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L. L. Thurstone’s (1927) model provides a powerful framework for modeling individual
differences in choice behavior. An overview of Thurstonian models for comparative data is
provided, including the classical Case V and Case III models as well as more general choice
models with unrestricted and factor-analytic covariance structures. A flow chart summarizes
the model selection process. The authors show how to embed these models within a more
familiar structural equation modeling (SEM) framework. The different special cases of
Thurstone’s model can be estimated with a popular SEM statistical package, including factor
analysis models for paired comparisons and rankings. Only minor modifications are needed
to accommodate both types of data. As a result, complex models for comparative judgments
can be both estimated and tested efficiently.
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The methods of ranking and paired comparison play an
essential role in the measurement of preferences, attitudes,
and values. In a ranking task, respondents are presented
with a set of alternatives (which, in the literature, are also
referred to as options, stimuli, or items) and are asked to
order them from most to least preferred. In a paired-com-
parison task, respondents are presented with pairs selected
from the set of available alternatives and are instructed to
select the more preferred alternative from each pair. The
popularity of paired-comparison and ranking methods can
be traced back to three reasons. First, by asking for a
comparison of choice alternatives, these methods impose
minimal constraints on the response behavior of a respon-

dent. Especially when differences between choice alterna-
tives are small, these methods are likely to provide more
information about individual preferences than is obtainable
by rating methods. Second, internal consistency checks are
available that facilitate the identification of respondents who
do not have well-defined preferences, values, or attitudes. If
respondents can be shown to be consistent in their judg-
ments, one can have much greater confidence in the ob-
tained measurements and the predictive value of the derived
scales in further applications. Third, paired-comparison and
ranking data provide a rich source of information about the
effects of individual differences and perceived similarity
relationships among choice alternatives. This article pre-
sents two applications that illustrate this important feature.

Because of their versatility, the methods of paired com-
parison and rankings are used in a wide range of studies.
Recent applications include visual paired-comparison stud-
ies involving young children (Pascalis, de Haan, & Nelson,
2002; Turati & Simion, 2002; Younger & Furrer, 2003),
rankings of risk perceptions (Florig et al., 2001; Morgan et
al., 2001), food characteristics (Oakes & Slotterback, 2002),
and clinical services (Hazell, Tarren-Sweeney, Vimpani,
Keatinge, & Callan, 2002). Most statistical models for the
analysis of paired-comparison and ranking data are based on
Thurstone’s (1927) work, which emphasized that decisions
should be viewed as probabilistic to account for apparent
inconsistencies in choice outcomes. For example, when
confronted several times with the same choice alternative
pair, respondents may not consistently choose the same
choice alternative each time. Similarly, respondents may not
always be consistent in the comparison of several choice
alternative pairs. Consider, for example, the choice alterna-
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enholt was supported by the Social Sciences and Humanities
Research Council of Canada.

We are indebted to David Gallardo-Pujol for supplying the
figures and to Carlos Garcı́a-Forero for comments on earlier ver-
sions of the article.

Correspondence concerning this article should be addressed to
Albert Maydeu-Olivares, Faculty of Psychology, University of
Barcelona, Paseo Valle de Hebrón, 171, 08035 Barcelona, Spain.
E-mail: amaydeu@ub.edu

Psychological Methods
2005, Vol. 10, No. 3, 285–304

Copyright 2005 by the American Psychological Association
1082-989X/05/$12.00 DOI: 10.1037/1082-989X.10.3.285

285



tives set {A, B, C}. A respondent may choose B when given
the pair {A, B}, A when given the pair {A, C}, and B when
given the pair {B, C}. These choices are consistent with a
{B, A, C} ordering of the items, and the pattern of paired
comparisons is said to be transitive. In contrast, an intran-
sitive pattern results when B is chosen for the pair {A, B},
A for the pair {A, C}, but C for the pair {B, C}.

To account for these apparent inconsistencies, Thurstone
(1927) proposed a framework that in today’s terms may be
called a discrete latent utility1 model. He argued that in a
choice task, (a) each choice alternative elicits a latent con-
tinuous utility judgment as a result of a discriminal process,
(b) respondents choose the choice alternative with the larg-
est utility value at the moment of comparison, and (c) the
utility values are normally distributed in the population of
respondents. Thus, his approach may be viewed as a latent
variable model in which each latent variable corresponds to
the utility judgment for one of the choice alternatives (Ta-
kane, 1987, 1994). As it is shown in the next section, the
observed preferences or choices are obtained on the basis of
a comparison of these latent variables. Thurstone (1927)
discussed several special versions of this approach, includ-
ing the Case V and Case III models. The Case III model
assumes that the latent utilities are uncorrelated in the
population of judges. The Case V model assumes further
that the latent utilities have a common variance. Although
he focused initially on paired comparisons, Thurstone
(1931) recognized later that many other types of choice
data, including rankings, could be modeled in a similar way.

Thurstone’s early conceptualizations gave rise to an ex-
tensive body of methodological and empirical research.
Surveys about developments in choice theories (Böcken-
holt, 2001b; Luce, 1977; Marley, 2002; Suppes, Krantz,
Luce, & Tversky, 1992) and choice modeling (Böckenholt,
1993; Fligner & Verducci, 1993; Train, 2003) indicate that
Thurstone’s approach continues to play a fundamental role
in the structural investigation of choice data. However,
applications of Thurstonian choice models in psychological
work are rare because, until recently, model estimation
proved to be a complex task and required considerable
statistical expertise. Fortunately, this situation has changed.
We show that if Thurstonian choice models are embedded
within a structural equations framework for discrete data,
the estimation of Thurstonian models for paired compari-
sons and rankings becomes straightforward because of their
similarity to a confirmatory common factor model with
binary indicators. As a result, computer programs for the
estimation of structural equation models can be used for
both estimating and testing the adequacy of Thurstonian
choice models. In addition, by framing Thurstonian models
as a special class of structural equation models, researchers
gain access to a full array of new modeling possibilities. On
the one hand, less restrictive models than Thurstone’s Case

III and Case V models are readily apparent. For instance, a
model in which the latent utilities are all intercorrelated can
be fitted. We refer to this model as an unrestricted Thur-
stonian model. Alternatively, a model in which the latent
utilities are structured according to a factor model can be
considered. This model is similar to a second-order factor
model with binary indicators. Finally, when background
information about the respondents and/or the choice alter-
natives is available, those variables can be readily incorpo-
rated into the model.

The purpose of this article is thus twofold. We present a
comprehensive nontechnical account of Thurstonian choice
modeling that reviews, integrates, and expands on recent
technical research on Thurstonian choice modeling. In ad-
dition, we embed Thurstonian models within a structural
equation modeling (SEM) framework and show how these
models can be estimated with a popular SEM package,
Mplus (L. Muthén & Muthén, 2001). Technical accounts on
a subset of Thurstonian ranking and paired-comparisons
models within an SEM framework were given by Maydeu-
Olivares (1999, 2001, 2003b). We go beyond this work by
including factor models with and without restrictions on the
estimated utility means of the choice alternatives in our
presentation.

The present article also complements and extends Böck-
enholt’s (2001a) work, which showed that the Bradley–
Terry–Luce paired-comparison model can be fitted with
multilevel software. The Bradley–Terry–Luce model differs
from Thurstone’s model by assuming that the within-pair
variability follows a logistic instead of a normal distribu-
tion. We go beyond Böckenholt (2001a) by (a) allowing for
heterogeneous within-pair variances in paired-comparisons
models, (b) including models for ranking data, and (c)
considering factor models for both paired comparisons and
rankings. These models for paired comparisons cannot be
analyzed with the estimation approach presented in that
article.

Factor models play a fundamental role in choice model-
ing. On the one hand, they help researchers to identify
sources of individual differences in utility judgments. On
the other hand, we show in this article that they enable
researchers to overcome the interpretational problems re-
cently outlined by Tsai (2003) that are inherently present
when modeling comparative data. Thurstonian factor ana-
lytic models for paired comparisons were considered previ-
ously by Tsai and Böckenholt (2001; see also Takane,
1987). For ranking data, they were considered by Chan and

1 Utility is a term that has a long history in philosophy and
economics to explain the phenomenon of value. Most frequently,
it has been given the connotation of “desiredness,” which is also
the meaning that we apply here (see also, Kahneman, 2003).
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Bentler (1998) and Maydeu-Olivares (1999). However,
these authors used a specialized estimation and testing ap-
proach that is cumbersome to use in applied work. The SEM
framework presented here is less complex and considerably
more user friendly. Equally important, it allows us to con-
sider more general factor-analytic models than those con-
sidered in these references.

In sum, this article extends the current literature in three
important ways: First, we use the same estimation frame-
work for the analysis of paired comparisons and rankings.
Only minor modifications are necessary to accommodate
these two different types of choice data within a SEM
approach. The joint consideration of both data types high-
lights their inherent similarities. Second, we present a com-
prehensive treatment of parameter interpretation and model
selection. Despite their importance, these topics have been
neglected in the literature. Third, with little loss in statistical
efficiency, the proposed SEM approach can accommodate
models with a much larger number of choice alternatives
than currently feasible under alternative estimation meth-
ods. Estimation is fast, and even complex models can be
estimated within seconds. Also, goodness-of-fit statistics
with accurate p values can be obtained even when the data
are sparse (Maydeu-Olivares, 2003a), overcoming a prob-
lem with previous approaches.

The article is structured into nine sections. In the first
section (Binary Coding of Comparative Judgments), we
describe how to code the observed paired comparisons and
rankings in a suitable form for subsequent SEM analyses. In
the second section (Thurstonian Choice Models for Rank-
ings), we review three Thurstonian ranking models (Cases
III and V and the unrestricted model) using a matrix for-
mulation and discuss the restrictions that are imposed by
these models on the thresholds and tetrachoric correlations
that are estimated from the data. In the third section (SEM
of Ranking Data), we describe how to estimate Thurstonian
ranking models using Mplus (L. Muthén & Muthén, 2001).
In the fourth section (A Ranking Application: Modeling
Career Preferences Among Spanish Undergraduates), we
analyze a ranking data set about career preferences of psy-
chology undergraduate students using this software pack-
age. In the fifth section (Thurstonian Paired-Comparison
Models), we describe an extension, originally proposed by
Takane (1987), to accommodate paired-comparison data
within Thurstonian choice models. In this section, we also
discuss (following Tsai, 2003) the model interpretation
problems that occur in Thurstonian modeling because of the
existence of equivalent covariance structures. The sixth
section (A Paired-Comparison Application: Modeling Pref-
erences for Compact Cars) presents a paired-comparison
application. As in the ranking example, we use Mplus to
analyze pairwise preferences for compact cars. The seventh
section (Thurstonian Factor Models for Paired Comparisons
and Ranking Data) discusses Thurstonian factor models for

both paired-comparisons and ranking data, including mod-
els with structured means. In this section, we also show how
these models can help in overcoming the interpretation
problems discussed in the fifth section, and we illustrate the
approach by fitting a factor model with structured means to
the car data in the eighth section (The Paired-Comparisons
Application Revisited: Modeling Preferences for Compact
Cars Using a Factor Model). The final section (Conclusion)
summarizes the main points of this article, discusses further
extensions, and provides a set of guidelines for choosing
among the different Thurstonian ranking and paired-com-
parison models considered in this article.

Binary Coding of Comparative Judgments

This section discusses how to code the observed paired-
comparison and ranking data in a form suitable for estimat-
ing Thurstonian choice models when standard software
packages are used for SEM.

Paired Comparisons

In a paired-comparison task, respondents are presented
with pairs selected from an item set and are instructed to
select the more preferred item from each pair. With n items,
there are ñ � [n(n � 1)]/2 pairs of items. For instance, ñ �
6 pairs can be constructed with n � 4 items. If the n � 4
items are labeled {A, B, C, D}, the following pairs can be
constructed: {A, B}, {A, C}, {A, D}, {B, C}, {B, D}, {C,
D}. A presentation of the pairs in this order may result in
strong carry-over effects. To control for this effect, it is
important to randomize the presentation order of the pairs as
well as the order of items within each pair (Bock & Jones,
1968). The observed paired-comparison responses can be
coded as follows:

yl � �1 if item i is preferred over item k
0 if item k is preferred over item i , (1)

where l indicates the pair {i, k}. Thus, we obtain a pattern
of ñ binary responses from each respondent.

Ranking Data

In a ranking task, all choice alternatives are presented at
once (in a randomized order), and respondents are asked to
either rank or order them. A ranking is obtained when the
choice alternatives are presented, and the respondent is
asked to assign ranking positions to each choice alternative.
For instance, for the n � 4 choice alternatives {A, B, C, D},
a ranking task consists of filling the following blanks with
numbers from 1 (most preferred) to 4 (least preferred).

Ranking
A B C D
— — — —
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Alternatively, the respondents may be asked to order the
choice alternatives. An ordering is obtained when the rank-
ing positions are presented, and the respondent is asked to
assign the choice alternatives to them. An ordering task for
our previous example consists out of filling the following
blanks with the given choice alternatives {A, B, C, D}.

Ordering
1st 2nd 3rd 4th
— — — —

Any ordering or ranking of n choice alternatives can be
coded equivalently using ñ paired comparisons. Thus, to
continue our example, the ordering {A, D, B, C} (or its
equivalent ranking) can be coded with the following paired
comparisons:

Ranking
A B C D
1 3 4 2

Ordering
1st 2nd 3rd 4th
A D B C

Pairwise Outcomes
{A, B} �A, C� �A, D� �B, C� �B, D� �C, D�

1 1 1 1 0 0

The converse is not true because not all paired comparison
outcomes that can be observed can be transformed into
rankings or orderings. Intransitive paired comparisons can-
not be converted to an ordering of the choice alternatives. In
the following, we analyze rankings and orderings after
transforming them to paired comparisons. Although both
paired comparisons and rankings can be transformed into
binary variables, we show later that the two data types have
different covariance structures that need to be taken into
account in a data analysis.

Thurstonian Choice Models for Rankings

This section discusses the Thurstonian response model for
ranking data. We present a matrix formulation of the rank-
ing model and explain the tetrachoric correlations and
threshold parameters that are implied by it. We also describe
some basic covariance structures that can be used (Case V,
Case III, and the unrestricted model). For these covariance
structures, we explain the identification constraints neces-
sary to estimate model parameters.

Response Model for Rankings

Consider a random sample of respondents sampled from
the population of interest. According to Thurstone (1927),
when a respondent is confronted with a ranking task, each of
the n items to be ranked elicits a utility. This utility is
unobserved and varies across respondents. A latent random
variable may be associated with each of the items to repre-
sent individual differences in the utilities in the population

of interest. We shall denote by ti the latent random variable
associated with the utilities for item i. Therefore, in Thur-
stone’s model there are exactly n latent variables when
modeling n choice alternatives.

A respondent prefers item i over item k, if for that
respondent, her or his utility for item i is larger than for item
k, and consequently ranks item i before item k. Otherwise,
the respondent prefers item k over item i and ranks item k
before item i. The former outcome is coded as 1, and the
latter is coded as 0. That is,

yl � �1 if ti � tk

0 if ti � tk
, (2)

where the equality sign is arbitrary, as the latent utilities are
assumed to be continuous, and thus, by definition, two latent
utilities can never take on exactly the same value. The
response process (see Equation 2) can be alternatively de-
scribed by the computation of differences between the latent
utilities. Let

y*l � ti � tk (3)

be a variable2 that represents the difference between choice
alternatives i and k. Because ti and tk are not observed, y*l is
also unobserved. Then, the relationship between the ob-
served comparative response yl and the latent comparative
response y*l is

yl � �1 if y*l � 0
0 if y*l � 0 . (4)

It is convenient to write the response process in matrix
form. Let t be the n � 1 vector of latent utilities and y* be
the ñ � 1 vector of latent difference responses, where ñ �
[n(n � 1)]/2. Then we can write the set of ñ equations (see
Equation 3) as

y* � At, (5)

where A is an ñ � n design matrix. Each column of A
corresponds to one of the n choice alternatives, and each
row of A corresponds to one of the ñ paired comparisons.
For example, when n � 2, A � (1 �1), whereas when n �
3 and n � 4,

A �

n � 3

� 1 �1 0
1 0 �1
0 1 �1

�, and A �

n � 4

�
1 �1 0 0
1 0 �1 0
1 0 0 �1
0 1 �1 0
0 1 0 �1
0 0 1 �1

�, (6)

2 Notice that there is no error term in this equation. The latent
comparative responses are determined solely by the latent utilities.
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respectively. For instance, in the design matrix for n � 4
choice alternatives, each column corresponds to one of the four
choice alternatives {A, B, C, D}. The corresponding rows give
the six possible paired comparisons {A, B}, {A, C}, {A, D},
{B, C}, {B, D}, {C, D}. Row 4 indicates that B is compared
with C; and Row 6 indicates that C is compared with D.

Thurstone’s model assumes that each of the latent vari-
ables in the vector of latent utilities t is normally distributed
in the population of respondents. Thus, we can write

t � N��t, �t�, (7)

where �t contains the means of the n latent utilities in the
population of respondents. The diagonal elements of �t

contain the variances, and the off-diagonal elements contain
the covariances of the n latent utilities in the population of
respondents.

The latent difference responses y* are a linear combina-
tion of the latent utilities t, as indicated in Equation 5. Given
the assumption of multivariate normality for t, the mean and
covariance structure of y* is

�y* � A�t, and �y* � A�tA�. (8)

�y* contains the means of the latent difference responses.
The diagonal elements of �y* contain the variances, and the
off-diagonal elements the covariances of the latent differ-
ence responses. Moreover, because the latent utilities t are
assumed to be multivariate normally distributed, the latent
difference responses y* also follow a multivariate normal
distribution because they can be expressed as a linear func-
tion of the latent utilities. The latent difference responses are
linked to the observed comparative responses y via the
threshold relationship expressed in Equation 4. Thus, only
the mean and covariance parameters of the latent difference
responses, �y* and �y*, are related directly to the observed
choice data. The mean vector �t and the corresponding
covariance matrix �t of the latent utilities have to be derived
from Equation 8.

Figure 1 depicts graphically as an SEM model the co-
variance structure represented in Equation 8 for a ranking
model with four choice alternatives. With n � 4 choice
alternatives, there are four latent utilities t and ñ � 6
comparisons y*. Consequently, in Figure 1 there are six
“observed” variables and four latent variables. The relation-
ship between the “observed” and latent variables is given by
Equation 3. Yet, the “observed” variables y* are not actu-
ally observed, only their dichotomizations y are observed
(the actual choices), where the relationship between the y*
and y variables is given by Equation 4. Note in this figure
that the relationship between the y* and t variables is
deterministic; the residual variances for the y* variables are
zero. Also, no structure has been imposed on the covariance
matrix of the latent variables t. Some constraints on the
parameters of the model depicted in Figure 1 are needed to
identify it. Also, different structures can be imposed on �t

to test hypotheses about possible sources of individual dif-
ferences in the evaluation of the utilities t. We return to
these issues below. Before doing so, we have to consider
how to embed in the model the fact that the only observed
data in the Thurstonian choice model are categorical.

Thresholds and Tetrachoric Correlations Implied by
the Ranking Model

In SEM, structured multivariate normal distributions that
have been dichotomized according to a set of thresholds are
estimated in several stages (B. Muthén, 1978). First, the
thresholds and the tetrachoric correlations3 among the un-

3 When two normally-distributed variables are dichotomized at
some threshold values, the correlation between the two underlying
normal variables (i.e., before the discretization) is called a tetra-
choric correlation.

Figure 1. Covariance structure of an unrestricted Thurstonian
choice model for ranking data for n � 4 choice alternatives. Some
identification restrictions are needed to identify the model. These
are described in the text.
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derlying normal variables are estimated. Then, the parame-
ters of interest are estimated from the threshold and tetra-
choric correlations. In this section we provide the
restrictions imposed by the Thurstonian choice model on the
population thresholds and tetrachoric correlations. These
are needed to estimate the model, as the only observed data
in the Thurstonian choice model are categorical.

To obtain the thresholds and tetrachoric correlations im-
plied by this model it is necessary to standardize the latent
difference responses y*. The standardization is performed
by computing y* � �y* and then dividing the result by the
corresponding standard deviation. In matrix form, the stan-
dardization can be written as z* � D(y* � �y*). z* are the
standardized latent difference responses, and D �
[Diag(�y*)]�1/2 is a diagonal matrix with the reciprocals of
the standard deviations of y* in the diagonal. The standard-
ized latent difference responses are multivariate normal
with a 0 mean vector and correlation matrix Pz*, where

Pz* � D��y*�D � D�A�tA��D. (9)

The standardized latent difference responses z* are related
to the observed comparative responses y via the threshold
relationship

yl � �1 if z*l � �l

0 if z*l � �l
. (10)

Because there are ñ observed comparative responses, there
are ñ thresholds �l. Collecting all thresholds �l into an ñ �
1 vector, �, we show in Appendix A that this vector of
thresholds has the following structure:

� � �DA�t. (11)

Finally, the ñ � ñ matrix Pz* in Equation 9 is a matrix of
so-called tetrachoric correlations because the latent compar-
ative responses z*, which have been dichotomized accord-
ing to Equation 10, are multivariate normal.

In summary, the estimation process proceeds as follows.
First, the ranking data are transformed into binary paired
comparisons. Then, the thresholds and tetrachoric correla-
tions of the paired comparisons are computed. Finally, the
parameters of interest, �t and �t, are estimated from the
estimated thresholds and correlations with Equations 9
and 11.

Because rankings give rise to only a subset of all possible
paired comparison data (no intransitivities can be observed),
an adjustment is needed to the number of degrees of free-
dom of the model for ranked data. When the analyzed
binary data are obtained by transforming ranking patterns,
there will be

r �
n�n � 1��n � 2�

6
(12)

redundancies among the thresholds and tetrachoric correla-
tions estimated from the binary variables (Maydeu-Oli-
vares, 1999). For this reason, the correct number of degrees
of freedom, when the parameters of the model are being
estimated for ranking data, is the number of thresholds plus
the number of tetrachoric correlations minus the number of
estimated parameters (say, q) minus r, the number of re-
dundancies; that is, df � [ñ(ñ � 1)]/2 � q � r.

Covariance Structures

The covariance matrix of the latent utilities �t can be
restricted in various ways to test hypotheses about possible
sources of individual differences in the evaluation of the
latent utilities. The classical covariance structures that were
proposed by Thurstone (1927) include (a) the unrestricted
model, in which the mean vector �t and the covariance
matrix �t are unrestricted; (b) the Case III model, which
assumes that the latent utilities are uncorrelated4 (i.e., �t is
specified to be diagonal but otherwise unrestricted); and (c)
the Case V model in which, in addition, the latent utilities
are assumed to have a common variance (i.e., �t � �2I).

Identification Constraints

Some identification constraints are needed for one to
estimate �t and �t, the parameters of the Thurstonian choice
model. Here we provide identification constraints for the
three classical Thurstonian covariance structures. The iden-
tification constraints provided here were selected because
they are convenient and easy to implement. However, they
are not unique, and other identification constraints can be
specified that yield equivalent model fits. The issue of
equivalent models and parameter interpretation in Thursto-
nian choice models is deferred to the section on model
identification for paired-comparison models.

Unrestricted Thurstonian model. The unrestricted
Thurstonian model requires three identification constraints:
(a) fix one of the item means, say �n � 0; (b) fix all the
covariances involving the last latent utility to 0; and (c) fix
the variance of the first and last latent utilities to 1. In the
next section we present an empirical study in which career
preferences among four broad psychology areas (academic,
clinical, educational, and industrial) were investigated with
a ranking task. For this example, n � 4, and �t and �t are
to be specified as

�t � �
�1

�2

�3

0*
� and �t � �

1* �21 �31 0*
�21 �2

2 �32 0*
�31 �32 �3

2 0*
0* 0* 0* 1*

�. (13)

4 Thurstone’s choice model assumes that latent utilities are
normally distributed. Therefore, uncorrelated utilities imply inde-
pendent utilities, and we use both terms interchangeably through-
out the manuscript.
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In Equation 13, the parameters fixed for identification are
marked with an asterisk. That is, for identification purposes
(a) the mean of the latent utilities for industrial psychology
is set to 0, (b) the variances of the latent utilities for
academic and industrial psychology are set to 1, and (c) the
covariances between the utilities for industrial psychology
and the utilities for all remaining areas are set to 0.

Thurstone’s Case III model. Thurstone’s Case III
model is identified by fixing one of the means of the latent
utilities, say �n � 0, and fixing one of the variances of the
latent utilities to 1, say �n

2 � 1. Thus, for the career’s
example, �t and �t are to be specified as

�t � �
�1

�2

�3

0*
� and �t � �

�1
2 0 0 0

0 �2
2 0 0

0 0 �3
2 0

0 0 0 1*
�. (14)

Thurstone’s Case V model. Thurstone’s Case V is iden-
tified by fixing one of the means, say �n � 0, and fixing the
common variance of the latent utilities to 1 (i.e., �2 � 1).
Again, for the careers example, �t and �t are to be specified
in this model as

�t � �
�1

�2

�3

0*
� and �t � �

1* 0 0 0
0 1* 0 0
0 0 1* 0
0 0 0 1*

�. (15)

SEM of Ranking Data

In this section, we first describe how to embed Thursto-
nian ranking models within an SEM framework. Then, we
provide details on how estimation is performed with a
popular SEM program, Mplus (L. Muthén & Muthén,
2001).

Thurstonian Ranking Models as SEM Models

For modeling the linear relations of ñ indicators y* on p
latent variables �, Lisrel (Jöreskog & Sörbom, 2001) and
Mplus use the following model when there are no exoge-
nous variables:

y* � � � �� � �, (16)

� � � � B� � 	. (17)

Here, � is an ñ-dimensional vector containing the intercepts
for the measurement equation (see Equation 16), and � is a
p-dimensional vector of intercepts for the structural equa-
tion (see Equation 17). � is an ñ � p matrix of factor
loadings, and B is a p � p parameter matrix of slopes for
regressions of latent variables on other latent variables. � is
the ñ-dimensional vector of residuals for the measurement
equation, and 	 is a p-dimensional vector of residuals for the

structural equation. In this model, it is assumed that � and 	
have mean 0 and that they are mutually uncorrelated. We
denote the covariance matrix of � by 
 (measurement error
variances), and the covariance matrix of 	 by �.

Then, the mean and covariance matrices of y* implied by
this SEM model are

�y* � � � ��I � B��1�,

and (18)

�y* � ��I � B��1��I � B��1	�� � 
.

The Thurstonian choice model for ranking data is a special
case of Equations 16 and 17, where p � n, � � t, and � �
0. As a result, the mean and covariance structures implied
by Thurstonian models for rankings—given in Equation
8—is a special case of Equation 18, where � � 0, � � A,
B � I, � � �t, � � �t, and 
 � 0. Imposing these
constraints on the matrices of Equation 18 yields Thursto-
nian models for ranking data. One may estimate the three
basic Thurstonian covariance structure models described
previously (unrestricted, Case III, and Case V models) by
imposing suitable constraints on � � �t.

SEM Estimation of Models With Binary Observed
Variables

SEMs with categorical indicators are estimated in similar
ways in Lisrel, Mplus, and EQS (Bentler, 1995). First, the
thresholds and tetrachoric correlations are estimated. In a
second stage, the model parameters are estimated from the
estimated thresholds and tetrachoric correlations. When a
single population is involved, Mplus, but not current ver-
sions5 of Lisrel and EQS, can estimate models with cate-
gorical indicators that have mean or threshold structures
(such as the ones in Thurstonian choice models). Therefore,
we apply Mplus in subsequent sections of this paper.

Mplus performs the second stage of the estimation by
minimizing

F � 
�̂ � ����	Ŵ
�̂ � ����, (19)

where �̂ denotes the set of all estimated thresholds and
tetrachoric correlations collected in a vector, and �() de-
notes the restrictions imposed on the thresholds and tetra-
choric correlations by the model parameters . For Thur-
stonian ranking models,  is the set of parameters estimated
in �t and �t. Thus, �() contains the set of population
thresholds from Equation 11 and the set of tetrachoric
correlations below the diagonal of Equation 9 expressed as
a function of the elements of �t and �t.

Let �̂ be the estimated asymptotic covariance matrix of

5 At the time of this writing, the current versions of Mplus,
Lisrel, and EQS are 3.12, 8.7, and 6.1, respectively.
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the sample thresholds and tetrachoric correlations. Two
choices for Ŵ in Equation 19 are Ŵ � �̂�1 (weighted least
squares [WLS]; B. Muthén, 1978, 1984), and Ŵ �
[Diag(�̂)]�1 (diagonally weighted least squares [DWLS];
B. Muthén, du Toit, & Spisic, 1997). Consistent and asymp-
totically normal parameter estimates (as well as standard
errors) can be obtained for both estimation methods.

Let N denote the sample size and T � NF̂ denote the
usual chi-square statistic. Restrictions imposed by a model
on the thresholds and tetrachoric correlations can be tested
as follows: For WLS estimation, T follows a chi-square
distribution in large samples. In the case of DWLS estima-
tion, T is not asymptotically distributed as a chi-square
variable. However, when DWLS is employed, a goodness-
of-fit test can be obtained, following Satorra and Bentler
(1994) and B. Muthén (1993), by scaling T by its asymptotic
mean or by its asymptotic mean and variance. We denote
these two test statistics by TM and TMV, respectively. As
shown by B. Muthén (1993), larger samples are needed to
obtain adequate parameter estimates, standard errors, and
goodness of fit tests with WLS than with DWLS. Thus,
DWLS seems to be preferable in practical applications and
is used in this article.

For the comparison of nested models when DWLS is
employed, the Satorra–Bentler mean adjusted statistic, TM-

(dif), can be used. This test is computed as described in
Satorra and Bentler (2001). A test for comparing nested
models with the TMV statistic is yet to be developed. There-
fore, in our applications, which involve comparing nested
models, TM, rather than TMV, will be used.

A Ranking Application: Modeling Career
Preferences Among Spanish Psychology

Undergraduates

A Spanish university wished to investigate career prefer-
ences among its undergraduate psychology students. A pilot
study was performed in which a sample of 57 psychology
sophomores were asked to express their preferences for four
broad psychology career areas (A � Academic, C � Clin-
ical, E � Educational, and I � Industrial) using a ranking
task.

Using Mplus, we fit three ranking models to the data: �t

unrestricted, Case III, and Case V. The goodness-of-fit
results from the Satorra–Bentler scaled statistic TM are
presented in Table 1. The degrees of freedom in the tests
reported in this table have been adjusted by use of Equation
12. For instance, for the unrestricted model, Mplus reports
TM � 16.91, df � 13, p � .53. However, the correct number
of degrees of freedom is 13 � 4 � 9, which yields a p value
of .08.

As can be seen in Table 1, all three models adequately
reproduce the estimated thresholds and tetrachoric correla-
tions. However, they differ in the number of estimated

parameters. Especially in view of the small sample size, it is
desirable to identify the more parsimonious representation.

To choose among these models, we performed nested
tests using the Satorra-Bentler mean adjusted statistic, TM-

(dif). The results of these nested tests are included in Table
1. They suggest that the fit of the Case V model cannot be
improved upon by the additional parameters estimated un-
der Case III or the unrestricted model specifications. There-
fore, a Case V model yields the most parsimonious fit of the
data.6

The Case V model assumes that the latent utilities are
uncorrelated and that their variances are equal. The common
variance cannot be identified, and it is therefore set equal to
1. Thus, in this model the only estimated parameters are the
means of the latent utilities. The estimated means (with
standard errors in parentheses) are �̂A � �1.01 (0.23),
�̂C � 0.99 (0.22), and �̂E � 0.30 (0.23), where �I � 0 for
identification purposes.

In conclusion, these analyses reveal that preferences for
the different academic areas appear to be mutually indepen-
dent, with equal between-judge variances for each of the
four career areas. The most preferred career area is clinical,
followed by educational and industrial, which do not appear
to differ significantly from each other. The least preferred
career area is academic. Because preferences appear to be
unrelated for the four areas, there is no particular academic
area that can serve as a substitute for other areas.

We return to this example in the next section, which
discusses equivalent covariance structures, because—as is
shown—all that can be said is that the available information

6 A larger sample size would provide greater power to distin-
guish the three models.

Table 1
Goodness-of-Fit Tests for Some Basic Models Applied to the
Career Ranking Data

Model and comparison T TM df p

Overall fit

Model
Unrestricted 6.26 15.23 9 .08
Case III 13.76 22.93 11 .02
Case V 15.42 16.91 14 .26

Nested tests

Comparison
Unrestricted vs. Case III 7.50 5.17 2 .08
Unrestricted vs. Case V 9.16 5.05 5 .41
Case III vs. Case V 1.69 0.81 3 .85

Note. Diagonally weighted least squares estimation; T � NF̂; TM is the
Satorra–Bentler mean adjusted statistic T; p � .05 indicates acceptable
overall fit to the data. In the unrestricted model, �t is unrestricted; in the
Case III model, �t is specified to be diagonal but otherwise unrestricted;
and in the Case V model, �t � �2I.
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in the data is consistent with the interpretation of mutually
independent preferences but that other interpretations are
consistent with the data as well.

Thurstonian Paired-Comparison Models

This section presents the Thurstonian response model for
paired comparisons as a straightforward extension of the
ranking model. We discuss the thresholds and tetrachoric
correlations implied by the paired-comparison model, and
we describe the identification constraints needed to identify
its parameters. The section concludes with a discussion of
equivalent choice models in analyzing paired-comparisons
and ranking data.

Response Model for Paired Comparisons

In a paired-comparisons task, respondents need not be
consistent in their pairwise choices, yielding intransitive
patterns. Inconsistent pairwise responses can be accounted
for by adding an error term, el, to the difference judgment
(see Equation 3),

y*l � ti � ti	 � el. (20)

This random error, el, is assumed to be normally distributed
with 0 mean, variance 	l

2, uncorrelated across pairs, and
uncorrelated with the latent utilities. The error term ac-
counts for intransitive responses by reversing the sign of the
difference between the preference responses ti and ti	.

As in the case of ranking data, the relationship between
the observed comparative response yl and the latent differ-
ence judgment y*l is given by Equation 4. Similarly, the
response process can be written in matrix form as

y* � At � e, (21)

where e is the ñ � 1 vector of random errors with covari-
ance matrix �2, which is a diagonal matrix with elements
	1

2, . . . , 	ñ
2.

Because the latent utilities t and the random errors e are
assumed to be normally distributed, the latent difference
responses y* are normally distributed. Their mean vector
and covariance matrix are

�y* � A�t and �y* � A�tA� � �2. (22)

Equation 22 follows the form of Equation 8 for rankings but
adds the covariance matrix of the random errors �2.
Clearly, the smaller the elements of the error covariance
matrix �2 are, the more consistent the respondents are in
evaluating the choice alternatives. In the extreme case,
when all the elements of �2 are 0, the paired-comparison
data are effectively rankings, and no intransitivities would
be observed in the data. A more restricted model that is
often found to be useful in applications involves setting the
error variances to be equal for all pairs (i.e., �2 � 	2I).

This restriction implies that the number of intransitivities is
approximately equal for all pairs, provided the mean differ-
ences are small.

Thresholds and Tetrachoric Correlations Implied by
the Models

In this section we provide the restrictions imposed by the
Thurstonian choice model on the population thresholds and
tetrachoric correlations. These are needed to estimate the
model, as the paired comparisons are dichotomous vari-
ables. To obtain the thresholds and tetrachoric correlations
for the paired comparison model, it is necessary to stan-
dardize the latent comparative responses y*. As in the case
of rankings, the standardization is performed in matrix form
as z* � D(y* � �y*), where D � [Diag(�y*)]�1/2 is a
diagonal matrix with the reciprocals of the standard devia-
tions of y*—given in Equation 22—and z* are the stan-
dardized latent difference responses.

These standardized latent difference responses are multi-
variate normal with mean 0 and correlation matrix

Pz* � D��y*�D � D�A�tA� � �2�D. (23)

Again, this equation parallels Equation 9 for rankings but
adds the error covariance matrix. Thus, this formula pro-
vides the restrictions assumed by the Thurstonian choice
model on the tetrachoric correlations estimated from the
observed paired comparisons. The standardized latent dif-
ference responses z* are related to the observed compara-
tive responses y via the threshold relationship presented in
Equation 10, and the structure imposed by the model on the
thresholds � in Equation 10 is given by Equation 11.

In summary, paired-comparison responses may deviate
from rankings by containing intransitivities. To allow for
such inconsistencies, random errors are introduced in the
response model. Because the random errors have a mean of
0, they do not change the threshold structure given by
Equation 11. However, the structure of the tetrachoric cor-
relations is affected by this additional source of variation in
the data, as can be seen by comparing Equation 23 for
paired comparisons and Equation 9 for rankings. This com-
parison also reveals the strong structural similarities be-
tween rankings and paired comparisons. Under a Thursto-
nian framework, paired comparisons provide the same
structural representation of the choice alternatives’ utilities
as rankings. From this perspective, rankings seem prefera-
ble to paired comparisons because they are easier to admin-
ister and less time consuming in experimental work. How-
ever, the estimation of ranking and paired comparison
models is the same. For four or more choice alternatives,
there are no differences in the identification constraints
needed to estimate the unrestricted, Case III and Case V
covariance structures for paired-comparisons and ranking
data. Note that the mean and covariance structures implied
by Thurstonian models for paired comparisons can be spec-

293SEM OF PAIRED-COMPARISON AND RANKING DATA



ified within the SEM framework of Equations 17 and 18 in
the same way that we specified models for rankings. The
only difference is that for paired comparisons, 
 � �2,
whereas for rankings, 
 � 0.

Equivalent Covariance Structures and Model
Interpretation

For any SEM model there are a number of equivalent
models that cannot be distinguished in terms of overall fit.
However, each of these models may have a different sub-
stantive interpretation (MacCallum, Wegener, Uchino, &
Fabrigar, 1993). Over the years, a set of rules has been
developed that can be applied to find equivalent SEM mod-
els (e.g., Lee & Hershberger, 1990; Stelzl, 1986). For Thur-
stonian choice models, Tsai (2003) has provided a rule that
can be applied to find the full set of models that are equiv-
alent to a given estimated model. Suppose a Thurstonian
model for paired comparisons has been estimated. For this
specific model, we denote the covariance matrix of the
latent utilities as �1 and the error covariance matrix as �1

2.
Both �1 and �1

2 must be positive definite. Then, any other
model with �2 and �2

2 of the form

�2 � c�1 � d1� � 1d�, and �2
2 � c�1

2, (24)

will be equivalent to the estimated model (Tsai, 2003,
Corollary 1). In Equation 24, c is a positive constant, and d
is an n � 1 vector of constants. These constants are arbi-
trary, but �2 and �2

2 must be positive definite. Equation 24
also can be used to find equivalent models for ranking data.
In this case �1

2 � 0.
To illustrate our discussion, consider the Case V model

that was selected as the most parsimonious model for the
career ranking data. One can obtain an equivalent model by
applying Equation 24 to the estimated �t matrix (which was
an identity matrix). For instance, arbitrarily using c � 2 and
d � (�0.2, 0.5, �0.2, 0.6)	, we find that a new model with

�*t � c�t � d1� � 1�d � 2 
 I � �
�0.2

0.5
�0.2

0.6
��1, 1, 1, 1�

� �
1
1
1
1
� ��0.2, 0.5, �0.2, 0.6�

� �
1.6 0.3 �0.4 0.4
0.3 3 0.3 1.1

�0.4 0.3 1.6 0.4
0.4 1.1 0.4 3.2

� (25)

is equivalent to the Case V model that was estimated in the
career data application; this new model has the same cor-

relation structure as in Equation 9. Additional equivalent
models can be found by use of different constants c and d.

The existence of equivalent models affects, in important
ways, the substantive interpretation of Thurstonian choice
models. On the one hand, it creates interpretational prob-
lems for Case III and Case V models. As can be seen in
Equation 25, the latent utilities in �*t are all correlated.
Thus, it cannot be claimed in the reported application that
career preferences are uncorrelated. All that can be stated is
that this model is the most parsimonious representation for
these data and that, according to this model, the data are
consistent with the hypothesis of uncorrelated career pref-
erences. For this interpretation to be validated, additional
data must be gathered. See Böckenholt (2004) for a detailed
discussion of this issue.

On the other hand, the existence of equivalent models
also creates interpretational problems for the unrestricted
model. The size of the estimated covariances in this model
cannot be interpreted, as an equivalent model with the same
goodness of fit but different estimates can always be found.
The estimated covariances can only be interpreted relative
to �1n � 0 (the covariance between the first and last alter-
natives). This covariance sets the scale for the estimated
covariances. Positive covariances are to be interpreted as
“stronger degree of association than �1n,” whereas negative
covariances are to be interpreted as “weaker degree of
association than �1n.” To see this, we transform the covari-
ance matrix into a matrix of squared distances � between
the latent utilities. The elements of this � matrix, �ik

2 (the
squared distance between choice alternatives i and k), can be
obtained with the formula (Mardia, Kent, & Bibby, 1979)

�ik
2 � �i

2 � �k
2 � 2�ik, (26)

where �i
2 and �k

2 are the variances, and �ik is the covariance
of the two latent utilities. Let c be the arbitrary positive
constant used to obtain an equivalent model with Equation
24. The matrix of relative distances �/c is unique for the full
set of equivalent models defined by Equation 24. Therefore,
relative distances can be interpreted uniquely, and covari-
ances should only be interpreted in relative terms. As can be
seen in Equation 26, a positive covariance implies a smaller
dissimilarity (distance) between the utilities, whereas a neg-
ative covariance implies a larger dissimilarity (Böckenholt,
2003).

Clearly, much care needs to be taken both in the param-
eter interpretation and the comparison of different Thursto-
nian models. Estimated parameters (means, variances, and
covariances) can be interpreted only in relative terms. Also,
if a Case III or V model is found to be a parsimonious
representation of the data, it is not possible to infer that the
latent utilities are independent. However, as shown in the
next application, the distinction between the three cases
(unrestricted and Cases III and V) is still a useful starting
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point in an exploration of different parsimonious forms of
the utilities’ covariance matrices.

A Paired Comparisons Application: Modeling
Preferences for Compact Cars

The goal of this application was to model purchasing
preferences for compact cars among Spanish college stu-
dents. The following seven compact cars were considered:
Citroën AX, Fiat Punto, Nissan Micra, Opel Corsa, Peugeot
106, Seat Ibiza, and Volkswagen Polo. Binary paired com-
parison data were collected from a random sample of 294
undergraduates in the fall of 1996. The students were asked
to indicate for each of the 21 pairs formed on the basis of the
seven cars which one they would prefer to purchase. The
presentation order of pairs as well as the order of cars within
each pair was randomized.

Four basic models were fitted to the data with Mplus. The
four models were obtained by crossing two structures for �t

(unrestricted and Case III) and two structures for �2 (�2 �
diagonal, and �2 � 	2I). The goodness-of-fit results are
presented in Table 2. Table 2 shows that the unrestricted
model reproduces reasonably well the thresholds and tetra-
choric correlations. However, the Case III model fails to
adequately fit these data. Therefore, we conclude that pref-
erences for these compact cars are not consistent with the
hypothesis of independently evaluated choice alternatives.

To further investigate the error variances of the unre-
stricted model, we compared the unrestricted model with
�2 diagonal and the unrestricted model with equal error
variances. The test of the difference in fit of these two
nested models yielded TM(dif) � 13.54, df � 20, p � 0.85,
which indicates that a model with equal error variances is
satisfactory for these data. Thus, there is no evidence to
suggest that some car pairs are compared with more within-
pair variability than others.

The parameter estimates and standard errors for the se-
lected model are shown in Table 3. The estimated parame-
ters shown in this table are to be interpreted relative to the
fixed parameter that sets the scale for the remaining param-
eters. Thus, the estimated means (presented in the last

column of the table) are to be compared relative to the mean
of Volkswagen Polo, which is fixed to 0. All estimated
means are statistically different from the mean of this car,
except for Peugeot 106. Constructing 95% confidence in-
tervals for the car means we see that Seat Ibiza is the most
preferred car, followed by Volkswagen Polo, Peugeot 106,
and so forth until the least preferred car, which is the
Citroën AX. The estimated common variance of the pair-
wise errors, 	̂2 � 0.29, is statistically larger than 0. The
variances of the latent utilities for the different cars are also
greater than 0. The estimated variances of the latent utilities
also can be compared (with 95% confidence intervals) with
the two variances, which are fixed to 1, and set the scale for
the remaining variances. Finally, the estimated covariances
can be compared with the covariance that sets their scale.
With the identification constraints we have chosen, this is
the covariance between the first and last choice alternatives
(in this case Citroën AX and Volkswagen Polo). In Table 3
there is one estimated covariance that is positive and statis-
tically larger than 0. We interpret this covariance as “the
association between the utilities for Citroën AX and Peu-
geot 106 is stronger than the association between Citroën
AX and Volkswagen Polo.” Also, there are two estimated
covariances that are statistically significant but negative in
Table 3. Because a negative covariance implies a greater
distance between the utilities, we interpret these covariances
as “the association between the utilities for Citroën AX and
Seat Ibiza is weaker than the association between Citroën
AX and Volkswagen Polo” and “the association between
the utilities for Nissan Micra and Seat Ibiza is weaker than
the association between Citroën AX and Volkswagen Polo.”
The remaining associations are not stronger or weaker than
the association between Citroën AX and Volkswagen Polo
given the sample size employed.

In sum, the following substantive conclusions can be
drawn from the analysis of these data: (a) a Thurstonian
framework is appropriate for modeling these data because
the unrestricted model fits; (b) the number of intransitivities
is approximately equal across pairs, as the variances of the
error terms can be set equal to each other; (c) the most
preferred car model is the Seat Ibiza, followed by the
Volkswagen Polo, Peugeot 106, and so forth, until the least
preferred car which is the Citroën AX; and (d) the latent
preferences are not independent, as the Case III model does
not fit.

Because the cars were not evaluated independently of
each other, respondents may have used one or several at-
tributes in arriving at their preference judgments. These
attributes cannot be derived directly by inspecting the esti-
mated covariance matrix. In other words, it is not immedi-
ately apparent why there is a stronger association between
preferences for Citroën AX and Peugeot 106 than between
preferences for Citroën AX and Seat Ibiza. In the next
section, we consider fitting a factor-analytic model to the
utilities’ covariance matrix (Takane, 1994; Tsai & Böcken-

Table 2
Goodness-of-Fit Tests for Some Basic Models Applied to the
Cars Paired-Comparisons Data

Model T TM df p

Unrestricted, �2 diagonal 98.95 168.28 184 .79
Unrestricted, �2 � 	2I 106.03 182.30 204 .86
Case III, �2 diagonal 346.91 389.74 198 .01
Case III, �2 � 	2I 381.16 431.30 218 .01

Note. Diagonally weighted least squares estimation; T � NF̂; TM is the
Satorra–Bentler mean adjusted statistic T; p � .05 indicates acceptable
overall fit to the data. In the unrestricted model, �t is unrestricted; in the
Case III model, �t is specified to be diagonal but otherwise unrestricted;
and in the Case V model, �t � �2I.
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holt, 2001). We refer to these models as Thurstonian factor
models. By using these factor analytic models, we may be
able to uncover latent attributes that systematically influ-
enced the respondents’ judgments. These latent attributes
may prove useful in explaining why associations for some
cars are stronger than for others.

Thurstonian Factor Models for Paired Comparisons
and Ranking Data

Thurstonian factor models are well suited to represent
dependencies among choice alternatives because of three
significant advantages. First, Thurstonian factor models are
more parsimonious than Thurstonian models with an uncon-
strained covariance matrix. As a result, parameters can be
estimated with greater precision, especially when the num-
ber of factors is small. Second, they can provide a graphical
representation of the similarity structure underlying the
choice data that is considerably easier to interpret than the
estimated elements of the unconstrained covariance matrix.
Third, and most important, relative distances between items
in this graphical representation may be unique. That is,
when a Thurstonian factor model fits the data, we can
overcome, to some extent, the interpretational problems
caused by the existence of equivalent models.

In the following, we present the threshold and correlation
structure implied by Thurstonian factor models, and we
provide identification restrictions for these models. Next,
we discuss how to meaningfully interpret the model pro-
vided it fits the data. We conclude the section by introducing
a special case of this model in which the mean preferences
are specified to depend on the choice alternatives’ position
in the factor space.

Factor Models for Choice Data

We begin by considering the unobserved latent utilities t
for the n choice alternatives. In a Thurstonian factor model,
the vector t is represented by the following exploratory
factor analysis model:

t � �t � �t� � �. (27)

When the number of common factors is m, �t contains the
n means of the latent utilities, �t is an n � m matrix of
factor loadings, � is an m-dimensional vector of common
factors, and � is an n-dimensional vector of unique factors.
This factor model assumes that the common factors have
mean 0, have unit variance, and are uncorrelated. The model
also assumes that the unique factors have mean 0 and are
uncorrelated, so that their covariance matrix, �t

2, is diago-
nal. In concordance with the distributional assumptions of
Thurstonian choice models, we assume that the common
and unique factors are normally distributed.

Consequently, the covariance matrix of the latent utilities
can be written as

�t � �t��t � �t
2. (28)

The mean vector and covariance matrix of the latent differ-
ence responses y* are normally distributed. Their mean
vector and covariance matrix are obtained by substituting
the utilities’ mean vector �t and covariance matrix �t,
implied by the factor model represented by Equation 28 into
Equation 22.

In important ways, the Thurstonian factor model is sim-
ilar to a second-order factor-analytic model. Under a Thur-
stonian factor model, the unobserved utilities t can be
viewed as first-order factors, and the common factors � can

Table 3
Unrestricted Model for the Cars Paired-Comparisons Data: Parameter Estimates of �t and �t and Standard Errors

�̂t 1 2 3 4 5 6 7 �̂t

1. Citroën AX — �1.43
(fixed) (0.11)

2. Fiat Punto �0.04 0.89 �0.58
(0.14) (0.26) (0.09)

3. Nissan Micra 0.29 0.05 1.60 �0.78
(0.18) (0.20) (0.34) (0.11)

4. Opel Corsa 0.13 �0.14 �0.07 0.47 �0.30
(0.12) (0.15) (0.16) (0.20) (0.08)

5. Peugeot 106 0.25 �0.12 0.12 �0.01 0.96 �0.15
(0.13) (0.16) (0.19) (0.15) (0.26) (0.09)

6. Seat Ibiza �0.35 0.12 �0.40 �0.11 �0.06 1.29 0.22
(0.17) (0.21) (0.19) (0.18) (0.18) (0.35) (0.10)

7. Volkswagen Polo 0 0 0 0 0 0 — 0
(fixed) (fixed) (fixed) (fixed) (fixed) (fixed) (fixed) (fixed)

Note. Diagonally weighted least squares estimation; standard errors in parenthesis; parameters in bold are significantly different from 0 at � � .05. 	̂2 �
0.29 (0.04). A number of parameters have been fixed for identification purposes.
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be viewed as second-order factors. Furthermore, the struc-
ture for the latent utility judgments is confirmatory (given
by the contrast matrix A), but the structure for the common
factors is exploratory. To illustrate our discussion, consider
Figure 2. In this figure, we have depicted the covariance
structure of the latent utilities y* for a one-factor Thursto-
nian model for paired-comparisons data. Notice that the
structure for the first-order factors (the unobserved utilities
t) is confirmatory and that Thurstonian factors are similar to
second-order factors.

Again, as the observed data is binary, the model must be
estimated with tetrachoric correlations. Equations 11 and 23
contain the restrictions imposed by Thurstonian paired-
comparisons models on the thresholds and tetrachoric cor-
relations of the binary outcomes, respectively. To obtain the
thresholds and tetrachoric correlations implied by a Thur-

stonian factor model, we substitute the utilities’ mean vector
�t and covariance matrix �t that are implied by the factor
model into Equations 11 and 23. First, we obtain the vector
of thresholds,

� � �DA�t. (29)

Then, we obtain the correlation matrix of the standardized
latent difference responses,

Pz* � D�A�tA� � �2�D

� D
A��t��t � �t
2�A� � �2�D, (30)

where D � [Diag(�y*)]�1/2 � {Diag[A(�t��t � �t
2)A� �

�2]}�1/2. With �2 � 0, Equations 29 and 30 represent the
common factor model for ranking data.

Identification Constraints for Thurstonian Factor
Models

Some identification restrictions are needed to be able to
estimate Thurstonian factor models. Here we provide one
possible set of restrictions chosen because they are easy to
implement.

The identification restrictions needed to identify the factor
part of the Thurstonian model are similar to those used to
identify a standard exploratory factor-analytic model. Mc-
Donald (1999, p. 181) notes that the simplest way to solve
the rotational indeterminacy problem in exploratory factor
models with SEM software consists of setting the upper
triangular part of the factor loading matrix equal to 0. This
suggestion amounts to setting ij � 0, i � 1, . . . , m � �1;
j � i � 1, . . . , m. For example, with these constraints, the
factor loading matrix for a three-factor model has the fol-
lowing form:

�t � �
11 0 0
21 22 0
31 32 33
···

···
···

n1 n2 n3

�. (31)

The use of Equation 31, together with the assumption of
uncorrelated factors, provides an arbitrary but simple way of
obtaining a just-identified exploratory factor model. Addi-
tional constraints are needed for paired-comparisons and
ranking factor models, because the data represent differ-
ences between latent utilities. The identification constraints
for the parameters of the Thurstonian factor models �t, �t,
�t, and �7 are the same for both data types. In addition to
the constraints on the loading matrix given by Equation 31,
we suggest using the following constraints to obtain an

7 Recall that for ranking models, � � 0. Also, the Thurstonian
factors are assumed to be uncorrelated.

Figure 2. Covariance structure of a Thurstonian one-factor
model for paired-comparisons data for n � 4 choice alternatives.
Some identification restrictions are needed to identify the model.
These are described in the text. A one-factor model for ranking
data is obtained by setting 	1, . . . , 	6 � 0.
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identified Thurstonian factor model: (a) fix the mean of the
last item in the item set to 0, �n � 0; (b) fix all factor
loadings involving the last item to 0, ni � 0, i � 1, . . . , m;
and (c) fix the unique variance of the last item to 1, �n

2 � 1.
These identification constraints for the Thurstonian factor
models define the scales of the means of the latent utilities,
the factor loadings, and the unique factor variances, respec-
tively. As an illustration, the identification restrictions
needed to estimate a Thurstonian two-factor model for
paired-comparisons and ranking data are

�t � �
�1

�2
···

�n�1

0*
�, �t � �

11 0*
21 22
···

···
n�1,1 n�1,2

0* 0*
� , and

�t
2 � �

�1
2 0 · · · 0

0 · · ·
······ �n�1

2 0

0 · · · 0 1*
�. (32)

Note that at least n � 5, 6, 8, and 9 items are required to
estimate Thurstonian factor models with m � 1, 2, 3, and 4
common factors in both paired-comparisons and ranking
data. The minimal number of items results from the con-
straint that the number of identified factor loadings and
variances of the unique factors cannot exceed the number of
identified elements in the unconstrained covariance matrix.
Thus, in a Thurstonian m-factor model with �t � �t��t �
�t

2, there are n � 1 parameters in �t
2 and nm � m �

m(m � 1)/2 � m(2n � m � 1)/2 parameters in �t. Yet, the
total number of estimated parameters cannot exceed
{[n(n � 1)]/2} � 1, the number of identifiable parameters in
�t for unrestricted models.

Fortunately, despite the large number of identification
constraints, the interpretation of factor models is straight-
forward and appealing. As shown in the next example, the
factor loadings provide us with information about similarity
relationships between choice alternatives that can be de-
picted graphically (Takane, 1994).

Interpretation of Thurstonian Factor-Analytic
Models

Equation 24 demonstrates that different covariance ma-
trices are empirically indistinguishable because they can
lead to the same paired-comparison or ranking outcomes.
When a Thurstonian m-factor model holds, the model in-
terpretation is easier than for an unrestricted model because
we can interpret the factor loadings as coordinates in an
m-dimensional similarity space (the factor space). As with
any exploratory factor model, its axes can be shifted and
rotated in any way to simplify interpretation.

Furthermore, when the variances of the unique factors can
be set equal to each other, the relative distances between the

choice alternatives in the m-dimensional space are unique
(see Appendix B). In other words, they remain invariant for
any of its equivalent models. This is a very important
property, as when this model fits, the interpretational prob-
lems caused by the existence of equivalent models are
resolved. Also, with this constraint, higher dimensional
factor models can be estimated for a fixed number of choice
alternatives than when the variances of the unique factors
are not set equal to each other. Thus, only m � 3 choice
alternatives are required to estimate a Thurstonian m-factor
model in both paired-comparisons and ranking data when
the variances for the unique factors are set equal to each
other. These models are identified with the constraints de-
picted in Equation 32, where the �i

2s are set equal to each
other.

To illustrate the approach, we estimate a factor model for
the car preference data in the next section. This analysis will
demonstrate that it is not necessary to consider the unre-
stricted covariance matrix for these data sets. Instead, a
two-dimensional factor model with equal variances for the
unique factors provides a satisfactory description of the
data.

Factor Models With Restricted Means

In standard factor-analytic models it is possible to restrict
the means of the observed variables so that they depend on
the factor loadings and the factor means (see Bentler &
Yuan, 2000). However, this is done rarely in factor-analytic
applications, as generally there is little interest in modeling
means. In contrast, in analysis of choice data the means of
the latent utilities are important parameters because they
define stochastically the ordering of the choice alternatives
from most to least preferred. By relating the factor loadings
to the choice alternatives’ utility means, we can investigate
whether the mean preferences can be explained by individ-
ual differences in the evaluation of the choice alternatives.
For example, if individuals differ in their perceptions of the
leadership qualities of the political candidates, it is possible
that this source of individual differences also determines the
mean preferences for the candidates. Such hypotheses can
be tested by formulating a Thurstonian factor model in
which the utilities’ means depend on the common factors.
This is a constrained version of the Thurstonian factor
model represented in Equation 27, given by

t � 1� � �t� � �. (33)

Here, 1 is an n � 1 vector of 1s, and � is a constant. This
model differs from the common-factor model (see Equation
27) in two respects. First, the vector of utilities’ means �t in
Equation 27 has been replaced by the vector of common
intercepts, 1�, for regressing the latent utilities on the com-
mon factors. Second, the means of the common factors, ��,
are now parameters to be estimated. In standard factor-
analytic models, these means are set equal to 0.
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The correlation structure implied by this special case of
the Thurstonian factor model is equal to the one given in
Equation 30. However, the restrictions introduced by this
model on the means constrain the threshold structure, lead-
ing to the expression

� � �DA�t � �DA�1� � �t���. (34)

When the latent means �t are regressed on the factor
means ��, the factor loading matrix becomes the matrix of
regression slopes. In addition, a common intercept, �, needs
to be estimated. This model is identified with the same
constraints used for other Thurstonian factor models. How-
ever, to identify the threshold structure in Equation 34, the
last element of 1� is replaced by a 0.

The Paired-Comparisons Application Revisited:
Modeling Preferences for Compact Cars With a

Factor Model

Previously, we found that the best fitting basic model for
the cars paired-comparison example was an unrestricted
model with �2 � 	2I. In this section, we reanalyze these
data to investigate whether a common factor model ac-
counts for the observed associations among the car
preferences.

Because the interpretation of Thurstonian factor models is
simplified when the variances for the unique factors are set
equal to each other, here we consider models with this
constraint. The maximum number of dimensions that can be
fitted in this application with this constraint is three. There-
fore, we estimated models from one to three factors to these
data, assuming that the within-pair error variance is homog-
enous (i.e., �2 � 	2I) and that the unique factors have the
same variance with �t

2 � �2I (except for the variance of the
last choice alternative, which is fixed to 1 for identification
purposes). We provide in Table 4 the goodness-of-fit statis-
tics for these three models. Although the one-factor model
does not fit, the two-factor model does provide a satisfactory
fit to the data. The three factor model does not fit signifi-
cantly better than the two factor model, TM(dif) � 5.56,
df � 4, p � .23. Furthermore, a comparison between the
two-factor model and an unrestricted model revealed that

the additional parameters of the unrestricted model do not
improve the fit of the two-factor model: TM(dif) � 11.34
(df � 8, p � .18). Thus, the two-factor model gives the most
parsimonious representation for these data. We provide in
Table 5 the parameter estimates and standard errors for this
two-factor model. The ordering of the mean utilities
changes little for the different covariance structures. Thus,
the estimated means for the two-factor model given in Table
5 are very similar to those estimated under the unrestricted
model (see Table 3).

Figure 3 provides a plot of the factor loadings reported in
Table 5. Because, in this model, the variances of the unique
errors are set equal to each other, the relative distances
between the compact cars remain invariant when identifi-
cation restrictions are changed. Factor models with equal
variances for the unique errors are unaffected by the inter-
pretation problem caused by Equation 24. Thus, the relative
positions of the compact cars in Figure 3 can be interpreted
directly.

In Figure 3, we have drawn two orthogonal rotated axes
that are more amenable to interpretation. The first rotated
dimension—the dashed diagonal line going from the lower
left to upper right of the figure—appears to be related to car
size. Note that the positive end of this dimension is at the
lower left. The largest model (Seat Ibiza) loads positively on
this dimension, and the two smallest cars (Nissan Micra and
Citroën AX) load negatively. The second dimension—the
dashed line going from the upper left to the lower right of
the figure—appears to be related to the perceived sturdiness
of the cars. The positive end of this dimension is at the
lower right. The cars loading positively on this dimension
(e.g., Citroën AX) are perceived to be more sturdy, whereas
the cars loading negatively (Seat Ibiza, Nissan Micra, and
Fiat Punto) are perceived to be less sturdy. Thus, individual
differences in the comparisons of these car models are
explained by these dimensions. Respondents who prefer
smaller car models are less likely to prefer larger car mod-
els, and conversely. Similarly, respondents who prefer more
sturdy car models are less likely to prefer less sturdy cars,
and conversely.

We next investigated whether these dimensions also ex-
plain the means of the latent utilities. As a first check of the
relationship, we regressed the utilities’ means on the esti-
mated factor loadings. The regression model yielded a R2 of
.52. Although the variance accounted for is substantial, this
result suggests that a model in which the utilities’ means are
exclusively represented by the two-dimensional factor
structure is unlikely to fit the data. However, we could not
obtain a fit statistic for a model in which the mean prefer-
ences depend on the two common factors. The estimation
algorithm failed to converge after 1,000 iterations. On the
basis of the R2 statistic, we conclude that although car size
and car sturdiness explain the associations among the pref-
erences for the different car models, they do not fully
account for the mean preferences. Other considerations, in

Table 4
Goodness-of-Fit Tests for Some Factor Models Applied to the
Cars Paired-Comparisons Data

Model T TM df p

One factor 226.91 286.16 217 .01
Two factors 146.82 211.14 212 .50
Three factors 125.13 197.47 208 .69

Note. Diagonally weighted least squares estimation. �2 � 	2I; �t
2 �

�2I (except for the last choice alternative, which is fixed to 1 for identifi-
cation); T � NF̂; TM is the Satorra–Bentler mean adjusted statistic T; p �
.05 indicates acceptable fit to the data.
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addition to car size and sturdiness, played a role in the
students’ car choices.

Conclusion

In this article, we reviewed Thurstonian choice modeling
of paired comparisons and ranking data by embedding them
within an SEM framework. In addition, we showed how
these models can be estimated with a popular SEM package,
Mplus.

Guidelines for Model Selection in Thurstonian
Choice Modeling

Model selection and interpretation require much care
because of the comparative nature of the observed data. Our

recommended sequence of analyses in applications is sum-
marized in the flow chart presented in Figure 4.

Step 1: Estimate an unrestricted model. The goals of
this analysis are to determine whether the unrestricted
model with equal or unequal pair-specific variances pro-
vides a satisfactory fit to the data and, in the case of misfit,
to identify the systematic sources of misfit. For example, a
Thurstonian model may not fit the data if the experimenter
ignored an important individual difference variable in the
analysis (Böckenholt, 1993). Consider a ranking of U.S.
political candidates. If the political orientation of the voters
(Democrat vs. Republican) is not taken into account, the
Thurstonian model is likely to provide a poor fit of the data,
as it may not be possible to capture all of the individual
differences with a single covariance matrix. Instead, it may
be necessary to estimate a separate covariance matrix for
each group of the voters. However, if the unrestricted model
provides a satisfactory fit of the data, it is important to
consider special cases of the model, to reduce both the
number of parameters to be estimated, and to simplify the
interpretation of the results.

Step 2: Estimate a Case III model. It is useful to com-
pare the fit of the unrestricted model with the fit of a Case
III model. If the Case III does not fit well, the hypothesis of
independent latent utilities is rejected. In contrast, when a
Case III model fits, we cannot conclude that the indepen-
dence hypothesis holds because models with nonzero co-
variances can yield an equivalent fit of the data. If the
hypothesis of dependent preferences is to be rejected, addi-
tional data need to be collected that provide information on
the origin of the scale values (see Böckenholt, 2004, for
further details).

Step 3a: Case III model fits well. If the Case III model
provides a satisfactory fit to the data, investigate whether the
more parsimonious representation provided by the Case V
model can fit the data as well.

Step 3b: Case III fits poorly. A poor fit of the Case III
model indicates that the hypothesis of independent individ-
ual differences can be rejected. In this case, factor models

Figure 3. Two-dimensional preference map for the compact cars
data. The car models are Citroën AX, Fiat Punto, Nissan Micra,
Opel Corsa, Peugeot 106, Seat Ibiza, and Volkswagen Polo. The
solid lines represent the unrotated factors. The dashed lines rep-
resent the rotated factors (car size and sturdiness). The � and �
signs denote the high and low ends of the rotated dimensions.

Table 5
Two-Factor Model With Common Unique Variances for the Cars Paired-Comparisons Data

Car

�t �t �t
2

Parameter
estimate SE

Parameter
estimate SE

Parameter
estimate SE

Parameter
estimate SE

Citroën AX 0.55 0.14 0 fixed �1.44 0.13 0.69 0.11
Fiat Punto �0.23 0.16 0.24 0.21 �0.57 0.57 0.69 0.11
Nissan Micra 0.48 0.28 0.79 0.15 �0.77 0.11 0.69 0.11
Opel Corsa 0.15 0.13 �0.09 0.13 �0.29 0.08 0.69 0.11
Peugeot 106 0.31 0.15 �0.14 0.12 �0.16 0.09 0.69 0.11
Seat Ibiza �0.67 0.16 �0.17 0.32 0.21 0.10 0.69 0.11
Volkswagen Polo 0 fixed 0 fixed 0 fixed 1 fixed

Note. Diagonally weighted least squares estimation; 	̂2 � 0.27 (0.05). The factor loadings �t correspond to the positions of the car models in the
preference map shown in Figure 3.
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with equal unique variances can be fitted to the data. These
models facilitate the interpretation of the individual prefer-
ences’ structure. A rejection of these models requires fitting
a factor model with unequal unique variances. If these
models are rejected as well, then the unrestricted model
would be selected as the final model.

Step 4: Thurstonian factor model fits well. If a satisfac-
tory fit of the Thurstonian factor model is obtained, possibly
with different unique variances, then the fit of a factor
model, in which preference means depend linearly on the
factor loadings, should be investigated. A satisfactory fit of
this model provides an attractive interpretation about the
source of the mean preferences.

Thurstonian Choice Modeling Within an SEM
Framework

We have demonstrated in this article that Thurstonian
models can be fitted to ranking and paired-comparison data
within a structural equation framework. Using Mplus, we
showed that the classical hypotheses of an unrestricted
covariance, Case III, and Case V structures are straightfor-
ward to specify and estimate. Moreover, with additional
modifications, factor-analytic models can be estimated that
facilitate testing dimensional theories about individual dif-
ferences. A description of how to use Mplus to estimate
Thurstonian models, the input files used in the examples,

and the data files are available as supplementary materials
that can be downloaded from http://dx.doi.org/10.1037/
1082-989X.10.3.285.supp.

With little loss in statistical efficiency, the proposed SEM
approach can accommodate models with a much larger
number of choice alternatives than currently feasible under
alternative estimation methods. Estimation is fast, and even
complex models can be estimated within seconds. Also,
goodness-of-fit statistics with accurate p values can be ob-
tained even when the data are sparse.8 For example, May-
deu-Olivares (2003a) reports that when SEM procedures are

8 The p values reported in Mplus assess how well Thurstonian
choice models reproduce the estimated thresholds and tetrachoric
correlations (i.e., the structural restrictions imposed by the model).
The tetrachoric correlations assume a normal distribution underlying
the observed data. However, recent research (Maydeu-Olivares, in
press) has shown that the tests for structural restrictions in tetrachoric
correlations are somewhat robust to violations of the underlying
normality assumption. It is possible to test the underlying normality
assumption with procedures described in B. Muthén and Hofacker
(1988) but only for three variables at a time. A more fruitful avenue
may be to simultaneously test the structural restrictions and the
underlying normality assumption with an overall test described in
Maydeu-Olivares (2001). Neither the Muthén–Hofacker nor the May-
deu-Olivares procedure is currently implemented in Mplus.

Figure 4. Suggested strategy for model selection. Flow chart summarizing the decision tree for
selecting a Thurstonian model for paired-comparisons or ranking data.
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used, 300 observations suffice to obtain accurate parameter
estimates, standard errors, and goodness-of-fit tests for an
unrestricted ranking model for seven choice alternatives,
and as few as 100 suffice to estimate and test an unrestricted
paired-comparisons model with seven choice alternatives.
In contrast, p values obtained by use of the usual goodness-
of-fit tests for maximum-likelihood estimation (e.g., the
likelihood ratio test G2 and Pearson’s �2) are notoriously
inaccurate when choices among many objects are modeled
and the sample size is small. Taken together, these advan-
tages demonstrate that the proposed framework has effec-
tively overcome past estimation and inference problems in
the analysis of ranking and paired-comparison data.

Also, our specification of Thurstonian scaling models as
structural equation model facilitates a number of further
extensions that are valuable in applications of this approach.
For example, covariates may be included to explain indi-
vidual differences in the evaluation of choice alternatives.
Because Mplus assumes that the latent responses are mul-
tivariate normal conditional on the values of the covariates,
binary and nonnormal continuous covariates can be consid-
ered. Moreover, multivariate paired comparisons and rank-
ings that involve comparisons of stimuli with respect to
multiple attributes (Böckenholt, 1990) can be analyzed with
the same approach. Applications in which respondents com-
pare only subsets of all possible pairs (i.e., incomplete
paired comparisons) or rank some but not all of the choice
alternatives (i.e., partial rankings) can also be handled,
requiring only minor modifications to the approaches pre-
sented in this article. However, this outlook for future work
should not distract from the fact that an important and large
class of choice models has become accessible to research-
ers. We expect and look forward to many more choice
modeling applications in the future.
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Böckenholt, U. (1990). Multivariate Thurstonian models. Psy-
chometrika, 55, 391–403.
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and testing of discretized multivariate normal structural models.
Psychometrika.

McDonald, R. P. (1999). Test theory: A unified approach. Mah-
wah, NJ: Lawrence Erlbaum.

Morgan, K. M., DeKay, M. L., Fischbeck, P. S., Morgan, M. G.,
Fischhoff, B., & Florig, H. K. (2001). A deliberative method for
ranking risks (II): Evaluation of validity and agreement among
risk managers. Risk Analysis, 21, 923–937.

Muthén, B. (1978). Contributions to factor analysis of dichoto-
mous variables. Psychometrika, 43, 551–560.

Muthén, B. (1984). A general structural equation model with
dichotomous, ordered categorical, and continuous latent vari-
able indicators. Psychometrika, 49, 115–132.

Muthén, B. (1993). Goodness of fit with categorical and other non
normal variables. In K. A. Bollen & J. S. Long (Eds.), Testing
structural equation models (pp. 205–234). Newbury Park, CA:
Sage.

Muthén, B., du Toit, S. H. C., & Spisic, D. (1997). Robust
inference using weighted least squares and quadratic estimating
equations in latent variable modeling with categorical and
continuous outcomes. Unpublished manuscript, College of Ed-
ucation, University of California, Los Angeles.

Muthén, B., & Hofacker, C. (1988). Testing the assumptions
underlying tetrachoric correlations. Psychometrika, 53, 563–
578.

Muthén, L., & Muthén, B. (2001). Mplus 2 [Computer software].
Los Angeles, CA: Muthén & Muthén.

Oakes, M. E., & Slotterback, C. S. (2002). The good, the bad, and
the ugly: Characteristics used by young, middle-aged, and older
men and women, dieters and non-dieters to judge healthfulness
of foods. Appetite, 38, 91–97.

Pascalis, O., de Haan, M., & Nelson, C. A. (2002, May 17). Is face
processing species-specific during the first year of life? Science,
296, 1321–1323.

Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics
and standard errors in covariance structure analysis. In A. von
Eye & C. C. Clogg (Eds.), Latent variable analysis: Applica-

tions to developmental research (pp. 399–419). Thousand
Oaks, CA: Sage.

Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-
square test statistic for moment structure analysis. Psy-
chometrika, 66, 507–514.

Stelzl, I. (1986). Changing the causal hypothesis without changing
the fit: Some rules for generating equivalent path models. Mul-
tivariate Behavioral Research, 21, 309–331.

Suppes, P., Krantz, D., Luce, D., & Tversky, A. (1992). Founda-
tion of measurement: Vol 2. Geometric, threshold, and proba-
bilistic representations. San Diego: Academic Press.

Takane, Y. (1987). Analysis of covariance structures and proba-
bilistic binary choice data. Communication and Cognition, 20,
45–62.

Takane, Y. (1994). A review of applications of AIC in Psycho-
metrics. In H. Bozdogan (Ed.), Proceedings of the first US/
Japan conference on the frontiers of statistical modeling: An
informational approach (pp. 379–403). Dordrecht, the Nether-
lands: Kluwer.

Thurstone, L. L. (1927). A law of comparative judgment. Psycho-
logical Review, 79, 281–299.

Thurstone, L. L. (1931). Rank order as a psychological method.
Journal of Experimental Psychology, 14, 187–201.

Train, K. E. (2003). Discrete choice methods with simulation.
Cambridge, England: Cambridge University Press.

Tsai, R. C. (2003). Remarks on the identifiability of Thurstonian
paired comparison models under multiple judgment. Psy-
chometrika, 68, 361–372.
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Appendix A

Threshold and Correlation Structure Implied by Thurstonian Models

The mean and covariance structure of the latent comparative
responses y* for any Thurstonian model for paired comparisons is
given by Equation 22. This equation also applies to ranking models
with �2 � 0. Because the latent comparative responses y* are
linked to the observed binary outcomes y via the threshold relation
(see Equation 4), it follows that the probability of observing an
ñ-dimensional vector of binary outcomes is

Pr	 �
l�1

ñ

yl
 �� · · ·
R
� �ñ�y* : �y*, �y*�dy*. (A1)

In Equation A1, �ñ (•) denotes an ñ-variate normal density, and R
is the multidimensional rectangular region formed by the product
of intervals

Rl � � �0, �� if yl � 1
���, 0� if yl � 0. (A2)

The probabilities (see Equation A1) are unchanged when we
standardize y* using

z* � D�y* � �y*� and D � 
Diag��y*��
�1/ 2, (A3)

in which case we can write

Pr	�
l�1

ñ

yl
 �� · · ·
R̆
� �ñ�z* : 0, Pz*�dz*, (A4)

where R̆ is the multidimensional rectangular region formed by the
product of intervals

R̆l � � ��l, �� if yl � 1
���, �l� if yl � 0, (A5)

and the constraints on the vector of thresholds, �, and on the matrix
of tetrachoric correlations, Pz*, are given by Equations 11 and 23.
This result follows from using Equation A3, with �z* � 0,

� � �D�y*, and Pz* � D�y*D. (A6)

The first equation within Equation A6 is obtained as follows: Let
�*l be an element of �y*, and let �l

2* be a diagonal element of �y*.
Then, at y*l � 0, �l :� (��*l)/��l

2* � �dl�*l, where dl is a diagonal
element of D.

Appendix B

Invariance of Relative Distances Between Choice Alternatives in the Factor Space When Variances of Unique
Factors Are Equal

Letting c be the arbitrary positive constant in Equation 24, we
pointed out that the matrix of relative squared distances �/c is
unique. That is, it is not affected by the linear transformation given
in Equation 24. The elements of this matrix are

�ik
2 � ��i

2 � �k
2 � 2�ik�/c. (B1)

Under the factor model (see Equation 28), �ik � �i��k and �i
2 �

�i��i � �i
2, where �i contains the m factor loadings of choice

alternative i, and �i
2 is the corresponding variance component of

the unique factors. By inserting these expressions in Equation B1,
we can write this equation as

�ik
2 � 
��i � �k�	��i � �k� � �i

2 � �k
2�/c. (B2)

Now, when the variances of the unique factors can be set equal to
each other, we can write

c�ik
2 � 2�2 � ��i � �k�	��i � �k� � �

j�1

m

��ji � �jk�
2. (B3)

Equation B3 shows that the Euclidean distance between the load-
ings of choice alternatives i and k is unique up to a linear
transformation.
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