Mplus VERSION 6
MUTHEN & MUTHEN
04/25/2010  10:57 PM

INPUT INSTRUCTIONS

  TITLE:
          cat4

          2-group mimic for dichotomous outcomes

  DATA:
          FILE IS wmimicd.dat;

  VARIABLE:
          NAMES ARE x1-x3 y1-y16;

          USEV = y6-y10 x4 x6 x7;

          CATEGORICAL = y6-y10;

  !        the next statement defines the 2 groups (groupA and groupB):

          GROUPING = x3 (1 = groupA 2 = groupB);

  DEFINE:  x4   =   89 - x1;
           x6  =  0; if (x2 eq 2) then x6 = 1;
           x7  =  0; if (x2 eq 1) then x7 = 1;

  ANALYSIS:
          TYPE = MGROUP MEANSTRUCTURE;

  !        type = mgroup gives multiple-group analysis


  MODEL:

  !        The statement MODEL:
  !        defines the general model that holds for both groups.
  !        the default is that there are group-invariant thresholds
  !        and loadings

          f1 BY y6-y10;

          f1 ON x4 x6 x7;

  !        Because x variables are present, the analysis assumes
  !        conditional normality of latent response variables given the x's
  !        in line with probit analysis. this analysis makes less strong
  !        normality assumptions than using tetrachoric
  !        and biserial correlations.  Given that the model is fitted to
  !        estimates from probit regressions, the computations are, however,
  !        more time consuming than when x's are not present, especially
  !        for large sample sizes (as in this case) and a large number of
  !        outcome variables.

  OUTPUT: standardized;



*** WARNING in ANALYSIS command
  Starting with Version 5, TYPE=MEANSTRUCTURE is the default for all
  analyses.  To remove means from the model, use
  MODEL=NOMEANSTRUCTURE in the ANALYSIS command.
   1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS




cat4

2-group mimic for dichotomous outcomes

SUMMARY OF ANALYSIS

Number of groups                                                 2
Number of observations
   Group GROUPA                                               2508
   Group GROUPB                                               2534

Number of dependent variables                                    5
Number of independent variables                                  3
Number of continuous latent variables                            1

Observed dependent variables

  Binary and ordered categorical (ordinal)
   Y6          Y7          Y8          Y9          Y10

Observed independent variables
   X4          X6          X7

Continuous latent variables
   F1

Variables with special functions

  Grouping variable     X3

Estimator                                                    WLSMV
Maximum number of iterations                                  1000
Convergence criterion                                    0.500D-04
Maximum number of steepest descent iterations                   20
Parameterization                                             DELTA

Input data file(s)
  wmimicd.dat

Input data format  FREE


UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

  Group GROUPA
    Y6
      Category 1    0.969     2431.000
      Category 2    0.031       77.000
    Y7
      Category 1    0.960     2407.000
      Category 2    0.040      101.000
    Y8
      Category 1    0.979     2456.000
      Category 2    0.021       52.000
    Y9
      Category 1    0.986     2472.000
      Category 2    0.014       36.000
    Y10
      Category 1    0.933     2341.000
      Category 2    0.067      167.000

  Group GROUPB
    Y6
      Category 1    0.995     2521.000
      Category 2    0.005       13.000
    Y7
      Category 1    0.984     2494.000
      Category 2    0.016       40.000
    Y8
      Category 1    0.992     2514.000
      Category 2    0.008       20.000
    Y9
      Category 1    0.992     2514.000
      Category 2    0.008       20.000
    Y10
      Category 1    0.978     2478.000
      Category 2    0.022       56.000



THE MODEL ESTIMATION TERMINATED NORMALLY



TESTS OF MODEL FIT

Chi-Square Test of Model Fit

          Value                             49.011*
          Degrees of Freedom                    37
          P-Value                           0.0894

Chi-Square Contributions From Each Group

          GROUPA                            33.967
          GROUPB                            15.044

*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used
    for chi-square difference testing in the regular way.  MLM, MLR and WLSM
    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV,
    and ULSMV difference testing is done using the DIFFTEST option.

Chi-Square Test of Model Fit for the Baseline Model

          Value                           2912.914
          Degrees of Freedom                    50
          P-Value                           0.0000

CFI/TLI

          CFI                                0.996
          TLI                                0.994

Number of Free Parameters                       23

RMSEA (Root Mean Square Error Of Approximation)

          Estimate                           0.011

WRMR (Weighted Root Mean Square Residual)

          Value                              1.053



MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

Group GROUPA

 F1       BY
    Y6                 1.000      0.000    999.000    999.000
    Y7                 1.039      0.063     16.586      0.000
    Y8                 1.086      0.066     16.511      0.000
    Y9                 1.027      0.069     14.874      0.000
    Y10                0.935      0.058     16.012      0.000

 F1       ON
    X4                -0.028      0.014     -1.966      0.049
    X6                 0.091      0.075      1.207      0.227
    X7                 0.136      0.089      1.526      0.127

 Intercepts
    F1                 0.000      0.000    999.000    999.000

 Thresholds
    Y6$1               0.799      0.545      1.468      0.142
    Y7$1               1.793      0.527      3.403      0.001
    Y8$1               1.349      0.628      2.148      0.032
    Y9$1               1.815      0.665      2.731      0.006
    Y10$1              0.146      0.470      0.312      0.755

 Residual Variances
    F1                 0.665      0.062     10.666      0.000

 Scales
    Y6                 1.000      0.000    999.000    999.000
    Y7                 1.000      0.000    999.000    999.000
    Y8                 1.000      0.000    999.000    999.000
    Y9                 1.000      0.000    999.000    999.000
    Y10                1.000      0.000    999.000    999.000

Group GROUPB

 F1       BY
    Y6                 1.000      0.000    999.000    999.000
    Y7                 1.039      0.063     16.586      0.000
    Y8                 1.086      0.066     16.511      0.000
    Y9                 1.027      0.069     14.874      0.000
    Y10                0.935      0.058     16.012      0.000

 F1       ON
    X4                -0.028      0.020     -1.360      0.174
    X6                 0.050      0.070      0.709      0.478
    X7                 0.024      0.093      0.259      0.796

 Intercepts
    F1                 0.365      0.624      0.585      0.559

 Thresholds
    Y6$1               0.799      0.545      1.468      0.142
    Y7$1               1.793      0.527      3.403      0.001
    Y8$1               1.349      0.628      2.148      0.032
    Y9$1               1.815      0.665      2.731      0.006
    Y10$1              0.146      0.470      0.312      0.755

 Residual Variances
    F1                 0.331      0.324      1.024      0.306

 Scales
    Y6                 1.478      0.725      2.040      0.041
    Y7                 1.531      0.733      2.089      0.037
    Y8                 1.422      0.690      2.061      0.039
    Y9                 1.486      0.718      2.070      0.038
    Y10                1.712      0.830      2.062      0.039


STANDARDIZED MODEL RESULTS

                      StdYX        Std
                    Estimate   Estimate

Group GROUPA

 F1       BY
    Y6                 0.817      0.820
    Y7                 0.849      0.852
    Y8                 0.886      0.890
    Y9                 0.838      0.842
    Y10                0.764      0.766

 F1       ON
    X4                -0.077     -0.034
    X6                 0.049      0.111
    X7                 0.061      0.166

 Intercepts
    F1                 0.000      0.000

 Thresholds
    Y6$1               0.797      0.799
    Y7$1               1.786      1.793
    Y8$1               1.343      1.349
    Y9$1               1.808      1.815
    Y10$1              0.146      0.146

 Residual Variances
    F1                 0.989      0.989

 Scales
    Y6                 1.000      1.000
    Y7                 1.000      1.000
    Y8                 1.000      1.000
    Y9                 1.000      1.000
    Y10                1.000      1.000

Group GROUPB

 F1       BY
    Y6                 0.852      0.579
    Y7                 0.917      0.602
    Y8                 0.890      0.629
    Y9                 0.879      0.595
    Y10                0.922      0.542

 F1       ON
    X4                -0.108     -0.048
    X6                 0.037      0.086
    X7                 0.015      0.042

 Intercepts
    F1                 0.630      0.630

 Thresholds
    Y6$1               1.176      0.799
    Y7$1               2.731      1.793
    Y8$1               1.908      1.349
    Y9$1               2.682      1.815
    Y10$1              0.249      0.146

 Residual Variances
    F1                 0.987      0.987

 Scales
    Y6                 1.000      1.478
    Y7                 1.000      1.531
    Y8                 1.000      1.422
    Y9                 1.000      1.486
    Y10                1.000      1.712


R-SQUARE

Group GROUPA

    Observed                   Residual
    Variable        Estimate   Variance

    Y6                 0.667      0.335
    Y7                 0.720      0.282
    Y8                 0.786      0.216
    Y9                 0.703      0.300
    Y10                0.584      0.419

     Latent
    Variable        Estimate

    F1                 0.011

Group GROUPB

    Observed                   Residual
    Variable        Estimate   Variance

    Y6                 0.726      0.126
    Y7                 0.841      0.069
    Y8                 0.792      0.104
    Y9                 0.773      0.104
    Y10                0.851      0.052

     Latent
    Variable        Estimate

    F1                 0.013


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.105E-04
       (ratio of smallest to largest eigenvalue)


     Beginning Time:  22:57:56
        Ending Time:  22:57:56
       Elapsed Time:  00:00:00



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2010 Muthen & Muthen

Back to table of examples