math8-math10;

OUTPUT: TECH1 RESIDUAL STANDARDIZED MODINDICES TECH4;

Alternative language:

```
MODEL: i BY math7-math10@1;
```

s BY math7@-3 math8@-2 math9@-1 math10@0;

math7-math9 PWITH math8-math10;

[math7-math10@0];

[i s];

i s ON female mothed homeres;

Output Excerpts LSAY Growth Model With Covariates Centered At Grade 10

n = 3116

Tests of Model Fit

CHI-SQUARE TEST OF MODEL FIT

Value 33.611
Degrees of Freedom 8
P-Value 0.000

RMSEA (ROOT MEAN SQUARE ERROR OF APPROXIMATION)

Estimate .032 90 Percent C.I. .021 .044 Probability RMSEA <= .05 .996

101

Output Excerpts LSAY Growth Model With Covariates Centered At Grade 10 (Continued)

SELECTED ESTIMATES

		Estimate	S.E.	Est./S.E.	Two-Tailed
					P-Value
I	ON				
	FEMALE	1.723	0.473	3.643	0.000
	MOTHED	2.930	0.239	12.249	0.000
	HOMERES	2.569	0.151	17.002	0.000
S	ON				
	FEMALE	-0.133	0.116	-1.153	0.249
	MOTHED	0.223	0.059	3.771	0.000
	HOMERES	0.273	0.037	7.308	0.000

Further Readings On Introductory Growth Modeling

- Bijleveld, C. C. J. H., & van der Kamp, T. (1998). <u>Longitudinal data analysis: Designs, models, and methods</u>. Newbury Park: Sage.
- Bollen, K.A. & Curran, P.J. (2006). <u>Latent curve models. A structural equation perspective</u>. New York: Wiley.
- Duncan, T., Duncan S. & Strycker, L. (2006). An introduction to latent variable growth curve modeling. Second edition. Lawrence Erlbaum: New York.
- Muthén, B. & Khoo, S.T. (1998). Longitudinal studies of achievement growth using latent variable modeling. <u>Learning and Individual Differences</u>, Special issue: latent growth curve analysis, 10, 73-101. (#80)
- Muthén, B. & Muthén, L. (2000). The development of heavy drinking and alcohol-related problems from ages 18 to 37 in a U.S. national sample. <u>Journal of Studies on Alcohol</u>, 61, 290-300. (#83)

103

Further Readings On Introductory Growth Modeling (Continued)

- Raudenbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u>
 <u>Applications and data analysis methods</u>. Second edition. Newbury Park, CA: Sage Publications.
- Singer, J.D. & Willett, J.B. (2003). <u>Applied longitudinal data analysis.</u> <u>Modeling change and event occurrence</u>. New York, NY: Oxford University Press.
- Snijders, T. & Bosker, R. (1999). <u>Multilevel analysis</u>. An introduction to basic and advanced multilevel modeling. Thousand Oakes, CA: Sage Publications.

Non-Linear Growth

105

Six Ways To Model Non-Linear Growth

- Estimated time scores
- Quadratic (cubic) growth model
- Fixed non-linear time scores
- Piecewise growth modeling
- Time-varying covariates
- Non-linearity of random effects

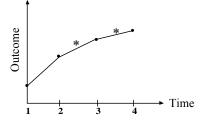
Growth Model With Free Time Scores

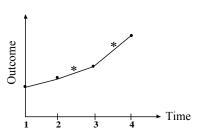
107

Specifying Time Scores For Non-Linear Growth Models With Estimated Time Scores

Non-linear growth models with estimated time scores

• Need two latent variables to describe a non-linear growth model: Intercept and slope





Time scores: 0 1 Estimated Estimated

Input Excerpts For LSAY Linear Growth Model With Free Time Scores Without Covariates

MODEL: i s | math7@0 math8@1 math9@2 math10@3 math11@4

math12*5;

Alternative language:

MODEL: i BY math7-math12@1;

s BY math7@0 math8@1 math9@2 math10@3 math11@4

math12*5;

[math7-math12@0];

[i s];

109

Output Excerpts LSAY Growth Model With Free Time Scores Without Covariates

n = 3102

Tests Of Model Fit

Chi-Square Test of Model Fit		
Value	121.095	
Degrees of Freedom	10	
P-Value	0.0000	
CFI/TLI		
CFI	0.992	
TLI	0.989	
RMSEA (Root Mean Square Error Of Approximation)		
Estimate	0.060	
90 Percent C.I.	0.051	0.070
Probability RMSEA <= .05	0.041	
SRMR (Standardized Root Mean Square Residual)		
Value	0.034	

Output Excerpts LSAY Growth Model With Free Time Scores Without Covariates (Continued)

	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
I				
MATH7	1.000	0.000	999.000	999.000
MATH8	1.000	0.000	999.000	999.000
MATH9	1.000	0.000	999.000	999.000
MATH10	1.000	0.000	999.000	999.000
MATH11	1.000	0.000	999.000	999.000
MATH12	1.000	0.000	999.000	999.000
S				
MATH7	0.000	0.000	999.000	999.000
MATH8	1.000	0.000	999.000	999.000
MATH9	2.000	0.000	999.000	999.000
MATH10	3.000	0.000	999.000	999.000 111
				111

Output Excerpts LSAY Growth Model With Free Time Scores Without Covariates (Continued)

	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
MATH11	4.000	0.000	999.000	999.000
MATH12	4.095	0.042	97.236	0.000
S WITH				
I	4.986	0.741	6.725	0.000
ariances				
I	91.374	3.046	29.994	0.000
S	4.001	0.276	14.666	0.000
leans				
I	50.323	0.180	279.612	0.000
S	3.752	0.049	76.472	0.000
				11

Growth Model With Free Time Scores

- Identification of the model for a model with two growth factors, at least one time score must be fixed to a non-zero value (usually one) in addition to the time score that is fixed at zero (centering point)
- Interpretation—cannot interpret the mean of the slope growth factor as a constant rate of change over all timepoints, but as the rate of change for a time score change of one.
- Approach—fix the time score following the centering point at one

113

Interpretation Of Slope Growth Factor Mean For Non-Linear Models

- The slope growth factor mean is the expected change in the outcome variable for a one unit change in the time score
- In non-linear growth models, the time scores should be chosen so that a one unit change occurs between timepoints of substantive interest.
 - An example of 4 timepoints representing grades 7, 8, 9, and 10
 - Time scores of 0 1 * * slope factor mean refers to expected change between grades 7 and 8
 - Time scores of 0 * * 1 slope factor mean refers to expected change between grades 7 and 10

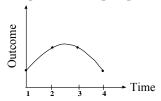
Specifying Time Scores For Quadratic Growth Models

Quadratic growth model

$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \eta_{2i} x_t^2 + \varepsilon_{ti}$$
 or
 $y_{ti} = \eta_{0i} + \eta_{1i} \cdot (x_t - c) + \eta_{2i} \cdot (x_t - c)^2$

where c is a centering constant, e.g. \bar{x}

• Need three latent variables to describe a quadratic growth model: Intercept, linear slope, quadratic slope



- Linear slope time scores: 0 1 2 3 or 0.1.2.3
- Quadratic slope time scores: 0 1 4 9 or 0 .01 .04 .09

115

Mplus Specification Of Several Growth Factors

• Quadratic:

i s q | y1@0 y2@1 y3@2 y4@3;

or alternatively

- i BY y1-y4@1; s BY y1@0 y2@1 y3@2 y4@3; q BY y1@0 y2@1 y3@4 y4@9;
- Cubic

i s q c | y1@0 y2@1 y3@2 y4@3;

· Intercept only

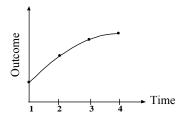
i | y1-y4;

Specifying Time Scores For Non-Linear Growth Models With Fixed Time Scores

Non-Linear Growth Models with Fixed Time scores

• Need two latent variables to describe a non-linear growth model: Intercept and slope

Growth model with a logarithmic growth curve--ln(t)

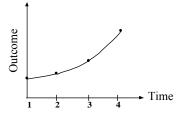


Time scores: 0 0.69 1.10 1.39

117

Specifying Time Scores For Non-Linear Growth Models With Fixed Time Scores (Continued)

Growth model with an exponential growth curve—exp(t-1) - 1



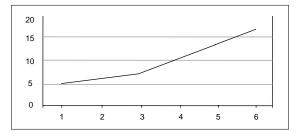
Time scores: 0 1.72 6.39 19.09

Piecewise Growth Modeling

119

Piecewise Growth Modeling

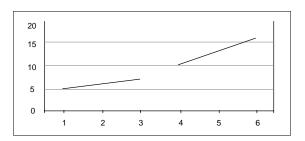
- Can be used to represent different phases of development
- Can be used to capture non-linear growth
- Each piece has its own growth factor(s)
- Each piece can have its own coefficients for covariates



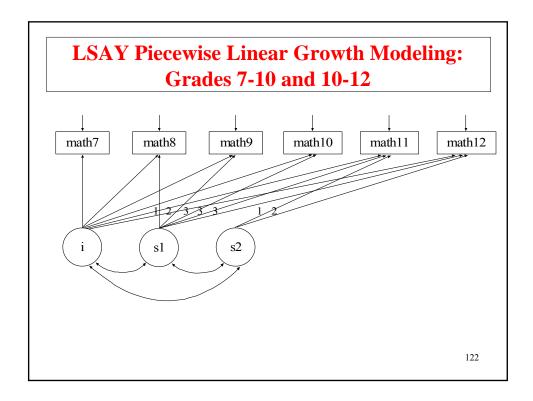
One intercept growth factor, two slope growth factors

- s1: 0 1 2 2 2 2 Time scores piece 1
- s2: 0 0 0 1 2 3 Time scores piece 2

Piecewise Growth Modeling (Continued)



Sequential model



Input For LSAY Piecewise Growth Model With Covariates

MODEL: i s1 | math7@0 math8@1 math9@2 math10@3 math11@3

math12@3;

i s2 | math7@0 math8@0 math9@0 math11@1

math12@2;

i s1 s2 ON female mothed homeres;

Alternative language:

MODEL: i BY math7-math12@1;

s1 BY math 7@0 math 8@1 math 9@2 math 10@3 math 11@3

math12@3;

s2 BY math7@0 math8@0 math9@0 math11@1

math12@2;

[math7-math12@0];

[i s1 s2];

i s1 s2 ON female mothed homeres;

123

Output Excerpts LSAY Piecewise Growth Model With Covariates

n = 3116

Tests of Model Fit

CHI-SOUARE TEST OF MODEL FIT

Value 229.22
Degrees of Freedom 21
P-Value 0.0000

RMSEA (ROOT MEAN SQUARE ERROR OF APPROXIMATION)

Estimate 0.056 90 Percent C.I. 0.050 0.063 Probability RMSEA <= .05 0.051

Output Excerpts LSAY Piecewise Growth Model With Covariates (Continued)

SELECTED ES	STIMATES			
	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
I Oi	1			
FEMALE	2.126	0.327	6.496	0.000
MOTHED	2.282	0.165	13.867	0.000
HOMERES	1.757	0.104	16.953	0.000
S1 Of	1			
FEMALE	-0.121	0.114	-1.065	0.287
MOTHED	0.216	0.058	3.703	0.000
HOMERES	0.269	0.037	7.325	0.000
S2 Of	1			
FEMALE	-0.178	0.191	-0.935	0.350
MOTHED	0.071	0.099	0.719	0.472
HOMERES	0.047	0.061	0.758	0.449

Intermediate Growth Models

Growth Model With Individually-Varying Times Of Observation And Random Slopes For Time-Varying Covariates

127

Growth Modeling In Multilevel Terms

Time point *t*, individual *i* (two-level modeling, no clustering):

 y_{ti} : repeated measures of the outcome, e.g. math achievement

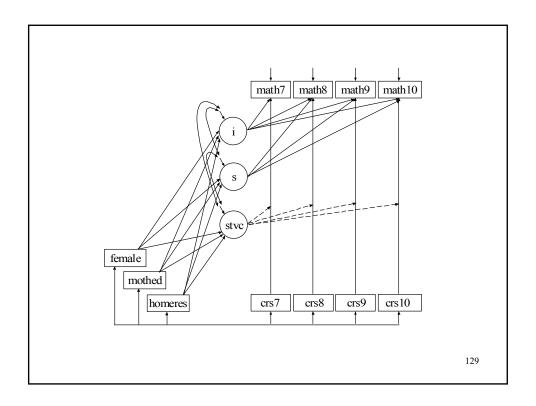
 a_{1ti} : time-related variable; e.g. grade 7-10

 a_{2ti} : time-varying covariate, e.g. math course taking x_i : time-invariant covariate, e.g. grade 7 expectations

Two-level analysis with individually-varying times of observation and random slopes for time-varying covariates:

Level 1:
$$y_{ti} = \pi_{0i} + \pi_{1i} a_{1ti} + \pi_{2ti} a_{2ti} + e_{ti}$$
, (55)

Level 2:
$$\begin{cases}
\pi_{0i} = \beta_{00} + \beta_{01} x_i + r_{0i}, \\
\pi_{1i} = \beta_{10} + \beta_{11} x_i + r_{1i}, \\
\pi_{2i} = \beta_{20} + \beta_{21} x_i + r_{2i}.
\end{cases} (56)$$



Input For Growth Model With Individually Varying Times Of Observation

```
TITLE: Growth model with individually varying times of
```

observation and random slopes

DATA: FILE IS lsaynew.dat;

FORMAT IS 3F8.0 F8.4 8F8.2 3F8.0;

VARIABLE: NAMES ARE math7 math8 math9 math10 crs7 crs8 crs9

crs10 female mothed homeres a7-a10;

! crs7-crs10 = highest math course taken during each

! grade (0=no course, 1=low, basic, 2=average, 3=high.

! 4=pre-algebra, 5=algebra I, 6=geometry,

! 7=algebra II, 8=pre-calc, 9=calculus)

MISSING ARE ALL (9999);

CENTER = GRANDMEAN (crs7-crs10 mothed homeres);

TSCORES = a7-a10;

Input For Growth Model With Individually Varying Times Of Observation (Continued)

```
DEFINE:
           math7 = math7/10;
           math8 = math8/10;
           math9 = math9/10;
           math10 = math10/10;
ANALYSIS: TYPE = RANDOM MISSING;
           ESTIMATOR = ML;
           MCONVERGENCE = .001;
           i s | math7-math10 AT a7-a10;
MODEL:
           stvc | math7 ON crs7;
           stvc | math8 ON crs8;
           stvc | math9 ON crs9;
           stvc | math10 ON crs10;
           i ON female mothed homeres;
           s ON female mothed homeres;
           stvc ON female mothed homeres;
           i WITH s;
           stvc WITH i;
           stvc WITH s;
OUTPUT:
           TECH8;
```

131

Output Excerpts For Growth Model With Individually Varying Times Of Observation And Random Slopes For Time-Varying Covariates

n = 2271

Tests of Model Fit

```
Loglikelihood
```

H0 Value -8199.311

Information Criteria

Number of Free Parameters 22
Akaike (AIC) 16442.623
Bayesian (BIC) 16568.638
Sample-Size Adjusted BIC 16498.740
(n* = (n + 2) / 24)

Output Excerpts For Growth Model With Individually Varying Times Of Observation And Random Slopes For Time-Varying Covariates (Continued)

Model Resul	lts	Estimates	S.E.	Est./S.E.	
I	ON	Escillaces	S.E.	ESC./S.E.	
FEMAL	E	0.187	0.036	5.247	
MOTHE	D	0.187	0.018	10.231	
HOMER	ES	0.159	0.011	14.194	
S	ON				
FEMAL	E	-0.025	0.012	-2.017	
MOTHE	D	0.015	0.006	2.429	
HOMER	ES	0.019	0.004	4.835	
STVC	ON				
FEMAL	Ε	-0.008	0.013	-0.590	
MOTHE	D	0.003	0.007	0.429	
HOMER	ES	0.009	0.004	2.167	
I	WITH				
S		0.038	0.006	6.445	
STVC	WITH				
I		0.011	0.005	2.087	
S		0.004	0.002	2.033	133

Output Excerpts For Growth Model With Individually Varying Times Of Observation And Random Slopes For Time-Varying Covariates (Continued)

Intercepts			
MATH7	0.000	0.000	0.000
MATH8	0.000	0.000	0.000
MATH9	0.000	0.000	0.000
MATH10	0.000	0.000	0.000
I	4.992	0.025	198.456
S	0.417	0.009	47.275
STVC	0.113	0.010	11.416
Residual Variances	3		
MATH7	0.185	0.011	16.464
MATH8	0.178	0.008	22.232
MAIHO			
MATH9	0.156	0.008	18.497
	0.156 0.169	0.008 0.014	18.497 12.500
MATH9			
MATH9 MATH10	0.169	0.014	12.500

Why No Chi-Square With Random Slopes For Random Variables?

Consider as an example individually-varying times of observation a_{Ii} :

$$y_{ti} = \pi_{0i} + \pi_{1i} \ a_{1ti} + e_{ti}$$

$$V(y_{ti} | a_{1ti}) = V(\pi_{0i}) + V(\pi_{1i}) a_{1ti}^2 + 2 a_{1ti} Cov(\pi_{0i}, \pi_{1i}) + V(e_{ti})$$

The variance of y changes as a function of a_{li} values.

Not a constant Σ to test the model fit for.

135

Maximum-Likelihood Alternatives

Note that $[y, x] = [y \mid x] * [x]$, where the marginal distribution [x] is unrestricted.

Normal theory ML for

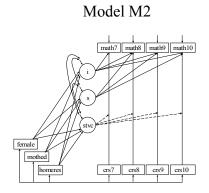
- [y, x]: Gives the same results as [y | x] when there is no missing data (Joreskog & Goldberger, 1975). Typically used in SEM
 - With missing data on x, the normality assumption for x is an additional assumption than when using $[y \,|\, x]$
- [y | x]: Makes normality assumptions for residuals, not for x. Typically used outside SEM
 - Used with Type = Random, Type = Mixture, and with categorical, censored, and count outcomes
 - Deletes individuals with missing on any x
- [y, x] versus [y | x] gives different sample sizes and the likelihood and BIC values are not on a comparable scale

Alternative Models With Time-Varying Covariates

137

math7 math8 math9 math10 i math7 math8 math9 math10 i math8 math9 math10

Model M1



Input Excerpts Model M1

ANALYSIS: TYPE = RANDOM; ! gives loglikelihood in [y | x] metric

MODEL: i s | math7@0 math8@1 math9@2 math10@3;

i s ON female mothed homeres;

math7 ON mthcrs7;
math8 ON mthcrs8;
math9 ON mthcrs9;
math10 ON mthcrs10;

139

Output Excerpts Model M1

TESTS OF MODEL FIT

Chi-Square Test of Model Fit

Value 1143.173*
Degrees of Freedom 23
P-Value 0.000
Scaling Correlation Factor 1.058

for MLR

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference tests. MLM, MLR and WLSM chi-square difference testing is described in the Mplus Technical Appendices at www.statmodel.com. See chi-square difference testing in the index of the Mplus User's Guide.

Output Excerpts Model M1 (Continued)

Chi-Square Test of Model Fit for the Baseline Model

Value 8680.167

Degrees of Freedom 34

P-Value 0.000

CFI/TLI

CFI 0.870 TLI 0.808

Loglikelihood

H0 Value -26869.760 H0 Scaling Correlation Factor 1.159

for MLR

H1 Value -26264.830 H1 Scaling Correlation Factor 1.104

for MLR

141

Output Excerpts Model M1 (Continued)

Information Criteria

Number of Free Parameters 19
Akaike (AIC) 53777.520
Bayesian (BIC) 53886.351
Sample-Size Adjusted BIC 53825.985

(n* = (n = 2) / 24)

RMSEA (Root Mean Square Error of Approximation)

Estimate 0.146

SRMR (Standardized Root Mean Square Residual)

Value 0.165

Output Excerpts Model M1 (Continued)

	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
I ON				
FEMALE	1.877	0.357	5.261	0.000
MOTHED	1.926	0.203	9.497	0.000
HOMERES	1.608	0.113	14.181	0.000
S ON				
FEMALE	-0.236	0.125	-1.893	0.058
MOTHED	0.167	0.066	2.545	0.011
HOMERES	0.193	0.042	4.556	0.000
MATH7 ON				
MTHCRS7	1.042	0.157	6.644	0.000
MATH8 ON				
MTHCRS8	0.898	0.102	8.794	0.000
				143

Output Excerpts Model M1 (Continued)

	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
MATH9 ON				
MTHCRS9	0.929	0.087	10.638	0.000
MATH10 ON				
MTHCRS10	0.911	0.102	8.966	0.000
S WITH				
I	4.200	0.687	6.113	0.000
Intercepts				
MATH7	0.000	0.000	999.000	999.000
MATH8	0.000	0.000	999.000	999.000
MATH9	0.000	0.000	999.000	999.000
MATH10	0.000	0.000	999.000	999.000
I	50.063	0.263	190.158	0.000
S	4.202	0.096	43.621	0.000

Output Excerpts Model M1 (Continued)

	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
Residual Var	iances			
MATH7	18.640	1.341	13.895	0.000
MATH8	18.554	1.002	18.518	0.000
MATH9	16.672	1.010	16.501	0.000
MATH10	17.795	1.671	10.651	0.000
I	58.919	2.393	24.622	0.000
S	3.800	0.359	10.581	0.000

145

Output Excerpts Model M1 (Continued)

MODIFICATION INDICES Minimum M.I. value for printing the modification index 10.000 M.I. E.P.C. ON/BY Statements MATH 7 ON I 15.393 BY MATH7 0.014 ON S MATH7 16.813 BY MATH7 0.172 ON I MATH8 BY MATH8 11.067 -0.008 MATH8 ON S BY MATH8 15.769 -0.107 ON I 0.000 Ι BY S 999.000 146

		M.I.	E.P.C.	
ON St	atements			
I	ON MATH7	60.201	0.718	
I	ON MATH8	58.550	0.464	
I	ON MATH9	116.447	0.600	
I	ON MATH10	118.956	0.786	
I	ON MTHCRS7	582.970	5.844	
I	ON MTHCRS8	373.181	3.119	
I	ON MTHCRS9	475.187	2.540	
I	ON MTHCRS10	379.535	2.012	
S	ON MATH7	55.444	0.298	
S	ON MATH9	118.064	0.322	
S	ON MATH10	24.355	0.221	
S	ON MTHCRS7	203.710	1.334	
S	ON MTHCRS8	86.109	0.543	147

Output Excerpts Model M1 (Continued)

			M.I.	E.P.C.
S	ON	MTHCRS9	90.560	0.453
S	ON	MTHCRS10	118.478	0.559
MATH7	ON	MATH7	15.393	0.014
MATH7	ON	MATH8	17.359	0.013
MATH7	ON	MATH9	14.805	0.011
MATH7	ON	MATH10	18.991	0.012
MATH7	ON	MTHCRS8	48.865	0.873
MATH7	ON	MTHCRS9	63.490	0.676
MATH7	ON	MTHCRS10	22.160	0.337
MATH8	ON	MATH8	11.438	-0.007
MATH8	ON	MATH10	13.204	-0.007
MATH8	ON	MTHCRS7	82.739	1.467
MATH8	ON	MTHCRS9	12.743	0.321

Output Excerpts Model M1 (Continued)

		M.I.	E.P.C.
MATH9	ON MTHCRS7	26.183	0.776
MATH9	ON MTHCRS8	16.027	0.494
MATH9	ON MTHCRS10	69.480	0.781
MATH10	ON MTHCRS8	19.665	0.629
MATH10	ON MTHCRS9	48.678	0.911

149

Alternative Models With Time-Varying Covariates

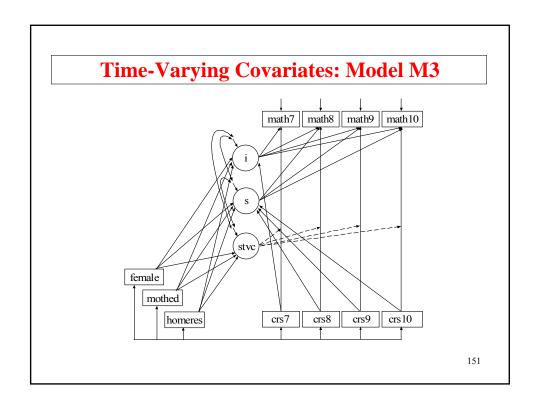
Model	Loglikelihood	<pre># of parameters</pre>	BIC
M1	-26,870	19	53,886
M2	-26,846	22	53,861
м3	-26,463	26	53,127

n = 2271 (using [y|x] approach)

M1: Fixed slopes for TVCs, varying across grade

M2: Random slope for TVCs, same across grade

 ${\tt M3:}~~{\tt M2}$ + i and s regressed on TVCs (see model diagram)



Input Excerpt Model M3

```
ANALYSIS: TYPE = RANDOM;

MODEL: i s | math7@0 math8@1 math9@2 math10@3;
stvc | math7 ON mthcrs7;
stvc | math8 ON mthcrs8;
stvc | math9 ON mthcrs9;
stvc | math10 ON mthcrs10;
stvc WITH i s;
i s stvc ON female mothed homeres;
i ON mthcrs7;
s ON mthcrs8-mthcrs10;
```

Output Excerpts Time-Varying Covariates: Model M3

		Estimate	S.E.	Est./S.E.	Two-Tailed
					P-Value
I	ON				
FEMALE		1.444	0.325	4.449	0.000
MOTHED		1.259	0.184	6.860	0.000
HOMERES	3	1.144	0.104	11.041	0.000
MTHCRS7	•	5.095	0.188	27.040	0.000
S	ON				
FEMALE		-0.395	0.123	-3.215	0.001
MOTHED		-0.018	0.064	-0.283	0.777
HOMERES	3	0.052	0.042	1.249	0.212
MTHCRS8	}	0.099	0.061	1.627	0.104
MTHCRS9)	0.254	0.061	4.188	0.000
MTHCRS1	.0	0.341	0.053	6.471	0.000
					153

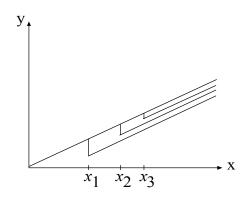
Output Excerpts: Model M3 (Continued)

		Estimate	S.E.	Est./S.E.	Two-Tailed
					P-Value
STVC	ON				
FEMAI	LΕ	-0.083	0.123	-0.677	0.499
MOTHE	ΣD	0.009	0.066	0.129	0.898
HOMEF	RES	0.070	0.041	1.710	0.087
STVC	WITH				
I		-0.078	0.453	-0.173	0.863
S		0.015	0.185	0.083	0.934
S	WITH				
I		0.480	0.630	0.762	0.446
Interce	epts				
MATH	7	0.000	0.000	999.000	999.000
	8	0.000	0.000	999.000	999.000

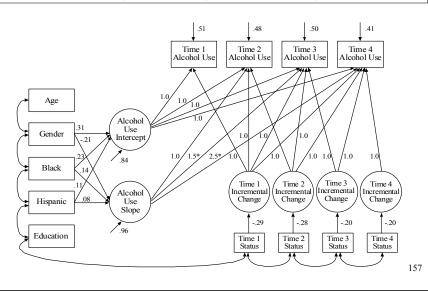
Output Excerpts: Model M3 (Continued)

	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
MATH9	0.000	0.000	999.000	999.000
MATH10	0.000	0.000	999.000	999.000
I	50.244	0.240	209.085	0.000
S	4.257	0.094	45.071	0.000
STVC	0.231	0.106	2.188	0.029
Residual Var	iances			
MATH7	18.968	1.304	14.541	0.000
MATH8	17.061	0.931	18.322	0.000
MATH9	15.624	0.936	16.690	0.000
MATH10	16.550	1.494	11.074	0.000
I	44.980	1.891	23.792	0.000
S	3.423	0.338	10.118	0.000
STVC	0.615	0.255	2.410	0.016
				155

Time-Varying Covariates Representing Status Change



Marital Status Change And Alcohol Use (Curran, Muthen, & Harford, 1998)



Computational Issues For Growth Models

- Decreasing variances of the observed variables over time may make the modeling more difficult
- Scale of observed variables keep on a similar scale
- Convergence often related to starting values or the type of model being estimated
 - Program stops because maximum number of iterations has been reached
 - If no negative residual variances, either increase the number of iterations or use the preliminary parameter estimates as starting values
 - If there are large negative residual variances, try better starting values
 - Program stops before the maximum number of iterations has been reached
 - Check if variables are on a similar scale
 - Try new starting values
- Starting values the most important parameters to give starting values to are residual variances and the intercept growth factor mean
- Convergence for models using the | symbol
 - Non-convergence may be caused by zero random slope variances which indicates that the slopes should be fixed rather than random

Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

159

Regressions Among Random Effects

Regressions Among Random Effects

Standard multilevel model (where $x_t = 0, 1, ..., T$):

Level 1:
$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}$$
, (1)

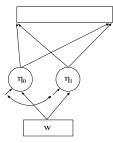
Level 1:
$$y_{ii} = \eta_{0i} + \eta_{1i} x_i + \varepsilon_{ii}$$
, (1)
Level 2a: $\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$, (2)
Level 2b: $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$. (3)

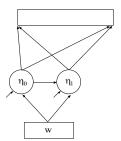
$$vel 2b: \eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}.$$
 (3)

A useful type of model extension is to replace (3) by the regression equation

$$\eta_{1i} = \alpha + \beta \, \eta_{0i} + \gamma \, w_i + \zeta_i. \tag{4}$$

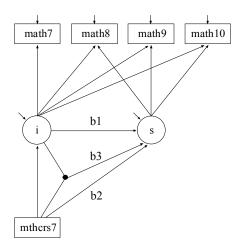
Example: Blood Pressure (Bloomqvist, 1977)





161

Growth Model With An Interaction



Input For A Growth Model With An Interaction Between A Latent And An Observed Variable

TITLE: growth model with an interaction between a latent and an

observed variable

DATA: FILE IS lsay.dat;

VARIABLE: NAMES ARE math7 math8 math9 math10 mthcrs7;

MISSING ARE ALL (9999);

CENTERING = GRANDMEAN (mthcrs7);

DEFINE: math7 = math7/10;

math8 = math8/10; math9 = math9/10;math10 = math10/10;

ANALYSIS: TYPE=RANDOM MISSING;

i s | math7@0 math8@1 math9@2 math10@3; MODEL:

[math7-math10] (1); !growth language defaults

[i@0 s]; !overridden

inter | i XWITH mthcrs7; s ON i mthcrs7 inter;

i ON mthcrs7;

SAMPSTAT STANDARDIZED TECH1 TECH8; OUTPUT:

163

Output Excerpts Growth Model With An Interaction Between A Latent And An Observed Variable

Tests Of Model Fit

Loglikelihood

H0 Value -10068.944

Information Criteria

Number of Free Parameters 12 Akaike (AIC) 20161.887 20234.365 Bayesian (BIC) Sample-Size Adjusted BIC (n* = (n + 2) / 24) 20196.236

Output Excerpts Growth Model With An Interaction Between A Latent And An Observed Variable (Continued)

Model Results

		Estimates	S.E.	Est./S.E.
I				
	MATH7	1.000	0.000	0.000
	MATH8	1.000	0.000	0.000
	MATH9	1.000	0.000	0.000
	MATH10	1.000	0.000	0.000
S				
	MATH7	0.000	0.000	0.000
	MATH8	1.000	0.000	0.000
	MATH9	2.000	0.000	0.000
	MATH10	3.000	0.000	0.000

165

Output Excerpts Growth Model With An Interaction Between A Latent And An Observed Variable (Continued)

		Estimates	S.E.	Est./S.E.
S	ON			
	I	0.087	0.012	7.023
	INTER	-0.047	0.006	-7.301
S	ON			
	MTHCRS7	0.045	0.013	3.555
I	ON			
	MTHCRS7	0.632	0.016	40.412

Output Excerpts Growth Model With An Interaction Between A Latent And An Observed Variable (Continued)

	Estimates	S.E.	Est./S.E.	
Intercepts				
MATH7	5.019	0.015	341.587	
MATH8	5.019	0.015	341.587	
MATH9	5.019	0.015	341.587	
MATH10	5.019	0.015	341.587	
I	0.000	0.000	0.000	
S	0.417	0.007	57.749	
Residual Varia	nces			
MATH7	0.184	0.011	16.117	
MATH8	0.178	0.009	20.109	
MATH9	0.164	0.009	18.369	
MATH10	0.173	0.015	11.509	
I	0.528	0.018	28.935	
S	0.037	0.004	10.027	

Interpreting The Effect Of The Interaction Between Initial Status Of Growth In Math Achievement And Course Taking In Grade 6

Model equation for slope s
 s = a + b1*i + b2*mthcrs7 + b3*i*mthcrs7 + e
 or, using a moderator function (Klein & Moosbrugger, 2000) where
 i moderates the influence of mthcrs7 on s
 s = a + b1*i + (b2 + b3*i)*mthcrs7 + e

Estimated model

Unstandardized s = 0.417 + 0.087*i + (0.045 - 0.047*i)*mthers7Standardized with respect to i and mthers7 s = 0.42 + 0.08*i + (0.04-0.04*i)*mthers7

Interpreting The Effect Of The Interaction Between Initial Status Of Growth In Math Achievement And Course Taking In Grade 6 (Continued)

• Interpretation of the standardized solution
At the mean of i, which is zero, the slope increases 0.04 for 1 SD increase in mthcrs7

At 1 SD below the mean of i, which is zero, the slope increases 0.08 for 1 SD increase in mthcrs7

At 1 SD above the mean of i, which is zero, the slope does not increase as a function of mthcrs7

169

Growth Modeling With Parallel Processes

Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

171

Multiple Processes

- · Parallel processes
- · Sequential processes

Growth Modeling With Parallel Processes

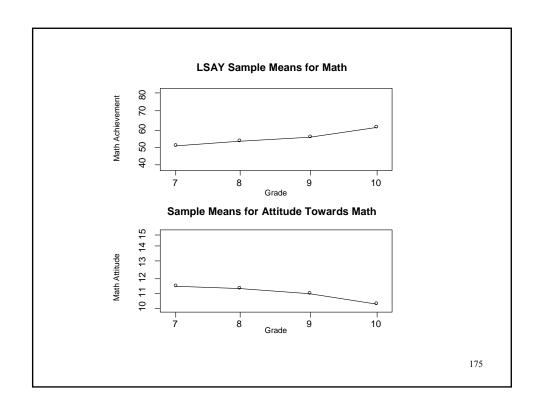
- Estimate a growth model for each process separately
 - Determine the shape of the growth curve
 - Fit model without covariates
 - · Modify the model
- Joint analysis of both processes
- Add covariates

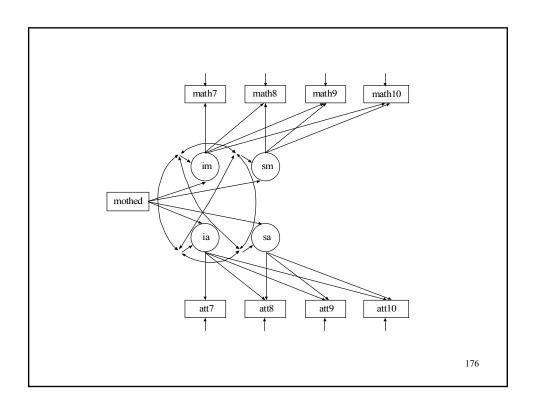
173

LSAY Data

The data come from the Longitudinal Study of American Youth (LSAY). Two cohorts were measured at four time points beginning in 1987. Cohort 1 was measured in Grades 10, 11, and 12. Cohort 2 was measured in Grades 7, 8, 9, and 10. Each cohort contains approximately 60 schools with approximately 60 students per school. The variables measured include math and science achievement items, math and science attitude measures, and background information from parents, teachers, and school principals. There are approximately 60 items per test with partial item overlap across grades—adaptive tests.

Data for the analysis include the younger females. The variables include math achievement and math attitudes from Grades 7, 8, 9, and 10 and mother's education.





Correlations Between Processes

- Through covariates
- Through growth factors (growth factor residuals)
- Through outcome residuals

177

Input For LSAY Parallel Process Growth Model

TITLE: LSAY For Younger Females With Listwise Deletion

Parallel Process Growth Model-Math Achievement and

Math Attitudes

DATA: FILE IS lsay.dat;

FORMAT IS 3f8 f8.4 8f8.2 3f8 2f8.2;

VARIABLE: NAMES ARE cohort id school weight math7 math8 math9

math10 att7 att8 att9 att10 gender mothed homeres

ses3 sesq3;

USEOBS = (gender EQ 1 AND cohort EQ 2);

MISSING = ALL (999);

USEVAR = math7-math10 att7-att10 mothed;

Input For LSAY Parallel Process Growth Model (Continued)

MODEL: im sm | math7@0 math8@1 math9 math10;

ia sa | att7@0 att8@1 att9@2 att10@3;

im-sa ON mothed;

OUTPUT: MODINDICES STANDARDIZED;

Alternative language:

im BY math7-math10@1;

sm BY math7@0 math8@1 math9 math10;

ia BY att7-att10@1;

sa BY att7@0 att8@1 att9@2 att10@3;

[math7-math10@0 att7-att10@0];

[im sm ia sa];

im-sa ON mothed;

179

Output Excerpts LSAY Parallel Process Growth Model

n = 910

Tests of Model Fit

Chi-Square Test of Model Fit

Value 43.161
Degrees of Freedom 24
P-Value .0095

RMSEA (Root Mean Square Error Of Approximation)

Estimate .030
90 Percent C.I. .015 .044
Probability RMSEA <= .05 .992

Output Excerpts LSAY Parallel Process Growth Model (Continued)

		Estimates	S.E. E	Sst./S.E.	Std	StdYX
IM	ON MOTHED	2.462	.280	8.798	.311	.303
SM	ON MOTHED	.145	.066	2.195	.132	.129
IA	ON MOTHED	.053	.086	.614	.025	.024
SA	ON MOTHED	.012	.035	.346	.017	.017

181

Output Excerpts LSAY Parallel Process Growth Model (Continued)

			Estimates	S.E.	Est./S.E.	Std	StdYX
SM		WITH					
	IM		3.032	.580	5.224	.350	.350
IA		WITH					
117		** 111					
	IM		4.733	.702	6.738	.282	.282
	SM		.544	.164	3.312	.235	.235
SA		WITH					
SA		MIIU					
	IM		276	.279	987	049	049
	SM		.130	.066	1.976	.168	.168
			5.67	115	4 012	270	270
	IA		567	.115	-4.913	378	378

Categorical Outcomes: Logistic And Probit Regression

183

Categorical Outcomes: Logit And Probit Regression

Probability varies as a function of x variables (here x_1, x_2)

$$P(u = 1 \mid x_1, x_2) = F[\beta_0 + \beta_1 x_1 + \beta_2 x_2], \tag{22}$$

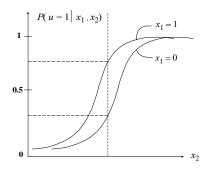
 $P(u=0 \mid x_1, x_2) = 1 - P[u=1 \mid x_1, x_2]$, where F[z] is either the standard normal $(\Phi[z])$ or logistic $(1/[1+e^{-z}])$ distribution function.

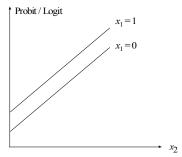
Example: Lung cancer and smoking among coal miners

- u lung cancer (u = 1) or not (u = 0)
- x_1 smoker $(x_1 = 1)$, non-smoker $(x_1 = 0)$
- x_2 years spent in coal mine

Categorical Outcomes: Logit And Probit Regression

$$P(u = 1 \mid x_1, x_2) = F \left[\beta_0 + \beta_1 x_1 + \beta_2 x_2 \right], \tag{22}$$





185

Interpreting Logit And Probit Coefficients

- Sign and significance
- Odds and odds ratios
- Probabilities

Logistic Regression And Log Odds

Odds
$$(u = 1 \mid x) = P(u = 1 \mid x) / P(u = 0 \mid x)$$

= $P(u = 1 \mid x) / (1 - P(u = 1 \mid x))$.

The logistic function

$$P(u = 1 \mid x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

gives a log odds linear in x,

$$logit = log \left[odds (u = 1 \mid x) \right] = log \left[P(u = 1 \mid x) / (1 - P(u = 1 \mid x)) \right]$$

$$= log \left[\frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}} / (1 - \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}) \right]$$

$$= log \left[\frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}} * \frac{1 + e^{-(\beta_0 + \beta_1 x)}}{e^{-(\beta_0 + \beta_1 x)}} \right]$$

$$= log \left[e^{(\beta_0 + \beta_1 x)} \right] = \beta_0 + \beta_1 x$$
187

Logistic Regression And Log Odds (Continued)

- $logit = log \ odds = \beta_0 + \beta_1 x$
- When x changes one unit, the logit (log odds) changes β_1 units
- When x changes one unit, the *odds* changes e^{β_1} units

Further Readings On Categorical Variable Analysis

- Agresti, A. (2002). <u>Categorical data analysis</u>. Second edition. New York: John Wiley & Sons.
- Agresti, A. (1996). <u>An introduction to categorical data analysis</u>. New York: Wiley.
- Hosmer, D. W. & Lemeshow, S. (2000). <u>Applied logistic regression</u>. Second edition. New York: John Wiley & Sons.
- Long, S. (1997). <u>Regression models for categorical and limited</u> <u>dependent variables</u>. Thousand Oaks: Sage.

189

Growth Models With Categorical Outcomes

Growth Model With Categorical Outcomes

- · Individual differences in development of probabilities over time
- Logistic model considers growth in terms of log odds (logits), e.g.

(1)
$$\log \left[\frac{P(u_{ii} = 1 \mid \eta_{0i}, \eta_{Ii}, \eta_{2i}, x_{ii})}{P(u_{ii} = 0 \mid \eta_{0i}, \eta_{Ii}, \eta_{2i}, x_{ii})} \right] = \eta_{0i} + \eta_{Ii} \cdot (x_{ii} - c) + \eta_{2i} \cdot (x_{ii} - c)^{2}$$

for a binary outcome using a quadratic model with centering at time c. The growth factors η_{0i} , η_{1i} , and η_{2i} are assumed multivariate normal given covariates,

- (2a) $\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$
- (2b) $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$
- (2c) $\eta_{2i} = \alpha_2 + \gamma_2 w_i + \zeta_{2i}$

191

Growth Models With Categorical Outcomes

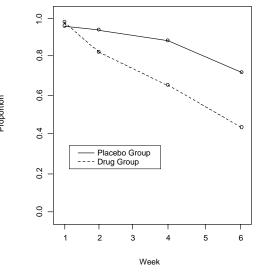
- Measurement invariance of the outcome over time is represented by the equality of thresholds over time (rather than intercepts)
- Thresholds not set to zero but held equal across timepoints—intercept factor mean value fixed at zero (parameterization 2)
- Differences in variances of the outcome over time are represented by allowing scale parameters to vary over time (WLS)

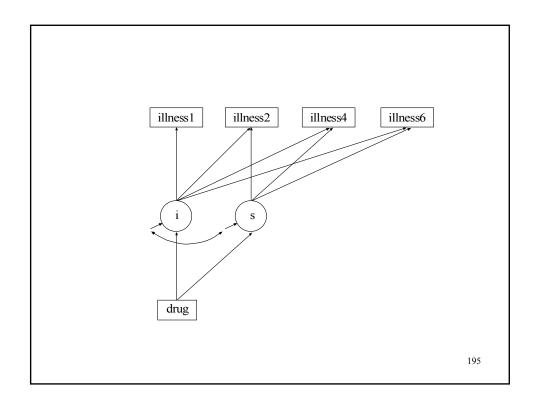
The NIMH Schizophrenia Collaborative Study

- The Data—The NIMH Schizophrenia Collaborative Study (Schizophrenia Data)
 - A group of 64 patients using a placebo and 249 patients on a drug for schizophrenia measured at baseline and at weeks one through six
 - Variables—severity of illness, background variables, and treatment variable
- Data for the analysis—severity of illness at weeks one, two, four, and six and treatment

193

Schizophrenia Data: Sample Proportions





Input For Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group

TITLE: Growth model on schizophrenia data

DATA: FILE = SCHIZ.DAT; FORMAT = 5F1;

VARIABLE: NAMES = illness1 illness2 illness4 illness6 drug;

CATEGORICAL = illness1-illness6;

USEV = illness1-illness6;
USEOBS = drug EQ 1;

ANALYSIS: ESTIMATOR = ML;

MODEL: i s | illness1@0 illness2@1 illness4@3 illness6@5;

OUTPUT: TECH1 TECH10;

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group

TEST OF MODEL FIT

Loglikelihood

HO Value -405.068

Information Criteria

Number of Free Parameters 5
Akaike (AIC) 820.136
Bayesian (BIC) 837.724
Sample-Size Adjusted BIC 821.873

(n* = (n + 2) / 24)

197

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)

 ${\tt Chi-Square}\ {\tt Test}$ of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes

Pearson Chi-Square

Value 49.923
Degrees of Freedom 10
P-Value 0.0000

Likelihood Ratio Chi-Square

Value 42.960 Degrees of Freedom 10 P-Value 0.0000

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)

TECHNICAL 10 OUTPUT

MODEL FIT INFORMATION FOR THE LATENT CLASS INDICATOR MODEL PART

RESPONSE PATTERNS

No.	Pattern	No.	Pattern	No.	Pattern	No.	Pattern
1	1001	2	1000	3	0000	4	1111
5	1110	6	1010	7	1100	8	0011
9	1011	10	0111	11	1101		

199

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)

Response	Freq	uency	Standardized	Chi-Square	Contribution
Pattern	Observed	Estimated	Residual	Pearson	Loglikelihood
			(z-score)		
1	4.00	0.59	4.43	19.55	15.26
2	24.00	12.89	3.18	9.57	29.83
3	2.00	4.89	-1.32	1.71	-3.57
4	97.00	99.00	-0.26	0.04	-3.95
5	69.00	59.53	1.41	1.51	20.38
6	2.00	2.78	-0.47	0.22	-1.32
7	43.00	54.42	-1.75	2.40	-20.26
8	1.00	0.47	0.78	0.60	1.51
9	5.00	1.90	2.26	5.07	9.69
10	1.00	1.84	-0.62	0.38	-1.22
11	1.00	5.47	-1.93	3.65	-3.40 ₂₀₀

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)

BIVARIATE MODEL FIT INFORMATION Estimated Probabilities

				Standardized		
Variable	Variable	н1	н0	Residual		
				(z-score)		
ILLNESS1	ILLNESS2			_		
Category 1	Category 1	0.012	0.025	-1.295		
Category 1	Category 2	0.004	0.025	-2.127		
Category 2	Category 1	0.141	0.073	4.103		
Category 2	Category 2	0.843	0.877	-1.623		
Bivariate Pearson Chi-Square 21.979						
Bivariate Lo	og-Likelihood C	hi-Square		21.430		

201

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)

				Standardized		
Variable	Variable	H1	н0	Residual		
				(z-score)		
				_		
ILLNESS1	ILLNESS4					
Category 1	Category 1	0.008	0.034	-2.271		
Category 1	Category 2	0.008	0.016	-0.977		
Category 2	Category 1	0.289	0.295	-0.191		
Category 2	Category 2	0.695	0.655	1.307		
Bivariate Pearson Chi-Square 6.533						
Bivariate Lo	og-Likelihood C	hi-Square		8.977		

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)

				Standardized				
Variable	Variable	H1	н0	Residual				
				(z-score)				
ILLNESS1	ILLNESS6							
Category 1	Category 1	0.008	0.038	-2.459				
Category 1	Category 2	0.008	0.012	-0.599				
Category 2	Category 1	0.554	0.521	1.063				
Category 2	Category 2	0.430	0.430	0.006				
Bivariate Pe	Bivariate Pearson Chi-Square							
Bivariate Lo	Bivariate Log-Likelihood Chi-Square							

203

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)

					Standardized		
Variabl	.e	Variable	н1	н0	Residual		
					(z-score)		
					_		
ILLNESS2		ILLNESS4					
Category	, 1	Category 1	0.120	0.075	2.722		
Category	, 1	Category 2	0.032	0.023	0.996		
Category	, 2	Category 1	0.177	0.254	-2.796		
Category	7 2	Category 2	0.671	0.648	0.735		
Bivariat	Bivariate Pearson Chi-Square 13.848						
Bivariat	e Lo	og-Likelihood C	hi-Square		13.361		

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)

				Standardized					
Variable	Variable	н1	н0	Residual					
				(z-score)					
ILLNESS2	ILLNESS6								
Category 1	Category 1	0.112	0.085	1.578					
Category 1	Category 2	0.040	0.013	3.745					
Category 2	Category 1	0.450	0.474	-0.754					
Category 2	Category 2	0.398	0.429	-0.988					
Bivariate P	Bivariate Pearson Chi-Square								
Bivariate L	og-Likelihood C	Bivariate Log-Likelihood Chi-Square							

205

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)

Variable	Variable	н1	н0	Standardized Residual (z-score)			
ILLNESS4	ILLNESS6						
Category 1	Category 1	0.277	0.302	-0.841			
Category 1	Category 2	0.20	0.027	-0.697			
Category 2	Category 1	0.285	0.257	1.027			
Category 2	Category 2	0.418	0.414	0.103			
Bivariate Pe	earson Chi-Squa	re		1.757			
Bivariate Lo	Bivariate Log-Likelihood Chi-Square						
Overall Biva	Overall Bivariate Pearson Chi-Square						
Overall Biva	ariate Log-Like	lihood Chi-S	quare	66.920 206			

Input For Schizophrenia Data Growth Model For Binary Outcomes With A Treatment Variable

TITLE: Schizophrenia Data

Growth Model for Binary Outcomes

With a Treatment Variable and Scaling Factors

FILE IS schiz.dat; FORMAT IS 5F1; DATA:

VARIABLE: NAMES ARE illness1 illness2 illness4 illness6

drug; ! 0=placebo (n=64) 1=drug (n=249)

CATEGORICAL ARE illness1-illness6;

ANALYSIS: ESTIMATOR = ML;

!ESTIMATOR = WLSMV;

i s | illness1@0 illness2@1 illness4@3 MODEL:

illness6@5;

i s ON drug;

Alternative language:

i BY illness1-illness6@1; MODEL:

> s BY illness1@0 illness2@1 illness4@3 illness6@5; [illness1\$1 illness2\$1 illness4\$1 illness6\$1] (1);

[s];

i s ON drug;

!{illness1@1 illness2-illness6};

207

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes With A Treatment Variable

n = 313

Tests Of Model Fit

Loglikelihood HO Value

-486.337

Information Criteria Number of Free Parameters

986.674

Akaike (AIC) Bayesian (BIC) Sample-Size Adjusted BIC 990.696

1012.898

(n* = (n + 2) / 24)

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes With A Treatment Variable (Continued)

Sel	lected Estimates					
		Estimates	S.E.	Est./S.E.	Std	StdYX
I	ON					
	DRUG	-0.429	0.825	-0.521	-0.156	-0.063
S	ON					
	DRUG	-0.651	0.259	-2.512	-0.684	-0.276
I	WITH					
	S	-0.925	0.621	-1.489	-0.353	-0.353
Int	ercepts					
	I	0.000	0.000	0.000	0.000	0.000
	S	-0.555	0.255	-2.182	-0.583	-0.583
Thr	esholds					
	ILLNESS1\$1	-5.706	1.047	-5.451		
	ILLNESS2\$1	-5.706	1.047	-5.451		
	ILLNESS4\$1	-5.706	1.047	-5.451		
	ILLNESS5\$1	-5.706	1.047	-5.451		
Res	idual Variances					
	I	7.543	3.213	2.348	0.996	0.996
	S	0.838	0.343	2.440	0.924	0.924
						209

Further Readings On Growth Analysis With Categorical Outcomes

- Fitzmaurice, G.M., Laird, N.M. & Ware, J.H. (2004). Applied longitudinal analysis. New York: Wiley.
- Gibbons, R.D. & Hedeker, D. (1997). Random effects probit and logistic regression models for three-level data. <u>Biometrics</u>, 53, 1527-1537.
- Hedeker, D. & Gibbons, R.D. (1994). A random-effects ordinal regression model for multilevel analysis. <u>Biometrics</u>, 50, 933-944.
- Muthén, B. (1996). Growth modeling with binary responses. In A. V. Eye, & C. Clogg (Eds.), <u>Categorical variables in developmental research: methods of analysis</u> (pp. 37-54). San Diego, CA: Academic Press. (#64)
- Muthén, B. & Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: Multiple-group and growth modeling in Mplus. Mplus Web Note #4 (www.statmodel.com).

References

(To request a Muthén paper, please email bmuthen@ucla.edu.)

Analysis With Longitudinal Data

Introductory

- Bollen, K.A. & Curran, P.J. (2006). <u>Latent curve models.</u> A structural equation perspective. New York: Wiley.
- Collins, L.M. & Sayer, A. (Eds.) (2001). New methods for the analysis of change. Washington, D.C.: American Psychological Association.
- Curran, P.J. & Bollen, K.A. (2001). The best of both worlds: Combining autoregressive and latent curve models. In Collins, L.M. & Sayer, A.G. (Eds.) New methods for the analysis of change (pp. 105-136). Washington, DC: American Psychological Association.
- Duncan, T., Duncan S. & Strycker, L. (2006). <u>An introduction to latent variable growth curve modeling</u>. Second edition. Lawrence Erlbaum: New York.
- Goldstein, H. (2003). <u>Multilevel statistical models</u>. Third edition. London: Edward Arnold.

211

- Jennrich, R.I. & Schluchter, M.D. (1986). Unbalanced repeated-measures models with structured covariance matrices. <u>Biometrics</u>, 42, 805-820.
- Laird, N.M., & Ware, J.H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974.
- Lindstrom, M.J. & Bates, D.M. (1988). Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. <u>Journal of the American Statistical Association</u>, 83, 1014-1022.
- Littell, R., Milliken, G.A., Stroup, W.W., & Wolfinger, R.D. (1996). SAS system for mixed models. Cary NC: SAS Institute.
- McArdle, J.J. & Epstein, D. (1987). Latent growth curves within developmental structural equation models. <u>Child Development</u>, 58, 110-133.
- McArdle, J.J. & Hamagami, F. (2001). Latent differences score structural models for linear dynamic analyses with incomplete longitudinal data. In Collins, L.M. & Sayer, A. G. (Eds.), New methods for the analysis of change (pp. 137-175). Washington, D.C.: American Psychological Association.
- Meredith, W. & Tisak, J. (1990). Latent curve analysis <u>Psychometrika</u>, 55, 107-122.

References (Continued)

- Muthén, B. (1991). Analysis of longitudinal data using latent variable models with varying parameters. In L. Collins & J. Horn (Eds.), <u>Best methods for the analysis of change</u>. Recent advances, unanswered questions, <u>future directions</u> (pp. 1-17). Washington D.C.: American Psychological Association.
- Muthén, B. (2000). Methodological issues in random coefficient growth modeling using a latent variable framework: Applications to the development of heavy drinking. In <u>Multivariate applications in substance use research</u>, J. Rose, L. Chassin, C. Presson & J. Sherman (eds.), Hillsdale, N.J.: Erlbaum, pp. 113-140.
- Muthén, B. & Khoo, S.T. (1998). Longitudinal studies of achievement growth using latent variable modeling. <u>Learning and Individual Differences</u>. Special issue: latent growth curve analysis, 10, 73-101.
- Muthén, B. & Muthén, L. (2000). The development of heavy drinking and alcohol-related problems from ages 18 to 37 in a U.S. national sample. Journal of Studies on Alcohol, 61, 290-300.
- Muthén, B. & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. <u>Biometrics</u>, 55, 463-469.

213

- Rao, C.R. (1958). Some statistical models for comparison of growth curves. Biometrics, 14, 1-17.
- Raudenbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u>
 <u>Applications and data analysis methods</u>. Second edition. Newbury Park, CA: Sage Publications.
- Singer, J.D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. <u>Journal of Educational and Behavioral Statistics</u>, 23, 323-355.
- Singer, J.D. & Willett, J.B. (2003). <u>Applied longitudinal data analysis.</u> <u>Modeling change and event occurrence</u>. New York, NY: Oxford University Press.
- Snijders, T. & Bosker, R. (1999). <u>Multilevel analysis: An introduction to basic and advanced multilevel modeling</u>. Thousand Oakes, CA: Sage Publications.
- Tucker, L.R. (1958). Determination of parameters of a functional relation by factor analysis. <u>Psychometrika</u>, 23, 19-23.

References (Continued)

Advanced

- Albert, P.S. & Shih, J.H. (2003). Modeling tumor growth with random onset. <u>Biometrics</u>, 59, 897-906.
- Brown, C.H. & Liao, J. (1999). Principles for designing randomized preventive trials in mental health: An emerging development epidemiologic perspective. <u>American Journal of Community Psychology</u>, special issue on prevention science, 27, 673-709.
- Brown, C.H., Indurkhya, A. & Kellam, S.K. (2000). Power calculations for data missing by design: applications to a follow-up study of lead exposure and attention. Journal of the American Statistical Association, 95, 383-395.
- Collins, L.M. & Sayer, A. (Eds.), <u>New methods for the analysis of change</u>. Washington, D.C.: American Psychological Association.
- Curran, P.J., Muthén, B., & Harford, T.C. (1998). The influence of changes in marital status on developmental trajectories of alcohol use in young adults. <u>Journal of Studies on Alcohol</u>, 59, 647-658.
- Duan, N., Manning, W.G., Morris, C.N. & Newhouse, J.P. (1983). A comparison of alternative models for the demand for medical care. <u>Journal of Business and Economic Statistics</u>, 1, 115-126.

- Ferrer, E. & McArdle, J.J. (2004). Alternative structural models for multivariate longitudinal data analysis. <u>Structural Equation Modeling</u>, 10, 493-524.
- Fitzmaurice, G., Davidian, M., Verbeke, G. & Molenberghs, G. (2008). Longitudinal Data Analysis. Chapman & Hall/CRC Press.
- Klein, A. & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. <u>Psychometrika</u>, 65, 457-474.
- Khoo, S.T. & Muthén, B. (2000). Longitudinal data on families: Growth modeling alternatives. In <u>Multivariate applications in substance use</u> <u>research</u>, J. Rose, L. Chassin, C. Presson & J. Sherman (eds), Hillsdale, N.J.: Erlbaum, pp. 43-78.
- Miyazaki, Y. & Raudenbush, S.W. (2000). A test for linkage of multiple cohorts from an accelerated longitudinal design. <u>Psychological Methods</u>, 5, 44-63.
- Moerbeek, M., Breukelen, G.J.P. & Berger, M.P.F. (2000). Design issues for experiments in multilevel populations. <u>Journal of Educational and Behavioral Statistics</u>, 25, 271-284.

References (Continued)

- Muthén, B. (1996). Growth modeling with binary responses. In A.V. Eye & C. Clogg (eds), <u>Categorical variables in developmental research: methods of analysis</u> (pp. 37-54). San Diego, CA: Academic Press.
- Muthén, B. (1997). Latent variable modeling with longitudinal and multilevel data. In A. Raftery (ed), <u>Sociological Methodology</u> (pp. 453-380). Boston: Blackwell Publishers.
- Muthén, B. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (ed.), <u>Handbook of quantitative methodology for the social sciences</u> (pp. 345-368). Newbury Park, CA: Sage Publications.
- Muthén, B. & Curran, P. (1997). General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. <u>Psychological Methods</u>, 2, 371-402.
- Muthén, B. & Muthén, L. (2000). The development of heavy drinking and alcohol-related problems from ages 18 to 37 in a U.S. national sample. <u>Journal of Studies on Alcohol</u>, 61, 290-300.

217

- Muthén, L.K. and Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. <u>Structural Equation Modeling</u>, 4, 599-620.
- Olsen, M.K. & Schafer, J.L. (2001). A two-part random effects model for semicontinuous longitudinal data. <u>Journal of the American Statistical Association</u>, 96, 730-745.
- Raudenbush, S.W. (1997). Statistical analysis and optimal design for cluster randomized trials. <u>Psychological Methods</u>, 2, 173-185.
- Raudenbush, S.W. & Liu, X. (2000). Statistical power and optimal design for multisite randomized trials. Psychological Methods, 5, 199-213.
- Roeder, K., Lynch, K.G., & Nagin, D.S. (1999). Modeling uncertainty in latent class membership: A case study in criminology. <u>Journal of the American Statistical Association</u>, 94, 766-776.
- Satorra, A. & Saris, W. (1985). Power of the likelihood ratio test in covariance structure analysis. <u>Psychometrika</u>, 51, 83-90.