
An Overview of Markov Chain Methods for the Study of Stage-Sequential
Developmental Processes

David Kaplan
University of Wisconsin–Madison

This article presents an overview of quantitative methodologies for the study of stage-sequential
development based on extensions of Markov chain modeling. Four methods are presented that exemplify
the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition
analysis, and the mixture latent Markov model. A special case of the mixture latent Markov model, the
so-called mover–stayer model, is used in this study. Unconditional and conditional models are estimated
for the manifest Markov model and the latent Markov model, where the conditional models include a
measure of poverty status. Issues of model specification, estimation, and testing using the Mplus software
environment are briefly discussed, and the Mplus input syntax is provided. The author applies these 4
methods to a single example of stage-sequential development in reading competency in the early school
years, using data from the Early Childhood Longitudinal Study—Kindergarten Cohort.

Keywords: Markov chain models, categorical variables, reading development

Supplemental materials: http://dx.doi.org/10.1037/0012-1649.44.2.457.supp

Central to the goal of testing theories of developmental pro-
cesses is the extension and application of statistical methodologies
that capture as closely as possible change over time. In recent
years, there have been significant advances in statistical methods
designed to model change over time in continuous variables. The
standard methodological framework for the study of intraindi-
vidual differences’ change over time in continuously measured
variables is growth curve modeling (Meredith & Tisak, 1990;
Muthén, 1991; Rogosa, Brandt, & Zimowski, 1982; Singer &
Willett, 2003; Willett, 1988; Willett & Sayer, 1994). Growth curve
modeling takes as its data source individual empirical growth
trajectories. Variation in the empirical growth trajectories can be
related to substantively relevant time-varying and/or time-
invariant predictors. Growth curve modeling also provides an
estimate of the average initial level and average rate of growth
taken to be estimates of the growth parameters in a defined
population.

In contrast to the notion of growth in continuous variables,
another type of question that arises in the study of human devel-
opment concerns change in qualitative status over time. The notion
of change over time in developmental status is not new; important
examples such as Piaget’s (1947; 1971) stages of cognitive devel-
opment or Kohlberg’s (1980) stages of moral development have
enjoyed a long and illustrious place in developmental research. In
addition to theories of change in cognitive or moral development,

researchers have also hypothesized and tested stage-sequential
models for the onset and development of substance abuse in early
adolescence (e.g., Collins, 2002b) and, of relevance to this article,
stage-sequential models for reading development (Chall, 1995;
Kaplan & Walpole, 2005).

The core statistical model for the study of change in qualitative
status over time is the manifest Markov chain model, which
concerns modeling change over time in observed categorical vari-
ables.1 Over the last 20 years a number of extensions have been
added to the manifest Markov chain model that are argued to be of
great relevance to developmental researchers. These include ex-
tensions that account for measurement error in the responses, allow
greater modeling flexibility for longitudinal data, and allow for the
progression through qualitative states to be fundamentally differ-
ent for unobserved clusters of individuals.

This article reviews a selected set of statistical methodologies
available for the study of stage-sequential growth that rest on the
formal foundation of a discrete-time/discrete-response manifest
Markov chain. Beyond the explication and demonstration of the
manifest Markov model, this article considers latent Markov mod-
els, latent transition analysis, and mixture Markov models. An
empirical example focusing on stage-sequential development in
reading proficiency in young children is used throughout the
article to provide a substantive context for the application of these
methods.

Data Source: The Early Childhood Longitudinal Study

The substantive context for this article concerns the problem of
representing the development of reading proficiency as a stage-

1 In line with the terminology of factor analysis, I use manifest to refer
to models for observed variables and latent to refer to model for unob-
served variables.

I gratefully acknowledge Bengt Muthén for valuable advice regarding
the application of Mplus for conducting Markov chain modeling and
Jee-Seon Kim for insightful comments on an earlier draft of this article.

Correspondence concerning this article should be addressed to David
Kaplan, Department of Educational Psychology, University of Wisconsin–
Madison, 1025 West Johnson Street, Madison, WI 53706. E-mail:
dkaplan@education.wisc.edu

Developmental Psychology Copyright 2008 by the American Psychological Association
2008, Vol. 44, No. 2, 457–467 0012-1649/08/$12.00 DOI: 10.1037/0012-1649.44.2.457

457



sequential process. This problem has a long intellectual history
with seminal ideas emanating from the work of Chall (1995) and
Juel (1988). A recent article by Kaplan and Walpole (2005) re-
viewed the background literature and presented empirical support
for a stage-sequential model of reading development and the role
of poverty status in moderating stage transition probabilities over
time. In the interest of space, that literature review is not summa-
rized here.

This study used the same data source as that used in the Kaplan
and Walpole (2005) study. Data were obtained from the Early
Childhood Longitudinal Study: Kindergarten Class of 1998–1999
(ECLS-K; National Center for Education Statistics, 2001). The
ECLS-K database provides a unique opportunity to study the
development of successful reading achievement (which can be
defined as the ability to comprehend text) by the end of first grade
for children with different levels of entering skill and different
potential barriers to success. The ECLS-K data available to address
this question include longitudinal measures of literacy achieve-
ment for a large and nationally representative sample.

Data used for this article consist of the kindergarten base year
(fall 1998/spring 1999) and first grade follow-up (fall 1999/spring
2000) panels of ECLS-K. Only first-time public school kindergar-
ten students who were promoted to and present at the end of first
grade were chosen for this study. The sampling design of ECLS-K
included a 27% subsample of the total sample at fall of first grade
to reduce the cost burden of following the entire sample for four
waves but to allow for the study of summer learning loss. Although
this dramatically reduced the sample size, I nevertheless included
fall of first grade in this study to allow four time points for
estimation of the transition probabilities. The sample size for this
study is 3,575.

Measures and Instrument Design

The measures used in this study consist of a series of reading
assessments designed to measure basic skills that Whitehurst and
Lonigan (2002) have identified as particularly salient in the first 2
years of school. Specifically, the reading assessment yields scores
for (a) letter recognition, (b) beginning sounds, (c) ending letter
sounds, (d) sight words, and (e) words in context.

In addition to the reading scale scores, ECLS-K provides trans-
formations of these scores into probabilities of proficiency as well
as dichotomous proficiency scores, which are used in this study.
Dichotomous proficiency scores can be calculated because the
ECLS-K instrument was designed with clusters of reading assess-
ment items having similar content and difficulty. A child is as-
sumed to have passed a particular skill level if he or she answers
at least three out of four items in the skill cluster correctly. A fail
score is given if the child incorrectly answered or did not know at
least two items within the skill cluster. In the case of exactly two
items correct, a pass or a fail score is given if the pattern of passes
and fails for the remaining proficiencies could suggest an unam-
biguous pass or fail.

A measure of poverty is provided in the ECLS-K and is com-
puted by taking income information obtained from the parent
survey and comparing it to the 1998 U.S. census poverty thresh-
olds that vary according to household size. A dichotomous variable
is provided that indicates whether the child’s household is below
(! 1) or above (! 0) the poverty threshold. In the next section, I

demonstrate how Markov models can incorporate predictors, using
this variable.

Selected Markov Models

This section reviews the selected set of Markov chain models to
be applied later to the problem of reading development. A history
of Markov modeling can be found in Kaplan and Uribe-Zarain
(2005). A hierarchy of Markov models adapted from Langeheine
(1994) is shown in Figure 1 and illustrates the models considered
in this article.

At the top of the hierarchy is the mixture latent Markov model.
This model is the most general, allowing for measurement error in
the categorical responses as well as allowing for the possibility of
unobserved heterogeneity in the transition probabilities—implying
that there are distinct subpopulations that follow their own unique
transitions over time. Two special cases derive directly from the
mixture latent Markov model: latent transition analysis and latent
Markov models. In these two cases, it is assumed that there is a
single population described by the transition probabilities but that
there is measurement error in the categorical responses. The dif-
ference between the two models is subtle and described later. From
here, two separate models can be derived: the latent class model
and the manifest Markov model. The latent class model allows for
measurement error in the categorical outcomes, but the data are not
longitudinal. On the other hand, if data are longitudinal and we
assume perfect reliability among the categorical measures, this
yields the manifest Markov model.

I start at the bottom of the hierarchy with the manifest Markov
model and then move to the latent class model. Although the latent
class model is applied to cross-sectional data, it is presented here
to demonstrate the issue of measurement error and also because it
sets the framework for latent Markov models. This is followed by
the latent Markov model. From there, I present latent transition
analysis, which extends the latent Markov model to handle mul-
tiple indicators of an underlying latent state and is arguably better
suited for the study of stage-sequential development. The latent
transition model is then extended to add a mixture component
allowing for specification of so-called mover–stayer models.
Throughout this article, I adopt the statistical notation given in
Langeheine and Van de Pol (2002).

The Manifest Markov Model

For the manifest Markov model and the remaining models in
this article, the data of interest are observed categorical responses.
The manifest Markov model consists of a single chain, in which
predicting the current state of an individual requires data from the
previous occasion only. In line with the example of reading de-
velopment, consider measuring mastery of ending letter sounds at
four discrete time points, where mastery is a dichotomous variable.
The manifest Markov model can be written as

Pijkl ! "i
1#j!i

21#k!j
32#l!k

43, (1)

where Pijkl is the model-based expected proportion of respondents
in the defined population in cell (i, j, k, l). The subscripts, i, j, k,
and l, are the manifest categories for Times 1, 2, 3, and 4, with
i ! 1. . .I, j ! 1. . .J, k ! 1. . .K, and l ! 1. . .L. In this study,
there are two categorical responses for i, j, k, and l—namely,
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mastery or nonmastery of ending letter sounds. Thus, I ! J ! K !
L ! 2. The parameter "i

1 is the observed proportion of individuals
at Time 1 who have or have not mastered ending letter sounds and
corresponds to the initial marginal distribution of mastery and
nonmastery. The parameters #j!i

21, #k!j
32, and #l!k

43 are the transition
probabilities. Specifically, the parameter #j!i

21 represents the transi-
tion probability from Time 1 to Time 2 for those in category j,
given that they were in category i at the beginning of the study. In
substantive terms, #j!i

21 provides the probability that a child will
have mastered ending letter sounds at Time 2, given that he or she
mastered ending letter sounds at Time 1. Because these transition
probabilities must sum to 1.0, the transition probability matrix will
also provide the probabilities associated with moving from the
nonmastery class at Time 1 to the mastery class at Time 2. Of
course, the transition probability matrix will also provide informa-
tion about movement from mastery at Time 1 to nonmastery at
Time 2. In a similar fashion, the parameter #k!j

32 represents the
transition probability from Time 2 to Time 3 for those in category
k, given that they were in category j at the previous time point.
Finally, the parameter #l!k

43 is the transition probability from Time 3
to Time 4 for those in category l, given that they were in category
k at the previous time point.

The modeling of transition probabilities is quite flexible. In this
example, it may be desirable to impose the restriction that once a

child has mastered ending letter sounds at time t, he or she cannot
move to nonmastery. This type of modeling imposes a strict
Guttman response pattern to the data. Also, the manifest Markov
model can be specified to allow transition probabilities to be
constant over time or to allow transition probabilities to differ over
time. The former is referred to as a stationary Markov chain,
whereas the latter is referred to as a nonstationary Markov chain.

The Latent Class Model

The manifest Markov model assumes that the responses are
measured without error. In some cases, this might be an unreason-
able assumption, and thus it might be desirable to attempt to handle
measurement error in Markov models explicitly. Latent class anal-
ysis serves as the underlying measurement model for latent
Markov models and their extensions; it was introduced by Lazars-
feld and Henry (1968; see also Clogg, 1995) for the purpose of
deriving latent attitude variables from responses to dichotomous
survey items. In a traditional latent class analysis, it is assumed
that an individual belongs to one and only one latent class and that
given an individual’s latent class membership, the observed re-
sponses are independent of one another—referred to as the local
independence assumption. The latent classes are, in essence, cat-
egorical factors arising from the pattern of response frequencies to

Figure 1. A modified hierarchy of Markov models (adapted from Langeheine & Van de Pol, 2002). Arrows
represent special cases.
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categorical items, in which the response frequencies play a role
similar to that of the correlation matrix in factor analysis (Collins,
Hyatt, & Graham, 2000). The analog of factor loadings are pa-
rameters that estimate the probability of a particular response on
the manifest indicator given membership in the latent class. Unlike
continuous latent variables (i.e., factors), categorical latent vari-
ables (latent classes) divide individuals into mutually independent
groups.

The latent class model can be written as follows. Let

Pijkl ! "
a!1

A

"a$i!a$j!a$k!a$l!a, (2)

where here "a is the proportion of individuals in latent class a. The
parameters $i|a, $j|a, $k|a, and $l|a are the response probabilities for
items i, j, k, and l, respectively, conditional on membership in
latent class a.

The application of latent class analysis is quite similar to the
application of factor analysis. That is, an investigator would hy-
pothesize a priori a latent categorical variable with A latent classes.
Under the hypothesis of A latent classes, the model is fit to the
observed categorical data. The pattern of the response probabilities
is used to name the categorical latent variable and the classes.
Various measures of model fit (described later) can be used to test
the hypothesis that the model based on A latent classes reproduces
the observed categorical responses.

Although latent class analysis is a useful procedure in its own
right, in the context of latent Markov models and their extensions
it is helpful to run a series of cross-sectional latent class analyses
to examine the consistency of the latent class structure over time.

The Latent Markov Model

Returning to the problem of estimating stage-sequential devel-
opment, a disadvantage of the manifest Markov model described
earlier is that it assumes that the observed categorical responses are
perfectly reliable measures of a true latent state. In the context of
the ending letter sounds example, this would imply that the ob-
served categorical responses measure the true mastery or nonmas-
tery of ending letter sounds. Rather, it may be more reasonable to
assume that the observed responses are fallible measures of an
unobservable latent state and it is the study of transitions across
true latent states that are of interest.

To take an example that is developed later, consider the
mastery or nonmastery of ending letter sounds at Time 1. The
manifest behavior is the response on the ending letter sound
assessment, yielding a mastery or nonmastery score. Under the
assumption that the ending letter sound assessment is perfectly
reliable, this would imply that those who have truly mastered
the skill would have received a mastery score, and those that did
not would receive a nonmastery score. However, the problem
could be conceptualized somewhat differently. Namely, we
could postulate a true ending letter sound skill, but a child who
truly possesses the skill might still be scored as having not
mastered the skill because of measurement error. Latent class
analysis can address the problem of measurement error at any
given point in time by estimating the existence of latent classes,

but when merged with manifest Markov models, we can study
change over time at the latent level.

The latent Markov model was developed by Wiggins (1973) to
address the problem of measurement error in observed categorical
responses and as a result to obtain transition probabilities at the
latent level. The latent Markov model can be written as

Pijkl ! "
a!1

A "
b!1

B "
c!1

C "
d!1

D

"a
1$i!a

1 #b!a
21 $j!b

2 #c!b
32$k!c

3 #d!c
43$l!d

4 , (3)

where the parameters in Equation 2 take on slightly different
meanings from those in Equation 1. In particular, the parameter "a

1

represents a latent distribution having A latent states. The linkage
of the latent states to manifest responses is accomplished by the
response probabilities $. The response probabilities thus play a role
analogous to that of factor loadings in factor analysis. Accord-
ingly, $i!a

1 refers to the response probability associated with cate-
gory i given membership in latent state a. The parameter $j!b

2 is
interpreted as the response probability associated with category j,
given membership in latent state b at Time 2. Remaining response
probabilities are similarly interpreted.

It should be noted that what has been described so far is the
latent class model discussed earlier. The goal, of course, is to
measure change over time at the latent level. Thus, as with the
manifest Markov model, the transition from Time 1 to Time 2 in
latent state membership is captured by #j!i

21 in Equation 2. At Time
2, the latent state is measured by the response probabilities $j!b

2 .
Remaining response and transition probabilities are analogously
interpreted. Note that Equation 2 reveals that if the response
probabilities were all 1.0 (indicating perfect measurement of the
latent variable), then Equation 2 would essentially reduce to Equa-
tion 1—the manifest Markov model.

Latent Transition Analysis

Although the application of Markov models for the analysis of
psychological variables goes back to Anderson (1954; as cited in
Collins & Wugalter, 1992), most applications focused on single
manifest measures. However, as with the early work in the factor
analysis of intelligence tests (e.g., Spearman, 1904), it was recog-
nized that many important psychological variables are latent—in
the sense of not being directly observed but possibly measured by
numerous manifest indicators. The advantages to measuring mul-
tiple latent variables via multiple indicators are the known benefits
with regard to reliability and validity. Therefore, it might be more
realistic to specify multiple manifest categorical indicators of the
categorical latent variable and combine them with Markov chain
models. The combination of multiple indicator categorical latent
variable models and Markov chain models provides the foundation
for the latent transition analysis of stage-sequential dynamic latent
variables.

In line with Collins and Flaherty (2002) and in the context of the
Kaplan and Walpole (2005) study, consider the current reading
example in which the data provide information on the mastery of
five different skills, such as phonemic awareness, beginning
sounds, ending letter sounds, sight reading, and reading words in
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context.2 At any given point in time, a child has mastered or not
mastered one or more of these skills. It is reasonable in this
example to postulate a model that specifies that these reading skills
are related in such a way that mastery of a later skill implies
mastery of all preceding skills. At each time point, the child’s
latent class membership defines his or her latent status. The model
specifies a particular type of change over time in latent status. This
is defined by Collins and Flaherty (2002) as a “model of stage-
sequential development, and the skill acquisition process is a
stage-sequential dynamic latent variable” (p. 289). It is important
to point out that there is no fundamental difference between latent
transition analysis and latent Markov chain modeling. The differ-
ence is practical, with latent transition analysis being perhaps
better suited conceptually for the study of change in developmental
status.

The model form for latent transition analysis uses Equation 2
except that model estimation is undertaken with multiple indica-
tors of the latent categorical variable. The appropriate measure-
ment model for categorical latent variables is the latent class
model.

Mixture Latent Markov Model (the Mover–Stayer Model)

A limitation of the models described so far is that they assume
that the sample of observations arises from a single population that
can be characterized by a single Markov chain (latent or otherwise)
and one set of parameters—albeit perhaps different for certain
manifest groups such as those children living above or below the
poverty level. It is possible, however, that the population is com-
posed of a finite and unobserved mixture of subpopulations char-
acterized by qualitatively different Markov chains. To the extent
that the population consists of finite mixtures of subpopulations, a
one-size-fits-all application of the Markov model can lead to
biased estimates of the parameters of the model as well as incorrect
substantive conclusions regarding the nature of the developmental
process in question. A reasonable strategy for addressing this
problem involves combining Markov-chain-based models under
the assumption of a mixture distribution (see McLachlan & Peel,
2000, for an excellent overview of finite mixture modeling). This
is referred to as the mixture latent Markov model.3

An important special case of the mixture latent Markov model is
referred to as the mover–stayer model (Blumen, Kogan, & Mc-
Carthy, 1955). In the mover–stayer model there exists a latent class
of individuals who transition across stages over time (movers) and
a latent class that does not transition across stages (stayers). In the
context of reading development, the stayers are those who never
move beyond, say, mastery of letter recognition. Variants of the
mover–stayer model have been considered by Van de Pol and
Langeheine (1989; see also Mooijaart, 1998).

The mixture latent Markov model can be written as

Pijkl ! "
s!1

S "
a!1

A "
b!1

B "
c!1

C "
d!1

D

%s"a!s
1 $i!as

1 #b!as
21 $j!bs

2 #c!jbs
32 $k!cs

3 #l!ks
43 $l!ds

4 , (4)

where %s represents the proportion of observations in Markov
chain s (! 1, 2, . . . S) and the remaining parameters are interpreted
as in Equation 2, with the exception that they are conditioned on
membership in Markov chain s.

The model in Equation 4 is the most general of those considered
in this article, with the preceding models being derived as special
cases. For example, with s ! 1 Equation 4 reduces to the latent
Markov model in Equation 2. Also, with s ! 1 and no transition
probabilities, the model in Equation 4 reduces to the latent class
model of Equation 3.

Identification, Estimation, and Testing

In this section, I briefly discuss the problem of identification,
estimation, and model testing in Markov chain models. Identifica-
tion refers to the problem of being able to obtain a unique estimate
of model parameters from observed data. In some cases, models
are not identified, in which case there exist an infinite number of
possible estimates of the model parameters. In some cases, there
exists one possible estimate of the model parameters. Finally, in
some cases there are a finite number of estimates of the model
parameters and methods are devised to find the estimate that
satisfies some optimal properties. As with the problem of identi-
fication in factor analysis and structural equation models, identi-
fication in Markov models is achieved by placing restrictions on
model parameters (see, e.g., Kaplan, 2000, for a discussion of
identification in factor analysis and structural equation modeling).

With regard to manifest Markov chains, identification is not an
issue. All parameters can be obtained directly from manifest cat-
egorical responses. In the context of latent Markov chain models
with a single indicator, the situation is somewhat more difficult.
Specifically, identification is achieved by restricting the response
probabilities to be invariant over time. As noted by Langeheine
(1994), this restriction simply means that measurement error is
assumed to be equal over time. For four or more time points, it is
only required that the first and last set of response frequencies be
invariant.

Identification in the mixture case adds the additional complica-
tion that even though the number of parameters is fewer than the
data points, the parameters may not be identified. This will depend
on the number of different chains being specified. For example,
with the mover–stayer model, identification should not be a prob-
lem in practice, assuming other conditions of identification are
met. This is because mover–stayer models are “strong,” requiring
adherence of the model to a simple structure with relatively few
parameters. On the other hand, with “weak” models consisting of
many chains and many parameters to be estimated, the model may
not be identified (Langeheine & Van de Pol, 2002).

Model identification is, of course, a necessary condition for
model estimation. It is beyond the scope of this article to provide
the details regarding parameter estimation. Suffice it to say that the
general approach to estimation of the model parameters has used
maximum likelihood estimation via the expectation-maximization
algorithm (Dempster, Laird, & Rubin, 1977). This is the approach
implemented in Mplus (Muthén & Muthén, 2006).

2 The ECLS-K indeed provides data on these five skills.
3 It should be noted that finite mixture modeling has been applied to

continuous growth curve models under the name general growth mixture
models (Muthén, 2004). These models have been applied to problems in
the development of reading competencies (Kaplan, 2002) and math com-
petencies (Jordan, Kaplan, Nabors-Oláh, & Locuniak, 2006).
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After obtaining estimates of model parameters, the next step is
to assess whether the specified model fits the data. In the context
of Markov chain models and latent class extensions, model fit is
assessed by comparing the observed response proportions against
the response proportions predicted by the model. Two statistical
tests are available for assessing the fit of the model on the basis of
comparing observed versus predicted response proportions. The
first is the classic Pearson chi-square statistic. As an example from
the latent class framework, the Pearson chi-square test can be
written as

&2 ! "
ijkl

'Fijkl " fijkl)2

fijkl
, (5)

where Fijkl are the observed frequencies of the IJKL contingency
table and fijkl are the expected cell counts. The degrees of freedom
are obtained by subtracting the number of parameters to be esti-
mated from the total number of cells of the contingency table that
are free to vary.

In addition to the Pearson chi-square test, a likelihood ratio
statistic can be obtained that is asymptotically distributed as chi-
square, in which the degrees of freedom are calculated in the same
manner as the Pearson chi-square test. In cases where there are
sizable disagreements between the Pearson chi-square test and the
likelihood ratio chi-square test, it is likely due to the occurrence of
sparse cells—that is, patterns of responses where there are very
few observations. The Mplus software program allows inspection
of the frequency of each response pattern and provides standard-
ized residuals to aid in identifying the location of the problem.

Finally, two types of information criteria are provided for aiding
in model selection and apply a penalty function for specifying and
testing a complex (less parsimonious) model. The first is the
Akaike information criterion (AIC; Akaike, 1973), defined as

AIC ! &2 " 2df, (6)

and the second is the Bayesian information criterion (BIC), defined
as

BIC ! &2 " df[ln(N)], (7)

where N is the sample size. In both cases, these indices can be used
for model comparisons, and the model with lowest AIC or BIC
value is preferred. The BIC penalizes for the addition of free
parameters more severely than does the AIC.

Applications to Stage-Sequential Reading Development

In this section, each Markov model previously described will be
applied to the problem of stage-sequential development in reading.
Corresponding tables provide the goodness-of-fit statistics and are
presented for completeness, but no attempt will be made to modify
models for the purposes of selecting a best-fitting model. The
applications are solely for the purpose of illustrating the method-
ologies. A more detailed substantive study of reading development
as a stage-sequential process can be found in Kaplan and Walpole
(2005).

In what follows, I add poverty status for the manifest Markov
model and the latent Markov model, but in the interest of space I
estimate the latent transition model and mixture Markov model

without poverty status added. For a detailed account of poverty
effects on stage sequential reading development, see Kaplan and
Walpole (2005).

Application of the Manifest Markov Model

Supplemental Appendix A provides the Mplus input used to
estimate the manifest Markov model. Table 1 presents the results
of the nonstationary manifest Markov model applied to the devel-
opment of competency in ending letter sounds. For the total
sample, it can be seen that over time the probabilities associated
with moving from nonmastery to mastery of ending letter sounds
change. For example, at the beginning of kindergarten and the
beginning of first grade, the proportion of students who have not
mastered beginning sounds and the proportion who then go on to
master ending letter sounds is relatively constant. However, the
transition from nonmastery of ending letter sounds to mastery of
ending letter sounds is much greater from the beginning of first
grade to the end of first grade. Nevertheless, approximately 25% of
the sample who did not master ending letter sounds at the begin-
ning of first grade did not appear to have mastered ending letter
sounds by the end of first grade.

When poverty status is added to the model and estimated tran-
sition probabilities are computed for each group,4 a higher pro-
portion of children below the poverty level do not transition from
nonmastery to mastery of ending letter sounds from one time point
to the other. For example, for those children living below the
poverty level who have not mastered ending letter sounds at the
beginning of first grade, 64% will transition to mastery by the end
of first grade. This compares to 80% of the children living above
the poverty level who will transition to mastery of ending letter
sounds during the same time.

Application of the Latent Markov Model

Table 2 compares the transition probabilities for the manifest
Markov model and the latent Markov model under the assumption
of a stationary Markov chain. Only one chain is presented because
the homogeneity assumption, by definition, fixes the transition
probabilities to be equal over time. The Mplus syntax for the
stationary Markov model is given in supplemental Appendix B,
and the syntax for the stationary latent Markov model is given in
supplemental Appendix C. The results show small but noticeable
differences in the transition probabilities when taking into account
measurement error in the manifest categorical responses. Here
again we see that for children living below the poverty level, the
transition rates are much lower than for those children living above
the poverty level.

Application of Latent Transition Analysis

Using all five subtests of the reading assessment in ECLS-K,
this section demonstrates a latent transition analysis. It should be

4 Calculation of transition probabilities for each group was accomplished
by transforming the regression coefficients from the Markov model to
probabilities via the expression 1/'1 # ea(bX(cY), where a is the intercept,
b is the slope relating class membership at time t to class membership at
time t )1, and c is the slope relating class membership to poverty status.
Appropriate regression coefficients can be obtained directly from the
Mplus program.
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noted that a specific form of the latent transition model was
estimated—namely, a model that assumes no forgetting or loss
of previous skills. This type of model, referred to as a longitu-
dinal Guttman process, was used in a detailed study of stage-
sequential reading development by Kaplan and Walpole (2005).

The analysis begins with the estimation of a series of latent
class models for each time point separately. Preliminary anal-
yses suggest that a three-class solution appears to provide the
best overall fit and explanation of the observed response fre-
quencies.

Table 1
Transition Probability Results of the Nonstationary Manifest Markov Chain Model Applied to
Mastery of Ending Letter Sounds: Total Sample and Poverty Status

Mastery

Total sample Below poverty Above poverty

1 2 1 2 1 2

Ending letter sounds Time 1 (rows) by ending letter sounds Time 2 (columns)

1 .55 .45 .78 .21 .50 .50
2 .10 .90 .26 .73 .08 .91

Ending letter sounds Time 2 (rows) by ending letter sounds Time 3 (columns)

1 .57 .43 .73 .27 .51 .49
2 .10 .90 .20 .80 .09 .91

Ending letter sounds Time 3 (rows) by ending letter sounds Time 4 (columns)

1 .25 .75 .36 .64 .20 .80
2 .03 .97 .05 .95 .02 .98

Goodness-of-fit tests

Total sample With poverty covariate

&p
2(8, N ! 3,575) ! 133.77, p * .05 &p

2(4, N ! 3,575) ! 112.54, p * .05
&LR

2(8, N ! 3,575) ! 150.23, p * .05 &LR
2(4, N ! 3,575) ! 127.71, p * .05

BIC ! 13,363.49 BIC ! 13,070.380

Note. 1 ! nonmastery; 2 ! mastery; &p
2 refers to the Pearson chi-square test; &LR

2 refers to the likelihood-ratio
chi-square test; BIC ! Bayesian information criterion.

Table 2
Comparison of Manifest and Latent Markov Chain Model with Homogenous Transition
Probabilities by Poverty Status

Mastery

Manifest Markov chain Latent Markov chain

1 2 1 2

Below poverty

1 .62 .38 .66 .34
2 .48 .52 .59 .41

Above poverty

1 .48 .52 .39 .61
2 .35 .65 .33 .67

Goodness-of-fit tests

&p
2(13, N ! 3,575) ! 7,073.51, p * .05 &p

2(12, N ! 3,575) ! 6,974.35, p * .05
&LR

2(13, N ! 3,575) ! 6,155.69, p * .05 &LR
2(12, N ! 3,575) ! 6,198.25, p * .05

BIC ! 19,039.31 BIC ! 19,095.91

Note. Ending letter sounds Time 1 (rows) by ending letter sounds Time 2 (columns). For homogenous Markov
model, all transition probabilities are the same over time. 1 ! nonmastery; 2 ! mastery; BIC ! Bayesian
information criterion.
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Supplemental Appendix D gives the Mplus input used to esti-
mate the latent class model. Table 3 displays the results of the
separate cross-sectional latent class models. The pattern of re-
sponse probabilities across the subsets of reading tests suggest the
labels that have been given to the latent classes—namely, low
alphabet knowledge (LAK), early word reading (EWR), and early
reading comprehension (ERC). Similar patterns were found by
Kaplan and Walpole (2005). The extreme differences across time
in the likelihood-ratio chi-square tests are indicative of sparse
cells, particularly occurring at spring kindergarten. For the pur-
poses of this article, I proceed with the analysis without attempting
to ameliorate the problem.

A close inspection of the changes over time in class proportions
points to transition over time in the proportions that master more
advanced reading skills. However, these separate latent class mod-
els do not provide simultaneous estimation of the transition prob-
abilities that are crucial for a study of stage-sequential develop-
ment over time.

Supplemental Appendix E provides the Mplus input for the latent
transition analysis under the assumption of measurement invariance.
Table 4 shows the results of the latent transition probabilities for the
full latent transition model. On the basis of the latent transition
analysis, 30% of those in the LAK class at fall kindergarten are
predicted to remain in the LAK class, while 69% are predicted to
move to the EWR class and 1% are predicted to transition to ERC in
the spring kindergarten. Among those in the EWR class at fall
kindergarten, 66% are predicted to remain in that class and 34% are
predicted to transition to the ERC class in spring kindergarten.

Among those children who are in the LAK class at spring
kindergarten, 59% are predicted to remain in that class at fall of

first grade, while 40% are predicted to transition to the EWR class,
with 1% predicted to transition to the ERC class. Among those
children who are in the EWR class in fall kindergarten, 82% are
predicted to stay in the EWR class while 18% are predicted to
transition to the ERC class.

Finally, among those children who are in the LAK class in fall
of first grade, 30% are predicted to remain in that class at spring
of first grade; 48% are predicted to transition to the EWR class by
spring of first grade, with 22% transitioning to the ERC class.
Among those children in the EWR class at fall of first grade, 13%
are assumed to remain in that class, with 86% transitioning to the
ERC class by spring of first grade. As in the latent class results, it
is important to note the discrepancies between the likelihood ratio
and Pearson chi-square test results.

Application of Mixture Latent Markov Model: The
Mover–Stayer Model

As noted earlier, a limitation of Markov modeling is that it
assumes that a single model holds for the population from which
the sample was obtained. To address this limitation, it is of interest
to examine whether there are qualitatively different subpopulations
characterized by qualitatively different transition probabilities.
One example of this heterogeneity is the case in which a subpopu-
lation exists that simply does not transition over time and another
subpopulation exists that can transition over time. This model has

Table 3
Response Probabilities and Class Proportions for Separate
Latent Class Models (Total Sample)

Latent
class

Subtest response probabilities
Class

proportions &LR
2 (29)LR BS ES SW WIC

Fall K
LAKc .47 .02 .01 .00 .00 .67 3.41
EWR .97 .87 .47 .02 .00 .30
ERC 1.00 .99 .98 .97 .45 .03

Spring K
LAK .56 .06 .00 .00 .00 .24 4,831.89*

EWR .99 .92 .63 .05 .00 .62
ERC .00 .99 .99 .96 .38 .14

Fall first
LAK .52 .08 .01 .00 .00 .15 11.94
EWR 1.00 .92 .71 .05 .03 .59
ERC 1.00 .99 .98 .98 .42 .26

Spring first
LAK .19 .00 .00 .00 .00 .04 78.60*

EWR .98 .90 .79 .35 .00 .18
ERC 1.00 .99 .98 .99 .60 .78

Note. Response probabilities are for passed items. Response probabilities
for failed items can be computed from 1 ) prob(mastery). LR ! letter
recognition; BS ! beginning sounds; ES ! ending letter sounds; SW !
sight words; WIC ! words in context; Fall K ! fall kindergarten; Spring
K ! spring kindergarten; Fall first ! fall first grade; Spring first ! spring
first grade; LAK ! low alphabet knowledge; EWR ! early word reading;
ERC ! early reading comprehension.
* p * .05.

Table 4
Transition Probabilities From Fall Kindergarten to Spring First
Grade (Total Sample)

Wave LAK EWR ERC

Spring K

Fall K
LAK .30 .69 .01
EWR .00 .66 .34
ERC .00 .00 1.00

Fall first

Spring K
LAK .59 .40 .01
EWR .00 .82 .18
ERC .00 .00 1.00

Spring first

Fall First
LAK .30 .48 .22
EWR .01 .13 .86
ERC .00 .00 1.00

Goodness-of-fit tests

&p
2(1,048,528, N ! 3,575) ! 12,384.21, p ! 1.0

&LR
2(1,048,528, N ! 3,575) ! 6,732.31, p ! 1.0

BIC ! 44,590.80

Note. LAK ! low alphabet knowledge; EWR ! early word reading;
ERC ! early reading comprehension; Fall K ! fall kindergarten; Spring
K ! spring kindergarten; Fall first ! fall first grade; Spring first ! spring
first grade; BIC ! Bayesian information criterion.
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been referred to as the mover–stayer model (see, e.g., Van de Pol
& Langeheine, 1989). For this example, I estimate the full latent
transition analysis model with the addition of a latent class variable
that is hypothesized to segment the sample into those who do
transition over time in their development of more complex reading
skills (movers) versus those that do not transition at all (stayers).

Supplemental Appendix F provides the Mplus syntax for the
mover–stayer model. The results of the mover–stayer latent tran-
sition analysis are given in Table 5. In this analysis, it is assumed
that the stayer class has zero probability of moving. An alternative
specification can allow the stayers to have a probability that is not
necessarily zero but different from the mover class.

From the upper panel of Table 5 it can be seen that 97% of the
sample transition across stages, with 71% of the movers beginning
their transitions to full literacy from the LAK status, 26% begin-
ning EWR status, and 2% already in the ERC status. The stayers
represent only 3% of the sample, corresponding to approximately
90 children. These children are in the LAK class and are not
predicted to move.

The lower panel of Table 5 gives the transition probabilities for
the whole sample. In many cases it would be necessary to compute
the transition probabilities separately for the movers, but because

all the stayers are in the LAK class, they do not contribute to the
transition probabilities for the movers. The slight differences be-
tween the mover transition probabilities compared to the transition
probabilities in Table 4 are because 3% of the sample is in the
stayer class. Finally, it is interesting that based on a comparison of
the BICs, the results of the mover–stayer specification provide a
better fit to the manifest response frequencies than the LTA model
in Table 4. However, the discrepancy between the likelihood-ratio
chi-square and Pearson chi-square is, again, indicative of sparse
cells and needs to be inspected closely.

Conclusions

This article reviewed a selected set of models for stage-
sequential developmental processes that represent extensions of
the Markov chain model. The models selected for this article were
applied to the problem of stage-sequential development of reading
proficiency and included the manifest Markov model, the latent
Markov model, the latent transition model (with an aside to con-
sider latent class analysis), and the mixture latent transition model,
with a special case examining the mover–stayer model.

Not every possible extension of the manifest Markov model was
reviewed in this study. There have been recent developments that
deserve serious consideration in the context of developmental re-
search. For example, it is also now possible to embed Markov models
into the multilevel modeling framework (see Asparouhov & Muthén,
2008). With this extension researchers can now specify the latent
status variables to have random intercepts that vary across groups and
to model that variability as a function of between-groups covariates.
For example, a researcher can specify a multilevel mover–stayer
model to examine whether there is between-schools variability in
proportion of movers and stayers and how between-schools covariates
might explain those differences.

In addition, a very recent extension by Muthén (2008) combines
factor mixture analysis with latent transition analysis. In the con-
text of the reading example, this hybrid model would allow re-
searchers to examine if, say, the transition probability from the
LAK class to the EWR class is influenced by underlying hetero-
geneity in the probability of correctly answering the relevant items.
That is, those children who are in the LAK class who have higher
probabilities of answering the LAK items correctly may have a
great probability of transitioning into the EWR class compared to
those with a low probability of answering the items correctly.
Thus, transition probabilities based on the categorical responses
are moderated by continuous underlying heterogeneity in the prob-
ability of those responses.

In the interest of providing a uniform computing framework for
model estimation and testing, this article used the Mplus software
program (Muthén & Muthén, 2006). The Mplus software program
is quite comprehensive, incorporating general structural equation
modeling for continuous latent and observed variables as well as
models for categorical latent and observed variable. Perhaps the
single most powerful aspect of the Mplus program is the general
underlying model that combines categorical and continuous latent
and observed variables into one unifying estimation procedure.

The power and flexibility of Mplus notwithstanding, other soft-
ware is available that will estimate Markov models and extensions.
The Methodology Center at Pennsylvania State University, under
the directorship of Linda Collins, freely distributes the software

Table 5
Transition Probabilities for the Mover-Stayer Model
(Total Sample)

Variable

Movers and stayers (rows) by Time
1 classes (columns) Proportion of

total
sampleLAK EWR ERC

Movers .71 .26 .02 .97
Stayers 1.00 .00 .00 .03

Results for movers

Fall K classes (rows) by Spring K classes (columns)

LAK .34 .65 .01
EWR .00 .62 .38
ERC .00 .00 .00

Spring K classes (rows) by Fall first classes (columns)

LAK .61 .39 .00
EWR .00 .84 .16
ERC .00 .00 1.00

Fall first classes (rows) by Spring first classes (columns)

LAK .22 .55 .23
EWR .01 .12 .87
ERC .00 .00 1.00

Goodness-of-fit tests

&p
2(1,048,517, N ! 3,575) ! 10,004.46, p ! 1.0

&LR
2(1,048,517, N ! 3,575) ! 5,522.87, p ! 1.0

BIC ! 43,397.29

Note. LAK ! low alphabet knowledge; EWR ! early word reading;
ERC ! early reading comprehension; Fall K ! fall kindergarten; Spring
K ! spring kindergarten; Fall first ! Fall first grade; Spring first ! spring
first grade; BIC ! Bayesian information criterion.
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program WinLTA (Collins, 2002a), which can estimate most of
the models discussed in this article. However, it is not capable of
estimating Markov models with a mixture component.5 The Meth-
odology Center also distributes latent class analysis and latent
add-ons for SAS, called PROC LTA and PROC LCA. Another
program is Latent Gold (Vermunt & Magidson, 2005), which
shares many of the features of the Mplus program in terms of
estimating mixture latent transition analysis. As with any other
software program, the decision as to which one to use will depend
on factors of cost and efficiency.

In summary, the Markov model and its extensions provide only
one tool in a large array of quantitative methodologies for the
study of change, and as with any advanced statistical methodology,
its utility lies in its ability to provide insights into substantive
questions. The choice of the proper tool should, of course, be
driven by a theory of the kind of developmental change that is
taking place. The set of tools outlined in this article are suited to
stage-sequential theories of development. They each provide a
perspective that can be of great relevance to developmental psy-
chologists and can be further extended to provide insights into the
mechanisms that drive stage-sequential development. In the end,
however, continued applications of these methodologies will bear
out their substantive usefulness.

5 The URL for the Methodology Center is http://methodology.psu.edu/
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