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1 Introduction

This note describes how to specify and interpret a latent transition analysis

where the transition probabilities vary as a function of covariates. The Mplus

parameterization is given and it is shown how to derive the transition probabilities

and related odds ratios for different values of the covariates. For simplicity,

a model with two time points and binary latent class indicators is considered.

A first model uses a dichotomous covariate, resulting in two different transition

tables. The Mplus results are compared to those of PROC LTA and shown to be

equivalent. A second model uses a continuous covariate where transition tables

can be derived for all the different covariate values. These two models consider

latent class variables with two categories. The case of latent class variables with

three categories is also outlined. The generalizations possible in Mplus are listed.

Further readings with Mplus applications are suggested.

The latent transition analysis (LTA) model consists of a measurement model

for the latent class variable at each time point and a structural model relating

the latent class variables to each other and to covariates. The measurement

parameters are typically all held invariant across time, although this is not

necessary. The discussion in this note focuses on the structural part of the model.

A typical model example is shown in Figure 1 which is example 8.13 in the

Mplus User’s Guide (Muthén & Muthén, 1998-2010). This model indicates that

the different c1 classes have different slopes for the regression of c2 on x.

Although the c2 regression is a multinomial logistic regression with a nominal

dependent variable, it is useful to consider the analogous situation for a linear

regression with a continuous dependent variable. For this case, assume for the
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Figure 1: Latent transition model for two time points with a covariate: c1
moderating c2 regressed on x

 

moment that both c1 and c2 are observed variables and that c2 is continuous.

The key idea is that there is an interaction between c1 and x in their influence on

c2,

c2 = α + β1 c1 + β2 x+ β3 c1× x+ ε, (1)

where β3 is the slope for the interaction. This equation can be rewritten in two

equivalent ways

c2 = α + β1 c1 + (β2 + β3 c1) x+ ε, (2)

c2 = α + (β1 + β3 x) c1 + β2 x+ ε, (3)

In (2), the term β3 c1 moderates the β2 influence of x on c2. In (3), the term

β3 x moderates the β1 influence of c1 on c2. The latter formulation is shown in
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Figure 2: Latent transition model for two time points with a covariate: x
moderating c2 regressed on c1

 

Figure 2. The key point is that the two models are equivalent. This is the case also

in the current situation where c1 and c2 are latent variables and the c2 regression

is a multinomial logistic regression. This note focuses on the formulation of (3)

where x moderates the relationship between c1 and c2. A description is given of

how the transition probabilities for the transition between c1 and c2 are affected

by different values of x.

2 LTA transition modeling

Transition probabilities are conditional probabilities for c2 categories given c1

categories, where c1 and c2 refer to latent class variables at two different time

points. Consider the example in Table 2 where both c1 and c2 have two categories.

For each c1 row the two probabilities sum to 1. For example, for subjects in c1
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Table 1: Transition probabilities

c2

1 2

c1
1 0.762 0.238

2 0.625 0.375

Table 2: Transition odds

c2

1 2

c1
1 1 0.312

2 1.667 1

class 1, the probability is 0.762 to stay in class 1 and 0.238 to transition to class 2.

The transition probabilities can also be turned into odds. Using the diagonal as

the reference category gives the odds of Table 2. For example, the odds of 0.312

is obtained as 0.238/0.762. This means that the odds is low to transition from

class 1 to class 2.

The transition probabilities are obtained from multinomial regression of c2

on c1. As described in chapter 14 of the Mplus User’s Guide, the multinomial

regression of c2 on c1 is expressed via parameters in a logit metric. A technical

description is given in Asparouhov and Muthén (2011). Consider Table 3 from

page 447, which shows the case of three latent classes for both c1 (rows) and

c2 (columns), and where a and b are logit parameters. The a parameters are

intercepts and the b parameters are slopes for c2 regressed on c1. The first b
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parameter subscript refers to the category of the dependent variable c2 and the

second subscript refers to the c1 category. In this first case, there is no covariate.

For each row of c1, that is conditioning on a certain c1 category, the multinomial

regression is expressed as

P (c2 = j|c1 = k) = elogitjk/

J∑
s=1

elogitsk , (4)

where j refers to the column (1, 2, 3) and k refers to the row (1, 2, 3). Here, the

summation is over J=3 columns. For each c2 category, the three c2 probabilities

sum to one because they represent the three possible c2 outcomes. The a

parameters are intercepts and the b parameters are slopes for c1. The last

column of zero logits reflect the fact that the last column corresponds to the

reference category of the dependent variable c2. Note that e0 = 1, where the

unit term is often shown in multinomial regression. Letting the last category

of c2 be the reference category means that the b parameters can be interpreted

as log odds when comparing category j to the last category, category J. The

six logit parameters of a and b correspond to the 3× 2 probabilities of the table.

These are the probabilities of the unrestricted product (independent)-multinomial

distribution. Equation (4) is the same as equation (4) in Lanza and Collins (2008).

They also consider a grouping variable, which is handled in Mplus using the

KNOWNCLASS option.

From the logits of Table 3 other cases can be derived. The case of only two

categories for the two latent class variables is obtained by deleting the second

column and the second row of Table 3. The table is naturally extended to more

than three categories. The two latent class variables need not have the same
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Table 3: Logit table for c2 regressed on c1

c2

c1

1 2 3
1 a1 + b11 a2 + b21 0
2 a1 + b12 a2 + b22 0
3 a1 a2 0

Table 4: Logit table for c2 regressed on c1 and x: Parameterization 1

c2

c1

1 2 3
1 a1 + b11 + (g1+g11) x a2 + b21 + (g2+g21) x 0
2 a1 + b12 + (g1+g12) x a2 + b22 + (g2+g22) x 0
3 a1 + g1 x a2 + g2 x 0

number of latent classes, although this changes the definition of transitioning

between classes all having the same meaning.

Adding a covariate x, two parameterizations are considered here. The first

parameterization is in line with ex8.13 and is shown in Table 4, where the g

parameters are slopes for the x covariate, varying over the c1 and c2 classes. This

parameterization is obtained with the Mplus MODEL statement given in Table 5.

The OVERALL part of the model gives the influence of x via the g1 and g2

parameters. The g11, g21, g12, and g22 parameters modify this influence. Note

that the MODEL c1 part does not refer to the third (last) c1 class so that in this

class the slopes are given only by g1 and g2.

The second parameterization is as in Table 6. This parameterization is

obtained with the Mplus MODEL statement given in Table 7. The OVERALL
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Table 5: Mplus specification of parameterization 1

MODEL: %OVERALL%
c1 ON x;
c2 ON c1;
c2#1 ON x (g1);
c2#2 ON x (g2);

MODEL c1: %c1#1%
c2#1 ON x (g11);
c2#2 ON x (g21);

%c1#2%
c2#1 ON x (g12);
c2#2 ON x (g22);

Table 6: Logit table for c2 regressed on c1 and x: Parameterization 2

c2

c1

1 2 3
1 a1 + b11 + g11 x a2 + b21 + g21 x 0
2 a1 + b12 + g12 x a2 + b22 + g22 x 0
3 a1 + g13 x a2 + g23 x 0

8



Table 7: Mplus specification of parameterization 2

MODEL: %OVERALL%
c1 ON x;
c2 ON c1;

MODEL c1: %c1#1%
c2#1 ON x (g11);
c2#2 ON x (g21);

%c1#2%
c2#1 ON x (g12);
c2#2 ON x (g22);

%c1#3%
c2#1 ON x (g13);
c2#2 ON x (g23);

part of the model does not involve g parameters, but they are instead given in the

MODEL c1 part for all three c1 classes. This second parameterization is used in

the following application.

3 An application

As an illustration, a modified version of ex8.13 in the Mplus User’s Guide is used.

This example corresponds to Figure 1 and, equivalently, Figure 2. The two latent

class variables both have two categories. For simplicity in the results discussion,

the continuous covariate x has been dichotomized at zero. Of interest is the

corresponding two tables of transition probabilities. As in Lanza and Collins

(2008), odds ratios will also be derived for the transitions using as reference

category the diagonal elements representing no transition. The data are available

on the Mplus web site www.statmodel.com in connection with the online User’s
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Guide, Chapter 8.

The Mplus input is shown in Table 8. The dichotomization is carried out in

DEFINE using the CUT option. This input uses parameterization 2 described

above and not parameterization 1 which is used in the User’s Guide ex8.13. In

the OVERALL part of the model no c2 on x regression is specified, but the slope

for x is instead given in each of the two c1 classes within MODEL c1. In the

User’s Guide the two slopes are estimated in the OVERALL part of the model

and for the first c1 class. This means that the slope for x in the 1, 1 cell of the c1,

c2 table is obtained as the sum of the OVERALL slope and the slope for the first

class as indicated in Table 4. Note that the model is not identified if the c2 on

x regression is specified both in the OVERALL and in the c1 class-specific parts.

Other parts of the input shown in Table 8 are described in the User’s Guide for

ex 8.13. Across-time measurement invariance is specified by equality constraints

on the logits corresponding to the conditional item probabilities. STARTS=0 is

used together with starting values in order to obtain a specific ordering of the

classes. In general, many random starts should be used, such as STARTS = 100

20. In some cases with several latent class variables it is also useful to reduce the

default perturbation factor used to produce the random starts from STSCALE=5

to STSCALE=1.

Table 9 and Table 10 show the flexibility of being able to form new parameters

to describe special results of interest. Using the MODEL CONSTRAINT

command, the logit parameters of Table 6 are defined using parameter labels

specified in the MODEL command. From these logit parameters, the probabilities

of the 2 × 2 c1, c2 table are defined using the multinomial regression expression

of (4). In Table 10 the probabilities are used to compute odds and odds ratios
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Table 8: Input for example 8.13

TITLE: this is an example of a LTA with a covariate and an
interaction

DATA: FILE = ex8.13.dat;
VARIABLE: NAMES = u11-u14 u21-u24 x;

CATEGORICAL = u11-u14 u21-u24;
CLASSES = c1 (2) c2 (2);

DEFINE: CUT x(0);
ANALYSIS: TYPE = MIXTURE;

STARTS = 0;
MODEL: %OVERALL%

[c2#1] (a);
c2 ON c1 (b);
c1 ON x;

MODEL c1: %c1#1%
[u11$1-u14$1*1] (1-4);
c2 ON x (g1);
%c1#2%
[u11$1-u14$1*-1] (5-8);
c2 ON x (g2);

MODEL c2: %c2#1%
[u21$1-u24$1*1] (1-4);
%c2#2%
[u21$1-u24$1*-1] (5-8);

OUTPUT: TECH1 TECH8;
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comparing the two x categories, as well as the corresponding log odds ratios.

The next set of tables show the maximum-likelihood estimates for both the

model parameters and the new parameters defined in MODEL CONSTRAINT.

Table 11 and Table 12 show the measurement parameters, that is, the conditional

item probabilities in logit form. Table 13 - Table 16 show the corresponding

probabilities (only the first output column is given). Table 17 shows the structural

parameters corresponding to the a, b, and g parameters of Table 6. Table 18 shows

the new parameters. This includes the tables of transition probabilities for each

of the two x categories. The two tables of transition probabilities for the two x

values are also shown in Table 19.

Note that the z scores for the log odds ratios of Table 18 are the same (apart

from a sign change due to different reference class) as for the g parameters of

Table 17. This means that the differences in the transition tables can be tested

in the log odds metric simply by considering the slope of c2 on x for the two c1

classes. In other words, creating the new parameters in MODEL CONSTRAINT

is not essential.

The case of a continuous covariate x presents no extra difficulties. The model

specification is the same. Transition probability tables can be computed via

MODEL CONSTRAINT using specific x values. For instance, the above x=0

case may correspond to the mean of x and the x=1 case may correspond to one

standard deviation above the mean.
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Table 9: Input for example 8.13, continued

MODEL CONSTRAINT:
NEW(logx011 logx021 logx111 logx121 probx011 probx012
probx021 probx022 probx111 probx112 probx121 probx122
oddsx012 oddsx021 oddsx112 oddsx121 or12 or21 logor12
logor21);
! define 4 logits. Note that logits are zero
! for the last (reference) c2 class
! (see UG, p. 447 table, last column):

! logit for x=0 and c1=1, c2=1:
logx011 = a + b;

! logit for x=0 and c1=2, c2=1
! (see p. 447 table, last row)
logx021 = a;

! logit for x=1 and c1=1, c2=1:
logx111 = a + b + g1;

! logit for x=1 and c1=2, c2=1:
logx121 = a + g2;

! define probabilities for the 4 c1, c2 cells
! for x=0:
probx011 = exp(logx011)/(exp(logx011)+1);
probx012 = 1/(exp(logx011)+1);
probx021 = exp(logx021)/(exp(logx021)+1);
probx022 = 1/(exp(logx021)+1);
! for x=1;
probx111 = exp(logx111)/(exp(logx111)+1);
probx112 = 1/(exp(logx111)+1);
probx121 = exp(logx121)/(exp(logx121)+1);
probx122 = 1/(exp(logx121)+1);
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Table 10: Input for example 8.13, continued

! define odds with diagonal (staying in the same class) as
! the reference class
! x=0
oddsx012 = probx012/probx011;
oddsx021 = probx021/probx022;
! x= 1;
oddsx112 = probx112/probx111;
oddsx121 = probx121/probx122;

! define odds ratios for x=1 vs x=0:
! for moving from c1=1 to c2=2:
or12 = oddsx112/oddsx012;
! for moving from c1=2 to c2=1:
or21 = oddsx121/oddsx021;

logor12 = log(or12);
logor21 = log(or21);
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Table 11: Example 8.13, model results

Two-Tailed
Estimate S.E. Est./S.E. P-Value

Latent class pattern 1 1

Thresholds

u11$1 1.136 0.131 8.640 0.000
u12$1 1.136 0.112 10.123 0.000
u13$1 0.955 0.118 8.087 0.000
u14$1 1.139 0.132 8.626 0.000
u21$1 1.136 0.131 8.640 0.000
u22$1 1.136 0.112 10.123 0.000
u23$1 0.955 0.118 8.087 0.000
u24$1 1.139 0.132 8.626 0.000

Latent class pattern 1 2

Thresholds

u11$1 1.136 0.131 8.640 0.000
u12$1 1.136 0.112 10.123 0.000
u13$1 0.955 0.118 8.087 0.000
u14$1 1.139 0.132 8.626 0.000
u21$1 -0.953 0.115 -8.310 0.000
u22$1 -0.905 0.118 -7.643 0.000
u23$1 -0.964 0.109 -8.814 0.000
u24$1 -0.985 0.112 -8.831 0.000

15



Table 12: Example 8.13, model results

Two-Tailed
Estimate S.E. Est./S.E. P-Value

Latent class pattern 2 1

Thresholds

u11$1 -0.953 0.115 -8.310 0.000
u12$1 -0.905 0.118 -7.643 0.000
u13$1 -0.964 0.109 -8.814 0.000
u14$1 -0.985 0.112 -8.831 0.000
u21$1 1.136 0.131 8.640 0.000
u22$1 1.136 0.112 10.123 0.000
u23$1 0.955 0.118 8.087 0.000
u24$1 1.139 0.132 8.626 0.000

Latent class pattern 2 2

Thresholds

u11$1 -0.953 0.115 -8.310 0.000
u12$1 -0.905 0.118 -7.643 0.000
u13$1 -0.964 0.109 -8.814 0.000
u14$1 -0.985 0.112 -8.831 0.000
u21$1 -0.953 0.115 -8.310 0.000
u22$1 -0.905 0.118 -7.643 0.000
u23$1 -0.964 0.109 -8.814 0.000
u24$1 -0.985 0.112 -8.831 0.000
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Table 13: Item parameters in probability scale

Estimate

Latent class pattern 1 1

u11

category 1 0.757
category 2 0.243

u12

category 1 0.757
category 2 0.243

u13

category 1 0.722
category 2 0.278

u14

category 1 0.757
category 2 0.243

u21

category 1 0.757
category 2 0.243

u22

category 1 0.757
category 2 0.243

u23

category 1 0.722
category 2 0.278

u24

category 1 0.757
category 2 0.243
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Table 14: Item parameters in probability scale, continued

Estimate

Latent class pattern 1 2

u11

category 1 0.757
category 2 0.243

u12

category 1 0.757
category 2 0.243

u13

category 1 0.722
category 2 0.278

u14

category 1 0.757
category 2 0.243

u21

category 1 0.278
category 2 0.722

u22

category 1 0.288
category 2 0.712

u23

category 1 0.276
category 2 0.724

u24

category 1 0.272
category 2 0.728

18



Table 15: Item parameters in probability scale, continued

Estimate

Latent class pattern 2 1

u11

category 1 0.278
category 2 0.722

u12

category 1 0.288
category 2 0.712

u13

category 1 0.276
category 2 0.724

u14

category 1 0.272
category 2 0.728

u21

category 1 0.757
category 2 0.243

u22

category 1 0.757
category 2 0.243

u23

category 1 0.722
category 2 0.278

u24

category 1 0.757
category 2 0.243
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Table 16: Item parameters in probability scale, continued

Estimate

Latent class pattern 2 2

u11

category 1 0.278
category 2 0.722

u12

category 1 0.288
category 2 0.712

u13

category 1 0.276
category 2 0.724

u14

category 1 0.272
category 2 0.728

u21

category 1 0.278
category 2 0.722

u22

category 1 0.288
category 2 0.712

u23

category 1 0.276
category 2 0.724

u24

category 1 0.272
category 2 0.728
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Table 17: Example 8.13, structural parameter estimates

Two-Tailed
Estimate S.E. Est./S.E. P-Value

Categorical latent variables

c2#1 ON

c1#1 -0.147 0.377 -0.389 0.697

c1#1 ON

x 0.659 0.182 3.629 0.000

Intercepts

c1#1 -0.431 0.187 -2.304 0.021
c2#2 -0.653 0.202 -3.230 0.001

Latent class pattern 1 1

c2#1 ON

x 1.963 0.359 5.473 0.000
Latent class pattern 2 1

c2#1 ON

x 1.163 0.298 3.904 0.000

21



Table 18: Example 8.13, new parameter estimates

Two-Tailed
Estimate S.E. Est./S.E. P-Value

New/additional parameters

logx011 -0.800 0.308 -2.599 0.009
logx021 -0.653 0.202 -3.230 0.001
logx111 1.163 0.274 4.252 0.000
logx121 0.510 0.244 2.089 0.037
probx011 0.310 0.066 4.712 0.000
probx012 0.690 0.066 10.481 0.000
probx021 0.342 0.046 7.521 0.000
probx022 0.658 0.046 14.449 0.000
probx111 0.762 0.050 15.352 0.000
probx112 0.238 0.050 4.798 0.000
probx121 0.625 0.057 10.921 0.000
probx122 0.375 0.057 6.559 0.000
oddsx012 2.225 0.684 3.250 0.001
oddsx021 0.521 0.105 4.946 0.000
oddsx112 0.313 0.085 3.656 0.000
oddsx121 1.665 0.406 4.098 0.000
or12 0.140 0.050 2.789 0.005
or21 3.199 0.953 3.357 0.001
logor12 -1.963 0.359 -5.473 0.000
logor21 1.163 0.298 3.904 0.000
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Table 19: Estimated transition probabilities

x=0
c2

1 2

c1
1 0.310 0.690
2 0.342 0.658

x=1
c2

1 2

c1
1 0.762 0.238
2 0.625 0.375
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4 Conclusions

This web note shows the flexibility and ease of using Mplus for latent transition

modeling. Estimates and tests for parameters determining the latent transition

probabilities are directly obtained. As illustrated, many interesting functions of

the model parameters can be expressed using MODEL CONSTRAINT. Further

Mplus capabilities related to latent transition analysis include:

• testing of (partial) across-time invariance of conditional item probabilities

• binary, ordinal, nominal, continuous, and count indicators the latent classes,

as well as combinations of such indicators

• latent (continuous, categorical) indicators

• mover-stayer models (second-order latent class variable)

• complex survey data (weights, clustering, stratification)

• multilevel LTA

Articles which include many Mplus applications are given in the reference list.

5 Appendix

As a comparison to the Mplus analyses, SAS PROC LTA (Lanza & Collins, 2008)

was also used and provides the same results. We are indebted to Aidan Wright at

PSU, for doing the PROC LTA analyses. The input is given in Table 20. The data

set EX813 is the same as used in the Mplus runs except the dichotomization of x

has been done and the items rescored from 0 and 1 to 1 and 2 prior to analysis.
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Table 20: PROC LTA input

PROC LTA DATA=EX813;
NSTATUS 2;
NTIMES 2;
ITEMS u11 u12 u13 u14 u21 u22 u23 u24;
CATEGORIES 2 2 2 2;
COVARIATES1 X;
REFERENCE1 1;
COVARIATES2 X;
REFERENCE2 1 2 ;
MEASUREMENT TIMES;
SEED 564536;
CORES 2;
RUN;

5.1 PROC LTA output

Figure 3 - Figure 6 show the output. The odds ratios of Figure 5 agree with the

or12 and or21 values in Table 18.
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Figure 3: PROC LTA output

LTA-no prior-pg1.pdf

                                          The SAS System          18:14 
Tuesday, July 26, 2011   1 
 
        Data and Model Summary and Fit Statistics (EM Algorithm with Logistic 
Regression) 
 
 
 
Number of subjects in dataset:        1000 
Number of subjects in analysis:       1000 
 
Number of measurement items per time:    4 
Response categories per item:            2 2 2 2 
Number of occasions (times):             2 
Number of groups in the data:            1 
Number of latent statuses:               2 
 
Logistic model for time 1:               multinomial 
Number of covariates for time 1:         1 
Reference status for time 1:             1 
 
Logistic model for transitions:          multinomial 
Number of covariates for transitions:    1 
Reference statuses for time 1 to 2:      1 2 
 
Rho starting values were randomly generated (seed = 564536). 
 
Parameter restrictions: Rho (measurement) parameters were constrained to be 
equal across time. 
 
The model converged in 137 iterations. 
 
Maximum number of iterations: 5000 
Convergence method: maximum absolute deviation (MAD) 
Convergence criterion:  0.000001000 
 
============================================= 
Fit statistics: 
============================================= 
 
Log-likelihood:     -5252.50 
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Figure 4: PROC LTA output

LTA-no prior-pg2.pdf

                                          The SAS System          18:14 
Tuesday, July 26, 2011   2 
 
                            Parameter Estimates 
 
Delta estimates (status membership probabilities): 
Status:                    1          2 
  Time  1     :       0.4705     0.5295 
  Time  2     :       0.4974     0.5026 
 
Tau estimates (transition probabilities): 
Time   1 latent status (rows) by 
    Time   2 latent status (columns) 
                           1          2 
        1     :       0.5224     0.4776 
        2     :       0.4751     0.5249 
 
 
Rho estimates (item-response probabilities): 
(All times) 
  Response category:  1: 
Status:                    1          2 
  u11         :       0.7569     0.2782 
  u12         :       0.7569     0.2879 
  u13         :       0.7222     0.2761 
  u14         :       0.7575     0.2718 
 
  Response category:  2: 
Status:                    1          2 
  u11         :       0.2431     0.7218 
  u12         :       0.2431     0.7121 
  u13         :       0.2778     0.7239 
  u14         :       0.2425     0.7282 
 
Beta estimates for Delta: 
 
Status:                    1          2 
 Intercept      :  Reference     0.4307 
  X           :                 -0.6586 
 
 
Delta Odds Ratio estimates: 
 
Status:                    1          2 
 Intercept(odds):  Reference     1.5384 
  X           :                  0.5176 
 
 
Beta estimates for Tau: 
Time   1 latent status (rows) 
    Time   2 latent status (columns) 
 Intercept      : 
                           1          2 
        1     :    Reference     0.7996 
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Figure 5: PROC LTA output

LTA-no prior-pg3.pdf

                                          The SAS System          18:14 
Tuesday, July 26, 2011   3 
 
                            Parameter Estimates 
 
        2     :      -0.6529  Reference 
 
  X           : 
                           1          2 
        1     :    Reference    -1.9626 
        2     :       1.1628  Reference 
 
 
Tau Odds Ratio estimates: 
Time   1 latent status (rows) 
    Time   2 latent status (columns) 
 Intercept(odds): 
                           1          2 
        1     :    Reference     2.2246 
        2     :       0.5205  Reference 
 
  X           : 
                           1          2 
        1     :    Reference     0.1405 
        2     :       3.1988  Reference 
 

Figure 6: PROC LTA output

LTA-no prior-pg4.pdf

                                          The SAS System          18:14 
Tuesday, July 26, 2011   4 
 
                            Significance Tests 
 
Beta parameter test (Type III) for time 1 covariates (COVARIATES1):  (based 
on 2*log-likelihood) 
 
  Covariate   Exclusion LL   Change in 2*LL    deg freedom     p-Value 
----------------------------------------------------------------------- 
 X            -5259.59609957      14.20001019         1      0.000164370 
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