## Using Mplus To Investigate Direct Effects in Latent Class Analysis

Bengt Muthén Professor Emeritus, UCLA

Mplus: https://www.statmodel.com

bmuthen@statmodel.com

Tihomir Asparouhov Mplus

Mplus Web Talks: No. 9 July 2025

We thank Thuy Nguyen and Noah Hastings for expert assistance.

#### Outline

- Background: 3-4
- Antisocial behavior example: 5-7
- Searching for direct effects: 8-26
  - Different approaches, Penalized SEM (PSEM): 8-14
  - ASB example (reduced version): 15-25
    - Latent classes and C ON X results: 23-25
- Evaluating direct effects: 26-37
  - Direct effects results, calculator: 26-37
- Class-varying direct effects: 38-43
  - PSEM DIFF priors, ALIGN option: 38-43
- Multistep analysis with direct effects and distal outcomes: 44-54
- Recap and further research: 55-57

#### Direct Effects from Covariates to Latent Class Indicators



- Two direct effects: From x1 to u2 and from x3 to u5
- A direct effect implies that for a given class, the probability of u is not the same for different values of x
  - The measurement model parameters are not the same for different individuals - referred to as measurement non-invariance, differential item functioning, item bias
  - For example, with a binary x describing two groups, the measurement instrument does not work the same for the groups

### Direct Effects: Analysis Impact



- Consequences of ignoring direct effects:
  - Violation of conditional independence given C
    - Class enumeration for measurement model impact likely small
  - Distorted model estimates:
    - Class probabilities typically small impact (with or without X)
    - C ON X large impact (direct effects are forced to go through only C (Asparouhov & Muthén, 2014; Web Note 15)
    - Y ON X some impact (when C ON X changes, the indirect effects of X on Y via C change and therefore Y ON X)
- Multistep analysis
  - Let the measurement model include the X part and its direct effects on the latent class indicators, then add distal outcomes

#### Outline

- Background
- Antisocial behavior example
- Searching for direct effects
  - Different approaches, Penalized SEM (PSEM)
  - ASB example (reduced version)
    - Latent classes and C ON X results
- Evaluating direct effects
  - Direct effects results, calculator
- Class-varying direct effects
  - PSEM DIFF priors, ALIGN option
- Multistep analysis with direct effects and distal outcomes
- Recap and further research

### Direct Effects: Antisocial Behavior Example

#### • ASB data:

- 17 antisocial behavior items collected in the 1980 National Longitudinal Survey of Youth for respondents between the ages of 16 and 23 together with a set of background variables
- The ASB items assessed the frequency of various behaviors during the past year, here dichotomized as 0 vs > 0 times
- A sample of 7,326 respondents has complete data on the antisocial behavior items and the background variables

#### • ASB analyses:

- SEM (MIMIC) 4-factor analysis (Muthén, 2025)
- Latent class analysis from Mplus Short Course Topic 5, slides 91-118
  - 4-class and 5-class LCA of the 17 latent class indicators
  - 5 classes: High, property offense, drug, person offense, normative (low, except for pot)
  - 4 classes used in this talk
- ASB is a general population survey so that considerable heterogeneity among individuals can be expected - direct effects
- 17U, 11X version and 7U, 7X reduced version with 2 distals

## Input for ASB Analysis with 17 U's and 11 X's C ON X but No Direct Effects

TITLE: ANALYSIS: TYPE = MIXTURE;

DATA: FILE = asbfree.dat; STARTS = 400 100; FORMAT = 34X 54F2.0; PROCESSORS = 12;

VARIABLE: NAMES = property fight shoplift lt50 MODEL: %OVERALL%

gt50 force threat injure pot drug c ON sex-abuse; soldpot solddrug con auto bldg goods

gambling dsm1-dsm22 sex black hisp single divorce dropout college onset f1 f2 f3 age94 cohort dep abuse:

USEVARIABLES = property-gambling sex black hisp single divorce dropout college onset age94 dep abuse;

CATEGORICAL = property-gambling; CLASSES = c(4);

• 187 possible direct effects - which ones are important to include?

ESTIMATOR = ML:

#### Outline

- Background
- Antisocial behavior example
- Searching for direct effects
  - Different approaches, Penalized SEM (PSEM)
  - ASB example (reduced version)
    - Latent classes and C ON X results
- Evaluating direct effects
  - Direct effects results, calculator
- Class-varying direct effects
  - PSEM DIFF priors, ALIGN option
- Multistep analysis with direct effects and distal outcomes
- Recap and further research

### Approaches for Searching for Direct Effects

- Analysis with latent class variable regressed on all covariates and in addition:
  - Each latent class indicator regressed on all covariates or All latent class indicators regressed on one covariate
    - Pro: Each analysis easily converges
    - Con: Several analyses one for each latent class indicator/covariate
  - All latent class indicators regressed on all covariates
    - Pro: Single analysis
    - Con: May not converge or be empirically identified
       Relies on higher-order moments (cf. the non-identified case of MIMIC with direct effects for continuous factor indicators)
  - All latent class indicators regressed on all covariates using PSEM regularization, Asparouhov & Muthén (2024).
    - PSEM for mixtures: Asparouhov & Muthén (2025)
      - Pro: Leads to parsimonious models, i.e., fewer significant direct effects, converges more easily for a small-enough prior variance
      - Con: Prior variance choice calls for more than one analysis

### PSEM Applied to Finding Direct Effects in LCA

- PSEM: Penalized structural equation modeling
  - ML estimation using priors
- PSEM uses priors for two purposes:
  - Estimating models that are non-identified without the priors
    - Similar to BSEM for Bayes estimation
  - Simplifying models that are identified but can be fitted practically as well with fewer parameters
    - Reguralized analysis (RegSEM). Common prior: LASSO
    - Example: Direct effects in LCA
- Including all direct effects, PSEM uses the LASSO or ALF (Alignment Loss Function) mean and variance priors for the directs effects, maximizing: fit function = log likelihood + penalty
  - where the penalty is larger for smaller variance. Ex: ALF(0, 0.01)
    - The penalty (which is negative) penalizes models with many direct effects - favors a parsimonious model
      - Variance = 0: Same as non-PSEM analysis with no direct effects
      - Variance = ∞: Same as non-PSEM analysis with all direct effects
    - Goal: use a variance that makes the logL practically as good as with all direct effects included - but with fewer direct effects

### Input for PSEM with ALF(0, 0.5): 17 U's, 11 X's

TITLE: 17 U's, 11 X's,

PSEM ALF(0.5)

Model 6 on slide 12

DATA: FILE = asbfree.dat:

VARIABLE: NAMES = property fight shoplift 1t50

gt50 force threat injure pot drug soldpot solddrug con auto bldg goods gambling dsm1-dsm22 sex black hisp single divorce dropout college onset f1 f2 f3

age94 cohort dep abuse;

USEVAR = property-gambling sex black hisp single divorce dropout

CATEGORICAL = property-gambling;

CLASSES = c(4);

college onset age94 dep abuse;

ANALYSIS: TYPE = MIXTURE:

ESTIMATOR - ML:  $STARTS = 800\ 200$ 

PROCESSORS = 12:

MODEL: %OVERALL%

> c ON sex-abuse: ! Direct effects:

property-gambling ON

sex-abuse (d1-d187);

MODEL PRIOR:  $d1-d187\sim ALF(0,0.5);$ 

OUTPUT: TECH1 TECH3 TECH10

SVALUES:

### ASB Log Likelihoods: 17 Us, 11 Xs (187 Possible Effects)



#### ASB Log Likelihood and BIC Values for 17 Us, 11 Xs

| Model                | # par's | logL        | BIC    | #sig. dir. | logL drop |
|----------------------|---------|-------------|--------|------------|-----------|
| 1. No directs        | 104     | -40,088.255 | 81,102 | 0          |           |
| 2. All directs       | 291     | -39,278.105 | 81,146 | 97         |           |
| 3. 97 sig. directs   | 201     | -39,388.584 | 80,466 | 97         |           |
| 4. PSEM (0.05)       | NA      | -39,564.585 | NA     | 10         |           |
| 5. PSEM (0.1)        | NA      | -39,384.232 | NA     | 32         |           |
| 6. <b>PSEM (0.5)</b> | NA      | -39,295.792 | NA     | 42         |           |
| 7. <b>PSEM (1.0)</b> | NA      | -39,282.084 | NA     | 42         |           |
| 8. PSEM (1.5)        | NA      | -39,279.840 | NA     | 53         |           |
| 9. 4: 10 directs     | 114     | -39,855.419 | 80,725 | 10         | 1.2 %     |
| 10. 5: 32 directs    | 136     | -39,531.593 | 80,273 | 32         | 0.4 %     |
| 11. 6: 42 directs    | 146     | -39,466.120 | 80,232 | 41         | 0.2 %     |
| 12. 7: 42* directs   | 146     | -39,485.213 | 80,270 | 41         | 0.2 %     |
| 13. 8: 53 directs    | 157     | -39,483.475 | 80,364 | 52         | 0.2 %     |

logL drop is computed as the percentage 100 \* (logL - logL<sub>Model 3</sub>)/logL<sub>Model 3</sub>

<sup>\*</sup> The 42 direct effects are not all the same in models 11 and 12

# Discussion of ASB Models for 17 Us, 11 Xs: Why is 42 for PSEM(0.5) bolded in the Graph of Slide 12?

- PSEM(0.5) model 6 has a lower (worse) logL than PSEM(1.0) model 7
- Both models show 42 significant direct effects but not the same ones
- The non-PSEM models 11 and 12 are based on PSEM models 6 and 7
  - Freeing the 42 effects results in a higher logL for model 11 than for model 12 despite model 6 having a lower logL than model 7
- Models 11 and 12 have the same
  - Number of parameters
  - Number of significant direct effects
  - LogL 0.2 % drop
- Model 11 is chosen
  - Better logL and BIC than model 12
  - Best BIC of all the models

#### Outline

- Background
- Antisocial behavior example
- Searching for direct effects
  - Different approaches, Penalized SEM (PSEM)
  - ASB example (reduced version)
    - Latent classes and C ON X results
- Evaluating direct effects
  - Direct effects results, calculator
- Class-varying direct effects
  - PSEM DIFF priors, ALIGN option
- Multistep analysis with direct effects and distal outcomes
- Recap and further research

## ASB Inputs for the Reduced Set of 7 U's, 7 X's DATA and VARIABLE Commands for All Runs

TITLE:

DATA: FILE = asbfree.dat;

VARIABLE: NAMES = property fight shoplift lt50 gt50 force threat injure pot drug soldpot solddrug con auto

bldg goods gambling dsm1-dsm22 sex black hisp single divorce dropout college onset f1 f2 f3 age94

cohort dep abuse;

USEVARIABLES = property fight shoplift threat

pot drug goods

sex black hisp single divorce dropout age94;

CATEGORICAL = property-goods;

CLASSES = c(4);

### All Latent Class Indicators Regressed on All Covariates

#### All U's on all X's, PSEM (1.0)

All U's on all X's

ANALYSIS: TYPE = MIXTURE;

ANALYSIS: TYPE = MIXTURE: ESTIMATOR = ML:

YSIS: TYPE = MIXTURE; ESTIMATOR = ML; STARTS = 400 100;

 $STARTS = 400\ 100;$  PROCESSORS = 8;

PROCESSORS = 8;

MODEL: %OVERALL% C ON sex-age94

%OVERALL% c ON sex-age94; c ON sex-age94; property-goods ON

property-goods ON sex-age94; sex-age94 (d1-d49);

OUTPUT: TECH10 SVALUES; OUTPUT: TECH10 SVALUES;

MODEL PRIOR:  $d1-d49 \sim ALF(0,1.0)$ ;

! Computing time: 1 minute

! (17U-11X run takes 11 minutes)

### ASB Log Likelihoods: 7 Us, 7 Xs (49 Possible Effects)



### ASB Log Likelihood and BIC Values for 7 Us, 7 Xs

| Model                | # par's | logL        | BIC    | #sig. dir. | logL drop |
|----------------------|---------|-------------|--------|------------|-----------|
| 1. No directs        | 52      | -23,930.193 | 48,323 | 0          |           |
| 2. All directs       | 101     | -23,653.011 | 48,205 | 22         |           |
| 3. 22 sig. directs   | 74      | -23,670.477 | 47,999 | 22         |           |
| 4. PSEM (0.1)        | NA      | -23,680.907 | NA     | 10         |           |
| 5. PSEM (0.5)        | NA      | -23,656.804 | NA     | 19         |           |
| 6. <b>PSEM (1.0)</b> | NA      | -23,654.305 | NA     | 15         |           |
| 7. PSEM (1.5)        | NA      | -23,653.627 | NA     | 15*        |           |
| 8. 4: 10 directs     | 62      | -23,774.174 | 48,100 | 10         | 0.4 %     |
| 9. 5: 19 directs     | 71      | -23,683.270 | 47,998 | 19         | 0.1 %     |
| 10. 6: 15 directs    | 67      | -23,715.072 | 48,026 | 14         | 0.2 %     |

- logL drop is computed as the percentage  $100 * (logL logL_{Model 3})/logL_{Model 3}$
- \* The 15 direct effects are the same in models 6 and 7

## Discussion of ASB Models for 7 Us, 7 Xs: Why is 15 for PSEM(1.0) bolded in the Graph of Slide 18?

- PSEM(1.0) model 6 and PSEM(1.5) model 7 have the same number of significant direct effects
  - It doesn't matter that model 7 has a higher logL because both models lead to the non-PSEM model 10
- Model 10 is chosen because it has a small 0.2 % drop in logL, is relatively parsimonious, and is close to the best BIC
  - Model 9 is a strong contender with a smaller 0.1 % drop in logL, the best BIC, but 19 instead of 15 direct effects to consider
  - Model 3 is also a contender with almost the same BIC as model
     9, but has 22 instead of 15 direct effects
    - Are the extra direct effects of model 3 and model 9 important? <sup>1</sup>
- Class-specific direct effects can be explored based on model 10 using PSEM DIFF priors

<sup>&</sup>lt;sup>1</sup>For model 9, Fight on Dropout is the only noteworthy direct effect beyond those of model 10 (probability difference 0.14 for non-hispanic males at average Age94)

#### Technical Notes

- # parameters = NA because the RegSEM version of PSEM doesn't have a good way of counting the parameters:
  - Parameters can have tiny prior variances with parameters estimated close to 0, and contributing nothing to fit
    - These are not real parameters and shouldn't be counted, but the precise removal of these parameters is subjective since it will need a definition of how small is really 0
- Alternative log likelihood drop % definitions:
  - PSEM models: (L L(M2)) / (L(M1) L(M2))
    - The logic is that the H1 model here is M2 and baseline is M1
  - Models based on PSEM: (L L(M3)) / (L(M1) L(M3))
    - The logic is that the H1 model here is M3 and baseline is M1
  - % drop relative to the total possible drop: Cut-off  $\leq 5\%$ ?
  - For the full set of variables, model 11 does best same model choice as on slides 13-14
  - For the reduced set of variables, model 9 does best with 19 direct effects (5% drop), whereas slides 18-20 chose model 10 with 15 direct effects (17% drop) are the extra direct effects important?

#### Outline

- Background
- Antisocial behavior example
- Searching for direct effects
  - Different approaches, Penalized SEM (PSEM)
  - ASB example (reduced version)
    - Latent classes and C ON X results
- Evaluating direct effects
  - Direct effects results, calculator
- Class-varying direct effects
  - PSEM DIFF priors, ALIGN option
- Multistep analysis with direct effects and distal outcomes
- Recap and further research

## Interpreting the 4 Latent Classes for Model 10 with 15 Direct Effects

- Classes (probability):
  - Fight/Threat (0.321), High (0.130), Drugs (0.172), Low (0.377)
- The output section RESULTS IN PROBABILITY SCALE provides convenient interpretation, especially with binary latent class indicators
  - Probability of being in the high category of the indicator:

| Variable | Class 1 | Class 2 | Class 3 | Class 4 |
|----------|---------|---------|---------|---------|
| PROPERTY | 0.18    | 0.72    | 0.14    | 0.03    |
| FIGHT    | 0.49    | 0.73    | 0.12    | 0.02    |
| SHOPLIFT | 0.22    | 0.79    | 0.39    | 0.07    |
| THREAT   | 0.58    | 0.80    | 0.30    | 0.05    |
| POT      | 0.32    | 0.90    | 0.96    | 0.18    |
| DRUG     | 0.03    | 0.53    | 0.55    | 0.01    |
| GOODS    | 0.08    | 0.53    | 0.09    | 0.01    |
|          |         |         |         |         |

# Class Probabilities for 7 U's on 7 X's Comparing Three Models

- 4 classes: Fight/Threat, High, Drugs, Low
  - Same interpretation for these 3 different models
- Class probabilities with 15 direct effects: 0.321, 0.130, 0.172, 0.377
- Class probabilities with no direct effects: 0.298, 0.126, 0.189, 0.386
- Class probabilities with latent class indicators only: 0.219, 0.106, 0.209, 0.466

## Comparing C ON X Results for 7 U's on 7 X's: 15 Directs (Model 10) vs No Directs for Class 1

| 15 direct effects, Model 10 |          |       | No direct effects |          |          |       |           |
|-----------------------------|----------|-------|-------------------|----------|----------|-------|-----------|
| C#1 ON X                    |          |       |                   | C#1 ON X |          |       |           |
|                             | Estimate | S.E.  | Est./S.E.         |          | Estimate | S.E.  | Est./S.E. |
| SEX                         | 1.286    | 0.102 | 12.627            | SEX      | 1.590    | 0.101 | 15.809    |
| BLACK                       | 1.261    | 0.128 | 9.834             | BLACK    | 1.088    | 0.114 | 9.572     |
| HISP                        | -0.256   | 0.128 | -1.993            | HISP     | 0.210    | 0.121 | 1.734     |
| SINGLE                      | 0.011    | 0.107 | 0.105             | SINGLE   | 0.068    | 0.109 | 0.620     |
| DIVORCE                     | 0.272    | 0.120 | 2.278             | DIVORCE  | 0.141    | 0.122 | 1.160     |
| DROPOUT                     | 0.282    | 0.132 | 2.139             | DROPOUT  | 0.427    | 0.131 | 3.252     |
| AGE94                       | -0.204   | 0.024 | -8.634            | AGE94    | -0.316   | 0.025 | -12.673   |

- Number of significant effects of covariates on all the latent classes:
  - 15 direct effects model: 17
  - No direct effects model: 13
- Similar discrepancies found in the simulations of Asparouhov & Muthén (2014; Web Note 15)

#### Outline

- Background
- Antisocial behavior example
- Searching for direct effects
  - Different approaches, Penalized SEM (PSEM)
  - ASB example (reduced version)
    - Latent classes and C ON X results
- Evaluating direct effects
  - Direct effects results, calculator
- Class-varying direct effects
  - PSEM DIFF priors, ALIGN option
- Multistep analysis with direct effects and distal outcomes
- Recap and further research

### 15 Direct Effects for 7 U's on 7 X's (Model 10)

• Property: Sex, Black, Divorce, Age94

• Fight: Sex, Hisp, Age94

• Shoplift: Black, Hisp

• Threat: Black

• Pot: Age94

Drug: Black, Age94

Goods: Sex, Black

## Direct Effect Estimates for Property and Fight Indicators

|             | Estimate | S.E.  | Est./S.E. |
|-------------|----------|-------|-----------|
| PROPERTY ON |          |       |           |
| SEX         | 0.676    | 0.098 | 6.925     |
| BLACK       | -0.744   | 0.111 | -6.673    |
| DIVORCE     | -0.458   | 0.112 | -4.078    |
| AGE94       | -0.100   | 0.021 | -4.857    |
|             |          |       |           |
| FIGHT ON    |          |       |           |
| SEX         | 0.587    | 0.090 | 6.501     |
| HISP        | 0.731    | 0.125 | 5.860     |
| AGE94       | -0.110   | 0.019 | -5.658    |
|             |          |       |           |

- The sex (male) effect is larger for Property than for Fight
- But the effect on their probabilities also depends on their thresholds

## Direct Effect Probabilities: Prob = $1/(1 + e^{-Logit})$



- Logit =  $\tau_c + \beta x$ , where  $\tau_c$  is a threshold for class c and  $\beta$  is the direct effect
- Small probability obtained with large threshold, resulting in small logit
- Largest probability change from x = 0 to x = 1 occurs at the steepest part of the curve with threshold close to zero, that is, probability close to 0.5 (logit = 0 gives probability = 0.5)

## Direct Effect Probabilities: Property and Fight Indicators Comparing Males and Females for the Fight/Threat Class

- Model 10 estimates:
  - Property:
    - Threshold = 1.352,  $\beta_{male}$  = 0.676 (Logit = -0.68 when other x's=0)
  - Fight:
    - Threshold = 0.217,  $\beta_{male}$  = 0.587 (Logit = 0.37 when other x's=0)
- Probabilities for females (sex=0) vs males (sex=1) at zero values for all other covariates, except age94 which is at its sample mean:
  - Property: 0.161 vs 0.274 (difference = 0.113)
  - Fight: 0.368 vs 0.511 (difference = 0.143)
- Compared to the Property indicator, the Fight indicator has a smaller threshold and a smaller direct effect slope and therefore a logit closer to zero with a probability closer to 0.5 where the probability curve is steeper, resulting in a larger probability difference for Fight than Property - the direct effect slope size alone does not tell the whole story

## Mplus Calculator: Computing Direct Effect Probabilities



### Calculator Options



### Calculator Settings: Male=1



#### Calculator Results: Male=1



#### Calculator Results: Male=0



# Calculator Convenience Feature: Copying Sets of Values for Covariates

- Enter your values for the first set
- Click on the button above the OK/Cancel/Apply called "Copy values to new set"
  - That will copy all the values you just entered to a new set
- A second "Default" tab will open to the right of the original Default tab with the copied values that you can edit
  - For clarity, you can change the label of either "Default" tab
- Click OK
- Probabilities for both sets will be shown, one below the other

# Using MODEL CONSTRAINTS for Direct Effect Probability Calculations for the Property Indicator: Class 1 with Male = 0 vs 1, All Other X's=0, Except Age94=Sample Mean

```
MODEL: %OVERALL%
         c ON male-age94:
         property ON male (b1)
         black divorce
                                     MODEL CONSTRAINT:
                                                                NEW(logit0 logit1 prob0 prob1);
         age94 (b2):
                                                                ! suffix of 0/1 corresponds
         fight ON male hisp age94:
                                                                ! to male = 0/1
         shoplift ON black hisp:
                                                                ! sample mean of age94 = 2.957
         threat ON black:
                                                                logit0 = -t1 + b2*2.957:
         pot ON age94;
                                                                logit1 = -t1 + b1 + b2*2.957:
         drug ON black age94:
                                                                prob0 = 1/(1+EXP(-logit0));
         goods ON male black;
                                                                prob1 = 1/(1+EXP(-logit1));
         %c#1%
```

[property\$1] (t1);

#### Outline

- Background
- Antisocial behavior example
- Searching for direct effects
  - Different approaches, Penalized SEM (PSEM)
  - ASB example (reduced version)
    - Latent classes and C ON X results
- Evaluating direct effects
  - Direct effects results, calculator
- Class-varying direct effects
  - PSEM DIFF priors, ALIGN option
- Multistep analysis with direct effects and distal outcomes
- Recap and further research

#### Input for PSEM DIFF Priors: Model 10, 15 Direct Effects

TITLE: 7U-7X, 15 direct effects of model 10

PSEM (1.0) with class-varying direct

effects and alignment output

DATA: FILE = asbfree.dat;

VARIABLE: NAMES = property fight shoplift lt50

gt50 force threat injure pot drug

soldpot solddrug con auto bldg goods gambling dsm1-dsm22 sex black hisp single divorce dropout college onset f1

f2 f3 age94 cohort dep abuse;

USEVARIABLES = property fight shoplift threat pot drug goods sex black hisp single divorce dropout age94;

CATEGORICAL = property-goods; CLASSES = c(4);

ANALYSIS: TYPE = MIXTURE:

ESTIMATOR - ML;

STARTS = 400 100; PROCESSORS = 12;

PEEBBORB = 12,

MODEL: %OVERALL%

c ON sex-age94;

property ON sex black divorce age94;

fight ON sex hisp age94; shoplift ON black hisp:

threat ON black;

pot ON age94;

drug ON black age94; goods ON sex black:

%c#1%

property ON sex black divorce age94 (a1-a4);

fight ON sex hisp age94 (a5-a7); shoplift ON black hisp (a8-a9):

threat ON black (a10); pot ON age94 (a11);

drug ON black age94 (a12-a13);

goods ON sex black (a14-a15);

39/58

### Input for PSEM DIFF Priors, Continued

```
%c#2%
property ON sex black divorce age94 (b1-b4):
fight ON sex hisp age94 (b5-b7):
                                                          %c#4%
shoplift ON black hisp (b8-b9):
                                                          property ON sex black divorce age94 (d1-d4):
threat ON black (b10):
                                                          fight ON sex hisp age94 (d5-d7):
pot ON age94 (b11):
                                                          shoplift ON black hisp (d8-d9):
drug ON black age94 (b12-b13):
                                                          threat ON black (d10):
goods ON sex black (b14-b15):
                                                          pot ON age94 (d11):
                                                          drug ON black age94 (d12-d13):
%c#3%
                                                          goods ON sex black (d14-d15):
property ON sex black divorce age94 (c1-c4):
fight ON sex hisp age94 (c5-c7);
                                              MODEL
shoplift ON black hisp (c8-c9);
                                              PRIOR:
                                                          DO(\#,1.15) DIFF(a# b# c# d#)\simALF(0.1.0):
threat ON black (c10):
pot ON age94 (c11):
                                              OUTPUT: ALIGN:
drug ON black age94 (c12-c13):
```

goods ON sex black (c14-c15);

# Results for Class-Varying Direct Effects: Model 10, 15 Direct Effects

- Class-varying direct effects using PSEM 1.0 with DIFF priors: logL = -23,680 (BIC not available)
- Class-varying direct effects using non-PSEM: logL = -23,668, BIC = 48,333
  - 2 fixed direct effects (couldn't be estimated)
- Class-invariant direct effects using non-PSEM: BIC = 48,026
  - Better BIC than for class-varying direct effects
  - No need for class-varying direct effects in this example
- PSEM with DIFF priors useful with class-varying direct effects
  - The ALIGN output option shows which effects have significant differences across classes - see also factor analysis alignment in Asparouhov & Muthén (2014) and other papers at
    - https://www.statmodel.com/ MeasurementInvariance.shtml

# Alignment Output with PSEM DIFF Priors

• a1, b1, c1, d1: Property on sex (male) comparing the 4 classes

| DIFF AN    | ALYSIS FO    | OR PARAMET       | ERS       |             |       |         |
|------------|--------------|------------------|-----------|-------------|-------|---------|
| A1         | B1           | C1               | D1        |             |       |         |
| Chi-squa   | re value     | 0.053            |           |             |       |         |
| Degrees of | of freedom   | 3                |           |             |       |         |
| P-value    |              | 0.997            |           |             |       |         |
| Param      | Param        | Value            | Value     | Difference  | SE    | P-value |
| B1         | A1           | 0.723            | 0.563     | 0.160       | 0.750 | 0.831   |
| C1         | A1           | 0.723            | 0.563     | 0.159       | 0.742 | 0.830   |
| C1         | B1           | 0.723            | 0.723     | 0.000       | 0.022 | 0.985   |
| D1         | A1           | 0.724            | 0.563     | 0.160       | 0.754 | 0.831   |
| D1         | B1           | 0.724            | 0.723     | 0.001       | 0.021 | 0.980   |
| D1         | C1           | 0.724            | 0.723     | 0.001       | 0.023 | 0.967   |
|            |              |                  |           |             |       |         |
| Approxim   | nate Invaria | nce Holds For:   |           |             |       |         |
| A1         | B1           | C1               | D1        |             |       |         |
| Average '  | Value Acros  | s Invariant Para | ameters:  | 0.683       |       |         |
| Invariant  | Values, Dif  | ference to Aver  | age and S | ignificance |       |         |
| Param      | Value        | Difference       | SE        | P-value     |       |         |
| A1         | 0.563        | -0.120           | 0.310     | 0.699       |       |         |
| B1         | 0.723        | 0.040            | 0.458     | 0.931       |       |         |
| C1         | 0.723        | 0.040            | 0.450     | 0.930       |       |         |
| D1         | 0.724        | 0.040            | 0.461     | 0.930       |       |         |

#### Alignment Output, Continued

• a11, b11, c11, d11: Pot on age94 comparing the 4 classes

| DIFF AN           | NALYSIS FO        | R PARAN                   | <b>IETERS</b>           |                                     |                                  |                                  |
|-------------------|-------------------|---------------------------|-------------------------|-------------------------------------|----------------------------------|----------------------------------|
| A11               | B11               | C11                       | D11                     |                                     |                                  |                                  |
|                   |                   |                           |                         |                                     |                                  |                                  |
| Chi-squa          | re value          | 7.795                     |                         |                                     |                                  |                                  |
| Degrees           | of freedom        | 3                         |                         |                                     |                                  |                                  |
| P-value           |                   | 0.050                     |                         |                                     |                                  |                                  |
|                   |                   |                           |                         |                                     |                                  |                                  |
| Param             | Param             | Value                     | Value                   | Difference                          | SE                               | P-value                          |
|                   |                   |                           | ,                       | Difference                          | OL                               | 1 varac                          |
| B11               | A11               | 0.502                     | 0.240                   | 0.261                               | 0.174                            | 0.133                            |
| B11<br>C11        | A11<br>A11        | 0.502<br>-0.813           | 0.240<br>0.240          | Difference                          |                                  | 1 /4140                          |
|                   |                   |                           |                         | 0.261                               | 0.174                            | 0.133                            |
| C11               | A11               | -0.813                    | 0.240                   | 0.261<br>-1.053                     | 0.174<br>0.513                   | 0.133<br>0.040                   |
| C11<br>C11        | A11<br>B11        | -0.813<br>-0.813          | 0.240<br>0.502          | 0.261<br>-1.053<br>-1.315           | 0.174<br>0.513<br>0.555          | 0.133<br>0.040<br>0.018          |
| C11<br>C11<br>D11 | A11<br>B11<br>A11 | -0.813<br>-0.813<br>0.176 | 0.240<br>0.502<br>0.240 | 0.261<br>-1.053<br>-1.315<br>-0.064 | 0.174<br>0.513<br>0.555<br>0.047 | 0.133<br>0.040<br>0.018<br>0.178 |

Approximate Invariance Was Not Found.

• c11 vs b11 shows the largest difference: Pot on age94, comparing the third and second classes - Pot and High

#### Outline

- Background
- Antisocial behavior example
- Searching for direct effects
  - Different approaches, Penalized SEM (PSEM)
  - ASB example (reduced version)
    - Latent classes and C ON X results
- Evaluating direct effects
  - Direct effects results, calculator
- Class-varying direct effects
  - PSEM DIFF priors, ALIGN option
- Multistep analysis with direct effects and distal outcomes
- Recap and further research

# Multistep Analysis with Direct Effects and Distal Outcomes

- Adding distal outcomes to the analysis with direct effects
  - The first step measurement model includes the covariates and their direct effects
  - What should the last step look like?
    - 3-step
    - BCH
    - 2-step
- Example: ASB data with the 15 direct effects of Model 10, adding alcohol dependence and abuse as distal outcomes
  - Strongly skewed variables with large floor effects; treated as continuous in these analyses
  - Likely to be correlated even when conditioned on latent class

## First Step, Combined Approach with Direct Effects

TITLE:

First step, combined approach, measure-

ment model including direct effects

DATA: FILE = asbfree.dat;

VARIABLE: NAMES = property fight shoplift lt50

gt50 force threat injure pot drug soldpot solddrug con auto bldg goods gambling dsm1-dsm22 sex black hisp single divorce dropout college onset f1 f2 f3

age94 cohort dep abuse;

USEVAR = property fight shoplift threat pot drug goods sex black hisp single

divorce dropout age94;

AUXILIARY = dep abuse;

CATEGORICAL = property-goods;

CLASSES = c(4);

ANALYSIS: TYPE = MIXTURE;

ESTIMATOR = ML; OPTSEED = 21345;

PROCESSORS = 12;

MODEL: %OVERALL%

c ON sex-age94:

! Direct effects:

property ON sex black divorce age94;

fight ON sex hisp age94; shoplift ON black hisp; threat ON black:

pot ON age94; drug ON black age94;

goods ON sex black;

**SAVEDATA: SAVE = cprob bchweights**;

FILE = final.dat;

OUTPUT: ! Re-ordering the classes

! based on previous run: SVALUES(1 4 2 3);

3 VALUES(1 4 2 3),

#### Input for 3-Step: Last Step

ANALYSIS: TYPE = MIXTURE; ESTIMATOR = ML:

TITLE:

Last step of 3-step

Last step of 3-step

Last step of 3-step

DATA: FILE = final dat:

VARIABLE: NAMES = property fight shoplift threat

MODEL: %OVERALL%

pot drug goods sex black hisp single divorce dropout age94 dep abuse w1-w4

dep abuse ON sex-age94;

cprob1-cprob4 n: dep WITH abuse;

! No direct effects since indicators

USEVARIABLES = sex-age94 ! not in the model dep abuse n:

NOMINAL [n#1@1.616 n#2@-1.634 n#3@-1.108];

NOMINAL = n; [11#1@1.010 11#2@-1.034 11#3@-1.108]; %c#2%

CLASSES = c(4); [n#1@4.971 n#2@6.760 n#3@4.382]; %c#3%

[n#1@-0.101 n#2@-0.734 n#3@1.908];

%c#4%

 $[n\#1@-2.518\ n\#2@-9.861\ n\#3@-3.323];$ 

%c#1%

### Input for BCH: Last Step

TITLE:

Last step of BCH

DATA: FILE =final.dat; ANALYSIS: TYPE = MIXTURE;

VARIABLE: NAMES = property fight shoplift threat

pot drug goods sex black hisp single divorce dropout age94 dep abuse w1-w4

cprob1-cprob4 n:

USEVARIABLES = dep abuse

sex-age94 w1-w4:

TRAINING = w1-w4(BCH);

CLASSES = c(4);

ESTIMATOR = ML:

STARTS = 0:

DIANTS = 0,

PROCESSORS = 12;

MODEL: %OVERALL%

dep abuse ON sex-age94;
dep WITH abuse;

! No direct effects since indicators

! not in the model

#### Input for 2-Step: Last Step

TITLE:

Last step of 2-step

DATA:

FILE IS asbfree.dat;

VARIABLE:

NAMES = property fight shoplift lt50 gt50 force threat injure pot drug

soldpot solddrug con auto bldg goods gambling dsm1-dsm22 sex black hisp single divorce dropout college onset f1

f2 f3 age94 cohort dep abuse;

USEVARIABLES = property fight shoplift threat pot drug goods sex black hisp single divorce dropout age94 dep abuse:

CATEGORICAL = property-goods;

CLASSES = c(4);

ANALYSIS:

 $\mathsf{TYPE} = \mathsf{MIXTURE};$ 

ESTIMATOR - ML;

STARTS = 0; ! STARTS=400 100 gives

another solution

PROCESSORS = 12;

MODEL:

%OVERALL%

dep abuse ON sex-age94;

dep WITH abuse;

! Input continues on next slides

#### Input for 2-Step, Last Step, Continued

```
! Direct effects need to be included
                                                       c#1 ON sex@1.28575:
! because the indicators are in the model
                                                       c#1 ON black@1.26114:
                                                       c#1 ON hisp@-0.25585:
! Output from SVALUES.
                                                       c#1 ON single@0.01131;
! First for OVERALL.
                                                       c#1 ON divorce@0.27248:
! then class-specific
                                                       c#1 ON dropout@0.28195;
property ON sex;
                                                       c#1 ON age94@-0.20425;
                                                       c#2 ON sex@1.91380:
property ON black;
property ON divorce;
                                                       c#2 ON black@0.52702:
property ON age94;
                                                       c#2 ON hisp@-0.65689;
                                                       c#2 ON single@0.43056;
fight ON sex;
                                                       c#2 ON divorce@0.79212:
fight ON hisp;
fight ON age94;
                                                       c#2 ON dropout@0.62244;
shoplift ON black;
                                                       c#2 ON age94@-0.23210;
shoplift ON hisp;
                                                       c#3 ON sex@-0.01762:
threat ON black:
                                                       c#3 ON black@-1.07972:
                                                       c#3 ON hisp@-0.66859;
pot ON age94;
                                                       c#3 ON single@0.31222;
drug ON black;
drug ON age94;
                                                       c#3 ON divorce@0.46191:
goods ON sex;
                                                       c#3 ON dropout@-0.06458;
goods ON black;
                                                       c#3 ON age94@-0.03458;
```

#### Input for 2-Step Continued

```
[ c#1@-0.64931 ]:
[ c#2@-1.86032 ]:
[ c#3@-0.49162 ]:
%C#1%
property ON sex@0.67567 (29):
property ON black@-0.74400 (30):
property ON divorce@-0.45823 (31):
property ON age94@-0.09999 (32):
fight ON sex@0.58659 (33):
fight ON hisp@0.73120 (34):
fight ON age94@-0.10968 (35):
shoplift ON black@-0.16065 (36);
shoplift ON hisp@0.45153 (37);
threat ON black@-0.71839 (38);
pot ON age94@0.22548 (39);
drug ON black@-0.81339 (40);
drug ON age94@0.22387 (41);
goods ON sex@0.83449 (42);
goods ON black@-0.54608 (43);
```

```
[ property$1@1.35209 ];
[ fight$1@0.21694 ];
[ shoplift$1@1.29552 ];
[ threat$1@-0.69313 ];
[ pot$1@1.35039 ];
[ drug$1@3.95855 ];
[ goods$1@2.79884 ];
```

#### Input for 2-Step Continued

#### %C#2%

```
property ON sex@0.67567 (29):
property ON black@-0.74400 (30);
property ON divorce@-0.45823 (31):
property ON age94@-0.09999 (32):
fight ON sex@0.58659 (33):
fight ON hisp@0.73120 (34):
fight ON age94@-0.10968 (35):
shoplift ON black@-0.16065 (36);
shoplift ON hisp@0.45153 (37);
threat ON black@-0.71839 (38):
pot ON age94@0.22548 (39):
drug ON black@-0.81339 (40):
drug ON age94@0.22387 (41):
goods ON sex@0.83449 (42):
goods ON black@-0.54608 (43):
```

```
[ property$1@-1.07329 ];
 [ fight$1@-0.73433 ];
 [ shoplift$1@-1.31987 ];
 [ threat$1@-1.69122 ];
 [ pot$1@-1.69565 ];
 [ drug$1@0.13231 ];
 [ goods$1@0.34741 ];
```

# Comparing Results for 3-Step, BCH, and 2-Step

- Class probabilities from the first step (Model 10, 15 direct effects):
  - 0.321 (Threat/Fight), 0.130 (High), 0.172 (Drugs), 0.377 (low)
- Class probabilities in last step (STARTS=0):
  - 3-step: 0.461, 0.019, 0.164, 0.356
    - Failure simulations in Asparouhov & Muthén (2014; Web Note 15) show undesirable influence of continuous distal outcomes
  - BCH: 0.321, 0.130, 0.173, 0.377
  - 2-step: 0.321, 0.130, 0.172, 0.377
- STARTS > 0
  - 3-step: Better LL but not replicated, class probabilities still different from first step, different estimates for distal outcomes regressed on covariates - solution influenced by distal outcomes
  - BCH: Same solution as for STARTS=0
  - 2-step: Better LL, same class probabilities, different estimates for distal outcomes regressed on covariates - solution influenced by distal outcomes
- BCH preferrable (see also Asparouhov & Muthén, Web Note 21 and Web Talk 8) due to within-class non-normality of distal outcomes

# Distal Outcomes for BCH: Comparing Y ON X with Direct Effects in 1st Step vs No Covariates, No Directs in 1st Step

| 1st step: Covariates and 15 direct effects (Model 10) |          |       |           | 1st step: Latent class indicators only |       |           |
|-------------------------------------------------------|----------|-------|-----------|----------------------------------------|-------|-----------|
|                                                       | Estimate | S.E.  | Est./S.E. | Estimate                               | S.E.  | Est./S.E. |
| DEP ON                                                |          |       |           |                                        |       |           |
| SEX                                                   | 0.140    | 0.027 | 5.147     | 0.158                                  | 0.025 | 6.248     |
| BLACK                                                 | -0.031   | 0.032 | -0.979    | 0.001                                  | 0.028 | 0.018     |
| HISP                                                  | -0.008   | 0.032 | -0.255    | -0.022                                 | 0.032 | -0.702    |
| SINGLE                                                | 0.250    | 0.029 | 8.585     | 0.251                                  | 0.029 | 8.647     |
| DIVORCE                                               | 0.154    | 0.032 | 4.863     | 0.163                                  | 0.032 | 5.171     |
| DROPOUT                                               | 0.362    | 0.036 | 10.171    | 0.374                                  | 0.035 | 10.558    |
| AGE94                                                 | 0.004    | 0.006 | 0.801     | 0.000                                  | 0.006 | 0.031     |
| ABUSE ON                                              |          |       |           |                                        |       |           |
| SEX                                                   | 0.268    | 0.032 | 8.386     | 0.274                                  | 0.030 | 9.264     |
| BLACK                                                 | -0.294   | 0.037 | -7.939    | -0.269                                 | 0.033 | -8.105    |
| HISP                                                  | -0.051   | 0.038 | -1.363    | -0.094                                 | 0.037 | -2.529    |
| SINGLE                                                | 0.353    | 0.034 | 10.310    | 0.359                                  | 0.034 | 10.525    |
| DIVORCE                                               | 0.257    | 0.037 | 6.913     | 0.277                                  | 0.037 | 7.493     |
| DROPOUT                                               | 0.150    | 0.042 | 3.591     | 0.169                                  | 0.042 | 4.060     |
| AGE94                                                 | -0.013   | 0.007 | -1.909    | -0.027                                 | 0.007 | -4.092    |

#### Outline

- Background
- Antisocial behavior example
- Searching for direct effects
  - Different approaches, Penalized SEM (PSEM)
  - ASB example (reduced version)
    - Latent classes and C ON X results
- Evaluating direct effects
  - Direct effects results, calculator
- Multistep analysis with direct effects and distal outcomes
- Recap and further research

### Recap of Alternative Approaches



- Analyses without the distal outcomes
  - (1) Including direct effects
  - (2) Ignoring direct effects, including X's
  - Approaches (1) and (2) were compared with respect to C ON X
- Analyses with the distal outcomes: Multistep such as BCH
  - (3) Including direct effects in first step
  - (4) Ignoring direct effects in first step
  - (5) Including direct effects only in last step (for 2-step)
  - (6) Excluding covariates in first step (measurement model using indicators only), adding them in last step, ignoring direct effects
  - Approaches (3) and (6) were compared with respect to Y ON X

#### **Further Research**

- Monte Carlo simulation studies
  - PSEM approach
  - Figure 12 of Asparouhov & Muthén (2025)
  - MplusAutomation https: //www.statmodel.com/usingmplusviar.shtml
- PSEM needs work for the ordinal case (avoiding threshold collapse)
- Other measurement models:
  - Growth mixture modeling:
    - Muthén & Shedden (1999), Muthén et al. (2002), Muthén (2004),
       Asparouhov & Muthén (2014; Web Note 15)



#### References

- Asparouhov & Muthén (2014). Auxiliary variables in mixture modeling: Three-step approaches using Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 21:3, 329-341. The posted version corrects several typos in the published version. An earlier version of this paper was posted as Mplus Web Notes: No. 15.
- Asparouhov & Muthén (2021). Auxiliary variables in mixture modeling: Using the BCH method in Mplus to estimate a distal outcome model and an arbitrary secondary model. Mplus Web Notes: No 21.
- Asparouhov & Muthén (2024). Penalized structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 31(3), 429–454.
- Asparouhov & Muthén (2025). Methodological advances with penalized structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 32(4), 688-716.
- Muthén & Shedden (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463-469.
- Muthén et al. (2002). General growth mixture modeling for randomized preventive interventions. Biostatistics, 3 (4), 459-475.
- Muthén (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (ed.), Handbook of quantitative methodology for the social sciences (pp. 345-368). Newbury Park, CA: Sage Publications.
  - https://www.statmodel.com/download/KaplanChapter19.pdf
- Muthén (2025). Mplus: An overview of its unique analysis capabilities. Forthcoming in the Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences: Volume Three.