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Abstract

Modeling with random slopes is used in random coefficient regression, multilevel
regression, and growth modeling. Random slopes can be seen as continuous latent vari-
ables. Recently, a flexible modeling framework has been implemented in the Mplus
program to do modeling with such latent variables combined with modeling of psycho-
metric constructs, typically referred to as factors, measured by multiple indicators. This
note shows how such a framework can handle interactions between latent continuous
and observed continuous indicators. Three examples are given: a Monte Carlo simula-
tion to estimate power to detect the interaction; a psychological example; and a growth
modeling example. Mplus input, output, and data are available at the Mplus web site,
www.statmodel.com/mplus/examples/webnote.html.
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1 Introduction

Modeling with random slopes is used in random coefficient regression, multilevel regres-
sion, and growth modeling. Random slopes can be seen as continuous latent variables.
Recently, a flexible modeling framework has been implemented in the Mplus program
to do modeling with such latent variables combined with modeling of psychometric con-
structs, typically referred to as factors, measured by multiple indicators. This note shows
how such a framework can handle interactions between latent continuous and observed
continuous indicators.

It is useful to first review the types of interactions that are of interest. The focus
is on the standard situation with interactions between variables that are exogenous as
opposed to endogenous. The standard case concerns two continuous observed variables
interacting in their influence on a dependent variable (see Aiken & West, 1991), where
the interaction is handled by including a product of the two variables in a regular linear
regression. The following additional interaction cases may be considered.

Case A: Interaction between a latent continuous variable and an
observed categorical variable

This type of interaction is handled by conventional structural equation modeling (SEM)
using multiple-group analysis, where the observed (unordered) categorical variable repre-
sents the groups. The regression parameter for the latent continuous variable predicting
a dependent variable can vary across the groups. For example, Muthén and Curran
(1997) considered 2-group growth modeling to assess treatment effects in a randomized
preventive intervention, where the model included a regression of the growth rate on the
initial status and where this regression was different for treatment and control group
individuals.

Case B: Interaction between a latent categorical variable and an
observed variable

This type of interaction can be handled by mixture modeling as implemented in Mplus
(see Muthén, 2002). The latent categorical variable represents the latent classes of the
mixture modeling. The observed variable, be it continuous or categorical, can have
different influence on a dependent variable for different latent classes. For example, in
the growth mixture analyses of Muthén (2001) variation across trajectory classes was
allowed for the influence of time-invariant covariates on the intercept and slope in a
growth model.
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Case C: Interaction between a latent continuous variable and an
observed continuous variable

This type of interaction cannot be handled by conventional SEM. Special interaction
modeling involving latent variables is needed, e.g. using the Joreskog-Yang approach
(Joreskog & Yang, 1996), 2SLS (Bollen, 1996), or the full-information maximum-likelihood
approach of Klein and Moosbrugger (2000).

Case D: Interaction between latent continuous variables

Same comment as for Case C.

This note considers case C. It will be shown that this fits into the Mplus latent
variable framework so that full-information maximum-likelihood estimation is possible
(Asparouhov & Muthén, 2002). Klein and Moosbrugger (2000) pointed out the impor-
tant efficiency and power advantages for interaction modeling by use of full-information
maximum-likelihood estimation as compared to limited-information estimators such as
the Joreskog-Yang and 2SLS approaches.

The Muthén Curran (1997) and Muthén (2001) growth examples mentioned above
indicate that interaction modeling involving latent variables is of interest not only in
cross-sectional data with psychometric factors, but also in growth modeling where there
are not necessarily any psychometric factors. In growth modeling, the random effects
of initial status and growth rate are latent continuous variables that may interact with
observed variables. Seltzer, Choi, and Thum (2002a, b) and Thum (2002) extended the
Muthén-Curran regression of the growth rate on the initial status to allow for interaction
between the initial status and time-invariant covariates. The approach to be discussed
here is applicable to this type of modeling as well.

Section 2 describes the random slope approach to interaction modeling. Section 3
considers a Monte Carlo simulation study to show how power to detect interaction effects
can be studied. Section 4 considers a cross-sectional data example. Section 5 considers
a growth modeling example. Section 6 concludes. Mplus input, data, and output for the
analyses in this note are available at www.statmodel.com/mplus/examples/webnote.html
For explanation of Mplus commands, see Muthén and Muthén (1998-2001) and also the
new random slope features in Muthén and Muthén (2003).
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2 Random Slopes Modeling of Interactions With A

Latent Continuous Variable

Consider for simplicity a single continuous observed dependent variable y observed for
individual i,

yi = β0 + β1 xi + β2 ηi + β3 ηi xi + εi, (1)

where xi is an observed covariate, ηi is a latent continuous variable (factor) measured
with multiple indicators y1, . . . , yp,

yij = νj + λj ηi + εij, (2)

using a regular factor-analytic measurement model.

When an asymmetric interpretation of the η, x interaction in (1) is of substantive
interest, it is useful to rearrange (1) as the equivalent expression

yi = β0 + β2 ηi + (β1 + β3 ηi) xi + εi. (3)

This uses the ”moderator function” (β1 + β3 ηi)
1, such that ηi moderates the influence

of x on y. The interpretation of the moderator function is aided by considering β
coefficients corresponding to standardized η and x variables. This can be achieved by
centering of x and parameterizing η to have zero mean, followed by a multiplication of β
coefficient estimates by the estimated standard deviations for x and η. Note that unlike
conventional SEM, the variance of yi conditional on xi changes as a function of xi.

The Mplus approach to handling the interaction in (1) is as follows. The equation
in (1) can be rewritten using two equations involving a random slope variable si,

yi = β0 + β1 xi + β2 ηi + si xi + εi, (4)

si = 0 + β3 ηi + 0. (5)

In (4), a random slope is defined for the observed covariate xi. In (5), the random slope
is taken to be the same as the factor ηi, except for a scaling factor β3, the interaction
coefficient that we want to estimate. In (5), si is a latent variable that only contributes
a single additional parameter, β3. The two equations of (4), (5) indicate that the model
is specified as a general SEM extended to random slopes. Such random slopes models
can be handled in Mplus and three examples are discussed in this note.

The model in (4), (5) can be generalized in line with SEM, for example replacing yi

in (4) with a latent continuous dependent variable having multiple indicators. Several
interaction terms may be considered. Muthén and Asparouhov (2003) discuss multilevel
modeling with a cross-level interaction between a level 1 covariate and a level 2 factor.

Muthén and Asparouhov (2002) give an example of using random slopes to model
heteroscedastic residual variances. Such heteroscedasticity modeling can be combined
with interaction modeling.

1We thank Andreas Klein for suggesting this representation.
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3 Example 1: A Monte Carlo Simulation

Monte Carlo simulation can be used to study the behavior of estimators in terms of
parameter estimate bias, standard error performance, coverage, and power (for an in-
troductory description of Mplus Monte Carlo simulations, see, e.g. Muthén & Muthén,
2002). Of particular interest with interaction modeling is the power to reject that the
interaction is zero.

Consider the following model with an interaction between a factor η2 and an observed
continuous covariate x,

y1i = ν1 + η1i + ε1i, (6)

y2i = ν2 + λ21 η1i + ε2i, (7)

y3i = ν3 + η2i + ε3i, (8)

y4i = ν4 + λ42 η2i + ε4i, (9)

η1i = β1 xi + β2 η2i + β3 η2i xi + ζi, (10)

with the usual assumptions on the residuals and with zero mean for η2. Data were
generated from this model using a normally distributed x and normally distributed
residuals. Parameter values were chosen to give indicator reliabilities of 0.80. 500 Monte
Carlo replications were used. Different sample sizes were tried. The Mplus output for
Example 1 in the Mplus Web Note section uses n = 400. The Mplus output shows
the average parameter estimates, the standard deviations of the estimates, the average
s.e.’s, the 95% coverage, and the proportion of replications for which the hypothesis of
a parameter being different from zero was rejected (estimated power).

It is seen from the output that the behavior of the maximum-likelihood estimator is
very good, with excellent coverage close to 95%. At this sample size the power to detect
the interaction effect is estimated as 0.89. With n = 300 (not shown) the power goes
down to 0.78. For n = 300, however, 7 of the 500 replications resulted in a non-admissible
solution with zero variance estimates for the indicators of η2. For n = 200 there were 25
non-admissible solutions with an estimated power of 0.61. The non-admissible solutions
may be due to the relatively small sample size, relatively high reliability, and having
only two indicators per factor.

Further Monte Carlo investigations in Mplus might include the impact of model
misspecification. For example, data generated with an interaction can be analyzed
without it to see how much misestimation is produced.

5



4 Example 2: A Psychological Study Of Behavior

The model given in the previous section was also used for real-data analysis.2 The
analysis considers a sample of n = 156 mothers, where η1 is mother’s harsh discipline,
η2 is boy disruptive behavior, and x is early difficult temperament of boy.3

The Mplus output for Example 2 in the Mplus Web Note section shows that the
interaction just reaches significance and is positive. This implies that higher than average
early difficult temperament of boy and higher than average boy disruptive behavior
interact to produce higher mother’s harsh discipline.

In this analysis, two residual variances approach zero and are fixed at zero. The zero
residual variances are not unexpected in light of the Monte Carlo simulations in the pre-
vious section, given the relatively small sample size. The maximum-likelihood estimates
produced by Mplus are close to those of the LMS method of Klein and Moosbrugger
(2000).

5 Example 3: Growth Modeling With Intercept-

Covariate Interaction

Consider a conventional linear growth model with random intercepts η0 and random
slopes η1,

yit = η0i + η1i ait + εit, (11)

where ait is a time-related variable, e.g. scored as ai1 = 0 to define the intercept as the
initial status of the growth model. Consider the extension of this model to regression
of the slope on the intercept as well as on the interaction between the intercept and a
time-invariant covariate x,

η1i = β0 + β1 η0i + β2 xi + β3 η0i xi + ζi, (12)

where η0 and x are allowed to be correlated (alternatively η0 can be regressed on x).

This model is applied to data from the Longitudinal Study of Youth (LSAY), which
is a national sample of mathematics and science achievement of students in US public
schools. Data are considered on mathematics achievement for grades 7-10 and is available
at the Mplus Web Note section. A covariate representing math courses taken in grade
7 is considered.4 The grade 7 course taking covariate is used as a predictor of the slope,

2A minor modification is estimating the loading for y3 on η2 while fixing the η2 variance at 1 in
order to have standardization already accomplished.

3We thank Mike Stoolmiller and Deborah Capaldi for making this example available.
4This covariate concerns the highest math course taken during grade 7, using the scoring 0 = no

course, 1 = low,basic, 2 = average, 3 = high, 4 = pre-algebra, 5 = algebra I, 6 = geometry, 7 = algebra
II, 8 = pre-calc, 9 = calculus.
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both as a main effect and as an interaction with the initial status in grade 7. A key
idea is that the initial status (η0) of a student influences the ability to benefit from
instruction and therefore influences the growth rate (η1) in developing mathematics
skills. In addition, the grade 7 course taking and initial status may interact in their
influence on the achievement growth rate.

The Mplus output for Example 3 in the Mplus Web Note section shows a significant
negative interaction between the initial status factor η0 and the course taking covariate
x.5 Here, the moderator function interpretation discussed in Section 2 may be applied
given that initial status may be seen as moderating the influence of the course taking in
grade 7. The estimated right-hand-side of (12), standardized to unit variances for the
η0, x predictors, is then rearranged as

β̂0 + β̂1 η0 + (β̂2 + β̂3 η0i) x = 0.417 + 0.080 η0 + (0.041− 0.039 η0i) x. (13)

The interpretation is as follows. At one standard deviation above the initial status mean
(η0 = 1), the slope increases only 0.002 (0.041− 0.039) for a standard deviation increase
in course taking. At the mean of initial status (η0 = 0), the slope increases 0.041 for
a standard deviation increase in course taking. At one standard deviation below the
initial status mean, the slope increases 0.080 (0.041 + 0.039) for a standard deviation
increase in course taking. Simply put, seventh grade math course taking matters for low
starters, but not for high starters.

6 Conclusion

This note has shown that the Mplus capability of latent variable modeling with a com-
bination of random slopes and factors makes it possible to handle interactions between
latent and observed continuous variables. This Mplus feature allows for full-information
maximum-likelihood estimation. As pointed out in Klein and Moosbrugger (2000), the
ability to use full information maximum-likelihood estimation as opposed to the limited-
information approaches typically used for interaction modeling in SEM gives an impor-
tant efficiency and power advantage.

5To aid the interpretation, the course taking covariate is centered at its mean and the initial status
factor η0 is parameterized to have zero mean by adding time-invariant intercepts ν to (11).
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