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Abstract

This paper presents a new method for multiple-group confirmatory factor

analysis (CFA), referred to as the alignment method. The alignment method

can be used to estimate group-specific factor means and variances without

requiring exact measurement invariance. A strength of the method is the ability

to conveniently estimate models for many groups. The method is a valuable

alternative to the currently used multiple-group CFA methods for studying

measurement invariance that require multiple manual model adjustments guided

by modification indices. Multiple-group CFA is not practical with many groups

due to poor model fit of the scalar model and too many large modification indices.

In contrast, the alignment method is based on the configural model and essentially

automates and greatly simplifies measurement invariance analysis. The method

also provides a detailed account of parameter invariance for every model parameter

in every group.
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1 Introduction

Multiple-group confirmatory factor analysis (CFA) aims to compare latent variable

means, variances, and covariances across groups while holding measurement

parameters invariant. For factor means to be comparable, invariance of both

factor loadings and measurement intercepts is required and is referred to as

scalar invariance (see, e.g., Millsap, 2011). A model with such strict invariance

is often rejected. This is typically followed by the use of modification indices

(Sörbom, 1989) to relax some of the invariance restrictions. Often, multiple-group

applications involve the study of many groups based on surveys with a variety of

aims: country comparisons of achievement such as Programme for International

Student Assessment (PISA), Trends in International Mathematics and Science

Study (TIMSS), and Progress in Literacy Study (PIRL); cross-cultural studies

such as International Social Survey Program (ISSP) and European Social Survey

(ESS); and with research on organizations. With many groups, the usual multiple-

group CFA approach is too cumbersome to be practical due to the many possible

violations of invariance and the modification index exploration may well lead to

the wrong model due to the scalar model being far from the true model. Following

is a typical example that illustrates the problem. We will return to this example at

the end of the paper, using it to demonstrate the new approach that we propose.

Beierlein et al. (2012) analyzed data from the European Social Survey

comprising 26 countries and 49,894 subjects with an average country sample size

of 1,919. The latent variable constructs of tradition and conformity are measured

by four items presented in portrait format, where the scale of the items is such

that a high value represents a low level of tradition-conformity. The item wording
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is shown in Table 1.

[Table 1 about here.]

The two constructs have been found to correlate highly and are here viewed

as forming a single factor. Scalar invariance across the 26 countries for the one-

factor model using maximum-likelihood estimation with a likelihood-ratio χ2 test

of model fit results in very poor fit, χ2(202) = 8, 654 (p-value = 0.000). A large

part of this poor fit is due to the large sample size of 49, 894, but other fit indices

also indicate very poor fit: RMSEA = 0.148, CFI = 0.677. In addition, there are

many large modification indices: 83 in the range of 10-100, 15 in the range of 100-

200, and 16 in the range of 200-457 (the largest value). The presence of so many

large modification indices implies that a long sequence of model modifications

is needed to reach a model with acceptable fit and the search for a good model

may easily lead to the wrong model. We conclude that multiple-group CFA fails

due to too many necessary model modifications. This is a typical outcome when

a scalar invariance model is applied to many groups. It is then impossible to

compare factor means across the groups. A new method is needed. In this paper

we describe a radically different method: Alignment optimization. The alignment

can be based on maximum-likelihood or Bayes estimation.

Section 2 presents the alignment method and Section 3 discusses its implemen-

tation in a Bayesian framework. Section 4 presents ideas for the secondary goal

of finding measurement parameters that are significantly non-invariant. Section

5 discusses Monte Carlo simulation studies using both maximum-likelihood and

Bayesian analysis. Section 6 returns to the application of tradition-conformity

items measured in 26 countries. Section 7 concludes.
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2 Alignment

Consider the multiple-group factor analysis model

yipg = νpg + λpgηig + εipg, (1)

where p = 1, ..., P and P is the number of observed indicator variables, g =

1, ..., G and G is the number of groups, i = 1, ..., Ng where Ng is the number of

independent observations in group g, ηig is a latent variable and we assume that

εipg ∼ N(0, θpg), ηig ∼ N(αg, ψg).

In the scalar invariance model the intercepts νpg and loading parameters λpg,

are held equal across groups, the factor mean in the first group is fixed to 0

and the factor variance in the first group is fixed to 1. As mentioned earlier,

when the scalar model does not fit well, modification indices are used to relax the

measurement part of the model step by step, i.e., one parameter at a time. The

problem with this approach is not only that the model modifications are done

manually and many models have to be estimated before a well-fitting model is

found. Another problem with this approach is that among the many well-fitting

models the modification indices approach does not guarantee that the simplest,

most interpretable model with the fewest number of non-invariant parameters is

reached. Even with only three groups, the simplest path of model modification

may not be obvious.

If we instead estimate the model where all intercepts and loadings are

unconstrained, the factor means and factor variances cannot be identified and are

typically fixed to 0 and 1 respectively. This model is referred to as the configural

model. Because the factor means and variances are not identified in the configural
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model the factors η are not comparable across groups and will be on a different

scale in each group. It is not possible to compare factor scores across individuals

from different groups and it is not possible to compare factor means across groups.

Here we describe an alignment approach that can estimate the model of (1),

i.e., it does not assume measurement invariance and can estimate the factor

mean and variance parameters in each group while discovering the most optimal

measurement invariance pattern. The method incorporates a simplicity function

similar to the rotation criteria used with EFA analysis.

The proposed alignment approach can estimate all of the parameters νpg, λpg,

αg, ψg by incorporating in the estimation the natural assumption that the number

of non-invariant measurement parameters and the amount of measurement non-

invariance can be held to a minimum. In the first step the alignment approach

estimates the configural model where αg = 0, ψg = 1 for every g and all loading

and intercept parameters are estimated as free and unequal. We call this model

the base model M0. This is the best fitting model among all multiple-group factor

analysis models as it has no across-group parameter restrictions. The final aligned

model that we propose here has the same fit as the M0 model, i.e., despite the fact

that the aligned model attempts to minimize the amount of non-invariance it does

not compromise the fit. The relationship between M0 and the final aligned model

parallels the relationship in EFA between the unrotated model (which has the

best fit among all CFA models with a fixed number of factors) and the rotated

model which simplifies the loading matrix without compromising the fit of the

model, i.e., has the same fit as the unrotated model.

Denote the estimates of model M0 by νpg,0 and λpg,0. For every set of

parameters αg and ψg there are intercept and loading parameters νpg and λpg
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that yield the same likelihood as the configural model. These parameters can be

obtained as follows

λpg,1 =
λpg,0√
ψg

, (2)

νpg,1 = νpg,0 − αg
λpg,0√
ψg

. (3)

We want to choose αg and ψg so that we minimize the amount of measurement

non-invariance. To formalize this we minimize with respect to αg and ψg the

total loss/simplicity function F which accumulates the total measurement non-

invariance

F =
∑
p

∑
g1<g2

wg1,g2f(λpg1,1 − λpg2,1) +
∑
p

∑
g1<g2

wg1,g2f(νpg1,1 − νpg2,1). (4)

The function F implies that for every pair of groups and every intercept and

loading parameter we add to the total loss function the difference between the

parameters scaled via the component loss function (CLF) f . CLF has been used

in EFA analysis, see for example Jennrich (2006) and it is used similarly here.

One good choice for the CLF is

f(x) =

√√
x2 + ε

where ε is a small number such as 0.0001. The function is approximately equal

to
√
|x|. It is exactly equal to

√
|x| when the small number ε is set to 0. We

use a positive ε so that we get a CLF that has a continuous first derivative which

make the optimization of the total loss function F easier than if we use a CLF
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that has no continuous first derivative. This is because most optimization routines

rely on continuous first derivatives. The choice of f(x) =
√
|x| leads to no loss,

if x = 0. If x < 1 the loss is amplified, that is, f(x) > x. If x > 1 the loss is

attenuated, that is, f(x) < x. Thus the total loss function F will be minimized

at a solution where there are a few large non-invariant measurement parameters

and many approximately invariant measurement parameters rather than many

medium-sized non-invariant measurement parameters. This is similar to the fact

that EFA rotation functions aim for either large or small loadings, but not mid-

sized loadings.

The weight factor wg1,g2 in F is set to reflect the group size and the amount

of certainty we have in the group estimates for a particular group. We use

wg1,g2 =
√
Ng1Ng2 .

With this weight factor bigger groups will contribute more to the total loss function

than smaller groups.

Minimizing the total loss function will generally identify the parameters αg

and ψg in all groups except the first group. To identify the parameters in the first

group we use the parameter constraints

ψ1 × ...× ψG = 1. (5)

We also set α1 = 0, although this second constraint is generally not needed and in

fact it may itself lead to biased parameter estimates. In principle the alignment

optimization can identify 2G − 1 of the parameters αg and ψg, while the last
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parameter is identified through equation (5). The two alignment optimizations are

are referred to as FIXED and FREE. The FIXED alignment optimization assumes

that α1 = 0. The FREE alignment optimization estimates α1 as an additional

parameter. Later on we illustrate with simulation studies the advantages and

the disadvantages of the two different alignment methods. The parameters can

also be standardized so that the factor metric is set in group 1, i.e., ψ1 = 1.1 In

addition, the alignment optimization is conducted after the observed variables are

standardized over the entire population so that all variables are on the same scale

and the loss functions between the different indicator variables are comparable.

Once the parameters αg and ψg are obtained via the alignment optimization the

loading and intercept parameters are obtained via equations (2) and (3).

Minimizing the simplicity function F may be complicated due to multiple local

optima and many random starting values should be used to ensure that the global

minimum is obtained.2 In many practical applications many local optima may

be found. Often those local optima yield fit function values that are close to the

global optimum fit function value and then typically the local optimum aligned

parameters differ only slightly from the global optimum aligned parameters.

The standard errors for the aligned parameters can be computed using the

delta method. The total loss function F has 2G−1 independent parameters. The

derivatives of F with respect to those parameters yield identifying equations for

1In fact in Mplus by default the parameters are indeed reported in that metric, however, the
alignment optimization is carried out using (5) to ensure full symmetry between the different
groups.

2By default Mplus uses 30 random starting values, however, more random starting values
should be used if the global minimum is not replicated at least twice. Mplus will print a warning
if this is the case. The technical 8 output can be used to see the fit function values obtained
with the different random starting values. Note however that in the technical 8 output Mplus
uses −F instead of F as it maximizes the opposite of the fit function.
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αg and ψg. Those equations can be solved implicitly for αg and ψg in terms of

λpg,0 and νpg,0 and using the asymptotic distribution for the parameter estimates

of the configural model and these implicit equations one can obtain the asymptotic

distribution of the aligned parameters.

The above discussion focuses on CFA models where an indicator loads on

only one factor so that cases with multiple factors are aligned one factor at a

time. Other current limitations that can be relaxed with further research include

having covariates and using a full structural equation model.

3 Bayesian Estimation

Two types of Bayesian Alignment estimation methods are considered, the

configural and the BSEM (Bayesian Structural Equation Modeling; Muthén &

Asparouhov, 2012) methods. Both methods first estimate a base model M0

using Markov Chain Monte Carlo (MCMC) methodology (see, e.g., Asparouhov

& Muthén, 2010 and references therein). The difference between the two methods

is in the model M0. For the configural method the model M0 is simply the

configural model where all factor means are fixed to 0 and all factor variances are

fixed to 1. The loading and intercept parameters are estimated as free and unequal

parameters using non-informative priors. For the BSEM method the M0 model

is a model where all measurement intercepts and loadings are held approximately

equal/invariant across groups by specifying highly correlated priors, see Section

4 in Muthén and Asparouhov (2013), and the factor means and variances are

estimated as free parameters in all but the first group. In the first group the factor

variance is fixed to 1 and the factor mean is estimated if the FREE alignment is
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used and it is fixed to 0 if the FIXED alignment is used.

After the M0 model is estimated, the second half of the generated MCMC

sequence is used to form the posterior distribution of the unaligned configural

parameter estimates. That is, if the M0 model is the configural model we simply

use the estimated posterior distribution of the M0 estimates. If the M0 model is

the BSEM model we compute the posterior distribution for the configural loadings

and intercepts parameters using the following formulas

λpg,0 = λpg,1
√
ψg, (6)

νpg,0 = νpg,1 + αgλpg,1, (7)

where λpg,0 and νpg,0 are the configural loadings and intercepts and αg, ψg, λpg,1,

and νpg,1 are the BSEM parameters. Using the BSEM parameters in each MCMC

iteration we apply equations (6) and (7) to obtain the configural loadings and

intercepts for each MCMC iteration. We then use these values to form the

posterior distribution for the configural intercept and loadings.

In a final step we obtain the posterior distribution of the aligned parameter

estimates by minimizing the simplicity function (4) in each MCMC iteration. In

other words, using the configural intercept and loadings values in each MCMC

iteration we minimize the simplicity function (4) to obtain aligned estimates in

each MCMC iteration. The aligned values from all MCMC iterations are then used

to estimate the aligned posterior distribution as well as the point estimates and

the standard errors for the aligned parameters. To avoid problems with multiple

local optima the aligned parameter values in one MCMC iteration are used as

starting values for the next iteration. These starting values are usually quite good
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because the change in the configural estimates is somewhat gradual and thus the

difference between the aligned values in consecutive MCMC iterations is not big.

One of the advantages of the Bayesian alignment estimation over the ML

alignment estimation is that it can easily accommodate binary indicator variables

through the probit link function. In the MCMC estimation binary variables are

used to generate the underlying normal variables with variance 1, see Asparouhov

and Muthén (2010). Once the underlying variables are generated the estimation

proceeds as with normally distributed indicator variables.

Another advantage of the Bayesian alignment estimation over the ML align-

ment estimation is that it can provide a more flexible model and a better fitting

model due to the fact that it is based on the BSEM model. A multiple-group

factor analysis model assuming configural invariance may not fit the data well

In that case, using BSEM with small residual covariances among the indicator

variables as suggested in Muthén and Asparouhov (2012) may improve the model

fit. In this way, the Baysian alignment model based on BSEM can have a better

model fit than the ML estimated multiple-group factor model.

The advantage of the BSEM model with the alignment estimation over the

BSEM model without the alignment estimation is that it improves interpretability.

The alignment estimates are obtained by minimizing the number of non-invariance

items, while the BSEM estimates are obtained by minimizing the variability of

the estimates across groups. The alignment estimates will be simpler to interpret

as fewer non-invariant parameters will be found.

Another advantage of the BSEM alignment estimation is that it can be used

to resolve estimation problem within individual groups where there is insufficient

amount of data or another data-related estimation problem arises. By holding
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the measurement parameters approximately equal across groups while allowing

the group-specific factor means and variances to be estimated, we can stabilize

the estimation by essentially incorporating a limited amount of information from

other groups into the group-specific estimation.

4 Invariance Analysis

The primary goal of the alignment is to provide a comparison of factor means

and factor variances across groups while allowing for approximate measurement

invariance. As a bi-product, information about the degree of measurement

invariance can also be provided. After the alignment estimation is completed

a detailed analysis can be done to determine which measurement parameters

are approximately invariant and which are not. The approach taken here is

an ad-hoc procedure. Other ad-hoc procedures may work equally well. Here

we do not provide a theoretical justification, rather, we provide details on the

post-estimation algorithm that is used to determine invariance. This procedure

works very well with simulated data, where the invariance and the non-invariant

parameters are known by design. Thus we expect the procedure to work well

in practical applications as well. Below we describe the details of the algorithm

implemented in Mplus Version 7.11.

The idea behind the algorithm is as follows. For each measurement parameter

the largest invariant set of groups is found where for each group in the invariant

set of groups the measurement parameter in that group is not statistically

significant from the average value for that parameter across all groups in the

invariant set. For each group not in the invariant set the parameter is statistically
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significantly different from that average. The algorithm is based on multiple

pairwise comparison, i.e., multiple testing is done and to avoid false non-invariance

discovery we use smaller p-values than the nominal 0.05.

The first step in the algorithm is to determine a starting set of invariant groups.

We conduct a pairwise test for each pair of groups and we ”connect” two groups if

the p-value obtained by the pairwise comparison test is bigger than 0.01. Next we

determine the largest connected set for that parameter. This will be the starting

set of groups. The starting set will be modified using the following procedure.

First the average parameter is computed using the current invariance set. Then

for each group a test of significance is conducted to compare the parameter value

for each group with the current average. If the p-value is above 0.001 the group is

added to the invariant set and if it is below that value the group is removed from

the invariance set. We then repeat that process until the invariant set stabilizes

and no groups are added or removed from the invariance set. Additional rules

are added to guarantee that the process indeed stabilizes. The above procedure is

based on the delta method when the ML estimation is used and with the Bayesian

estimation the testing is done using the posterior distribution for the test statistic.

With the Bayesian estimation it is recommended that a longer MCMC sequence is

run so that small p-values are more accurately estimated. Typically 1000 MCMC

iterations will be sufficient. The above procedure uses small p-values as cutoff

values and thus it is important to accurately estimate small p-values.3

Invariance analysis can be done not just for the individual parameters but also

for the factor indicator variables. Such an analysis is useful to identify the most

3More details on the invariance analysis and various pairwise comparisons can be obtained
in Mplus using the ALIGN option of the OUTPUT command.
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invariant variable and use that as an anchor item in a multiple-group CFA, or to

identify the most non-invariant variables which can then be revised or removed

from the measurement instrument. The contribution to the simplicity function

(4) from each variable can be isolated and reflects the level of non-invariance for

the variable. The smaller the contribution is the more invariant the variables is.4

5 Monte Carlo Simulations

In this section we study the quality of the alignment estimation methods.

Simulation study 1 considers the bias and coverage with the maximum-likelihood

estimation, simulation study 2 considers the parameter sampling variability using

the maximum-likelihood and the Bayes estimation methods, and simulation study

3 compares the FIXED and FREE alignment approaches. A further simulation

study is presented in Section 6.1, based on the analysis of the tradition-conformity

data presented in Section 1.

5.1 Simulation Study 1: Bias and Coverage using ML

In this section we describe a basic simulation study that provides an overview

of the quality of the aligned estimation. We generate data using a one-factor

model with G groups each of size N . The factor is measured by five indicator

variables. We generate data so that in each group there is one non-invariant

intercept parameter and one non-invariant loading parameter. In all groups the

invariant loadings and the residual variances of the indicator variables are set

4Mplus reports the contribution separately for the intercept and the loading component for
each variable. Simplicity function contributions for indicator variables are obtained in Mplus
using the ALIGN option of the OUTPUT command.
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to 1 and the invariant intercepts of the indicator variables are set to 0. For

simplicity there are three different types of groups in this simulation. In group 1

the distribution of the factor is N(0, 1), in group 2 the distribution is N(0.3, 1.5)

and in group 3 the distribution is N(1, 1.2). The remaining groups use the same

parameter values as the first 3 groups, group 4 uses the same parameters as

group 1, groups 5 uses the same parameters as group 2, etc. The non-invariant

parameters in group 1 are ν5 = 0.5 and λ3 = 1.4. The non-invariant parameters

in group 2 are ν1 = −0.5 and λ5 = 0.5. The non-invariant parameters in group 3

are ν2 = 0.5 and λ4 = 0.3.

To illustrate the effect different features have on the alignment estimation

we vary the number of groups G, the number of observations in each group N ,

the alignment estimation method FREE v.s. FIXED, and the degree of non-

invariance. The difference between these two methods is in the way the first

group factor intercept α1 is treated. With the FIXED alignment the parameter

α1 is fixed to 0 and with the FREE alignment that parameter is estimated as a

free parameter. We use within group sample size N = 100 or N = 1000 and we

use four different number of groups: 2, 3, 15 and 60. In this simulation the factor

mean and variance in the first group are 0 and 1 and thus the default metric is the

same as the metric used to generate the data. Therefore we expect the estimated

results to match the generated values.

We also vary the percentage of non-invariance among the intercept and loading

parameters. The generation scheme described above has I = 20% non-invariance

because 1 out of 5 intercepts and 1 out of 5 loadings are non-invariant. To obtain

different levels of non-invariance we modify the above generation scheme as follows.

To obtain I = 0% we replace all the non-invariant values with invariant values
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and to obtain I = 10% we remove the non-invariant loading parameter from each

odd numbered group and we remove the non-invariant intercept parameter from

each even numbered group. Note here that this concerns only the data generation,

the estimated model is the same regardless of the level of non-invariance I, i.e.,

the estimated model includes for each group free and unequal loadings, intercepts

and residual variance as well as factor means and variances, with the exception

of the first group where the factor variance is fixed to 1 and possibly the factor

mean is fixed to 0. The total number of estimated parameters is (3 ·P + 2) ·G− 1

for the FREE alignment model and (3 · P + 2) · G− 2 for the FIXED alignment

model. In our example with P = 5 indicators and with 60 groups this amounts

to 1019 parameters.

Using the FIXED and FREE options, respectively, Tables 1 and 2 report the

results for 6 parameters which are typical representatives for the rest of the model

parameters. The first two parameters are the factor mean α2 and factor variance

ψ2 in group 2. We also report two invariant parameters, the first loading λ1,2 and

the second intercept ν2,2 in group 2. We also report two non-invariant parameters

in group 2, the first intercept ν1,2 and the fifth loading λ5,2. ML estimation is

used.

[Table 2 about here.]

[Table 3 about here.]

There are several conclusions that we can draw from these simulation results.

First, we see that the methods work as expected, asymptotically. For sample

size N=1000 the point estimates are unbiased and coverage is near or above 95%.

Second, we see that there are biases when the sample size is small although the
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biases are not large in most cases and tend to occur only when the amount of non-

invariance is large, i.e., the combination of small sample size and large amount

of non-invariance may lead to biased estimates. Third, we see that with many

groups even a small degree of non-invariance requires a large sample size to avoid

biases. Fourth, we see that the FREE alignment breaks down when there are

only two groups, i.e., the factor intercept in the first group is not really identified

with the FREE alignment when there are only two groups. If one intercept is

not identified all intercept parameters will not be identified. With three or more

groups however, the FREE alignment seems to work well and in some cases better

than the FIXED alignment. The FREE alignment also breaks down when there is

no non-invariance in the parameters, i.e., when I = 0%. This is also as expected.

If the parameters estimates are nearly identical across the groups the additional

factor mean parameter in the FREE alignment will be poorly identified and the

results will be biased. The parameter is well identified if there is some non-

invariance in the estimated model.5

Another conclusion that we can make is that the biases can increase as the

amount of non-invariance increases. When the sample size is small and the non-

invariance is relatively large we see the largest bias. In that case one can also

expect that the simplicity function has multiple solutions and different solutions

can be reached in the different replications and some of those solutions are not

the same as the parameters used to generate the data. Just as in EFA analysis

using rotations, not all data-generating sets of parameters can be recovered in the

estimation. Only those can be recovered that have no simpler alternatives. When

5Currently Mplus will provide a standard error warning if it detects that the FREE alignment
breakdown occurs due to a small number of groups or insufficient measurement non-invariance.
The solution to that problem is to simply use the FIXED alignment method.
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the sample size is small and there is a relatively large degree of non-invariance in

the parameters the estimated configural model can be sufficiently far away from

the generating configural model so that the simplest model estimates might not

be near the original parameters just because a simpler solution with less non-

invariance has been found.

5.2 Simulation Study 2: Parameter Variation using ML

and Bayes

The coverage for most parameters in Tables 1 and 2 is somewhat too high. In the

next simulation study we evaluate the quality of the standard errors by computing

the ratio between the average standard errors and the standard deviation of the

parameters across the replications. Ideally this ratio will be close to 1 although

when the point estimates have finite sample size bias the nominal coverage would

be achieved when the standard errors are bigger. The simulation study we conduct

in this section is a modification of the simulation study described in the previous

section. We use a three-group example, using the 20% non-invariance and we

vary only the sample size within each group. The FREE alignment approach is

used together with both the ML and the Bayes estimator, where Bayes uses the

configural method.

Table 3 shows the ratio between the average standard errors and the standard

deviation for same model parameters we used in the previous section. If the

standard errors are correct this ratio should be close to 1. The results in Table 3

show that in most cases the ratio is not far from 1 and it appears to be more often

bigger than 1 which corresponds to the standard errors being overestimated. The
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overestimation appears to decrease as the sample size increases and the standard

errors appear to be asymptotically correct. The Bayes estimator gives slightly

more accurate standard errors with the average ratio being 1.09 compared to the

average ratio of 1.14 for the ML estimator. The worst values for the ML estimator

is 1.60 while the worst value for the Bayes estimator is 1.32. The comparison

between the two types of standard errors is important as the two use completely

different computational methods. The Bayes method does not rely on asymptotic

theory and is more empirically driven, while the ML method relies on asymptotic

theory but is independent of prior specifications.

[Table 4 about here.]

5.3 Simulation Study 3: Comparing FIXED and FREE

Alignment

From the previous simulation studies it appears that the FIXED alignment is

almost always better than the FREE alignment. That however is not true. The

appearance is simply due to all of the previous simulations generating data where

the factor mean in the first group is 0. In the next simulation we again generate

data with 20% non-invariance, however, now we set the factor mean in the first

group to 1. We report the simulation results for six parameters in Table 4. First

we report the α1 and α2 estimates for the FREE alignment estimation. Then

we report the α2 parameter under the FIXED alignment estimation as well as

α∗
2 = α2 + 1. This second parameter is essentially the α2 parameter scaled to the

data generating scale where the first factor mean is set to 1 instead of 0. If all the

measurement parameters were invariant then α∗
2 would be an unbiased estimate
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for the true value of α2. This can be illustrated with a different simulation study

where all the measurement parameters are invariant, but we do not report this

simulation results here. We also report in Table 4 the results for the first intercept

in the first group ν1,1 for both the FIXED and the FREE alignment.

In this simulation we focus on illustrating the advantages of the FREE

alignment. In the previous simulation we showed that when the number of groups

is two or when there are no non-invariant parameters, the FIXED alignment is the

better choice. Now we will show that in most other cases the FREE alignment

is the better choice. We use sample size of N = 1000 and we only vary the

number of groups. The results in Table 4 show that for any number of groups

the parameter estimates for ν1,1 are biased with the FIXED alignment and are

unbiased with the FREE alignment. The factor mean estimates in the first two

groups, α1 and α2, are unbiased with the FREE alignment and are biased with

the FIXED alignment although it appears that the FIXED alignment bias for α2

decreases as the number of groups increases. That can be explained by the fact

that as the number of groups increases the effect of the misspecification in the first

group has smaller effect on the estimates when the number of groups is larger.

The change in the bias of the α2 estimates with the FIXED alignment appears

to be drastic. That indicates multiple local optima in the fit function (4). The

estimate α∗
2 appears to be less biased that the original estimate for α2 for small

number of groups but it becomes more biased for larger number of groups. This

simulations shows that whenever we have more than two groups and measurement

non-invariance the FREE alignment parameter estimates are more accurate than

the FIXED alignment estimates.
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[Table 5 about here.]

6 A Multiple-Group Alignment Analysis of 26

Countries

This section continues the analysis of the tradition-conformity items for 49, 894

subjects in 26 European countries that was introduced in Section 1. It is shown

how the alignment method resolves the problem of comparing factor means

found with the traditional multiple-group factor analysis under scalar invariance.

Maximum-likelihood estimation was used for the initial configural model. The

FREE alignment approach was initially used but the standard error results

indicated that it may be poorly identified as discussed in Section 2.6 Using the

country with factor mean closest to zero, the FIXED approach is used with country

22 chosen as the reference group with factor mean 0.

Table 6 shows the (non-) invariance results for the measurement intercepts and

factor loadings using the approach of Section 4. The countries that are deemed

to have a significantly non-invariant measurement parameter are shown as bolded

within parentheses. As seen in Table 6, most of the items show a large degree

of measurement non-invariance for the measurement intercepts and, to a lesser

extent, the loadings. The large degree of non-invariance is in line with the findings

of the traditional approach using the scalar model. However, Table 6 also shows

that item IPBHPRP has no significant measurement non-invariance and this item

is therefore particularly useful for comparing these countries on the factor.

Table 7 shows the factor means as estimated by the alignment method. For

6This is a warning provided by Mplus as mentioned in footnote 5
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convenience in the presentation, the factor means are ordered from high to low

and groups that have factor means significantly different on the 5% level are

shown. Figure 1 compares the estimated factor means using the alignment

method with the factor means of the scalar invariance model (without relaxing

any invariance restrictions). Recalling the reversed scale, the two methods agree

that Sweden (country 23) has the lowest level of tradition-conformity and Cyprus

(country 4) the highest level. The alignment method, however, finds that Portugal

(country 21) has a significantly different mean from the Netherlands (country 18),

whereas the scalar method finds essentially no difference between these countries.

Other discrepancies between the two methods are found for France compared to

Switzerland and for Norway compared to Russia.

[Table 6 about here.]

[Table 7 about here.]

[Figure 1 about here.]

6.1 Monte Carlo Simulation Check of 26-Country Align-

ment

The Monte Carlo simulations of Section 5 studied how well the alignment method

works under different conditions of varying number of groups, group sample size,

and degree of measurement non-invariance. Any given data set, however, has

unique characteristics and it is useful to consider how well the methods work

under conditions that more closely resemble those at hand. The Section 6 real-

data analysis of the 26 countries indicates a larger percentage of non-invariant
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measurement intercepts and loadings than was studied in the Monte Carlo

simulations. The magnitudes of non-invariance for the loadings, however, are

smaller. Relative to the Monte Carlo simulations, the 26 countries represent

a mid-level number of groups and a large number of observations per group,

1, 919. It is of interest to conduct a simulation based on these features, using

the parameter estimates of the alignment method as data-generating population

parameter values, in order to see how well population values can be recovered by

the alignment method.7

The results of the simulation study for a selection of the model parameters are

presented in Table 8 for group sample sizes of Ng = 100, Ng = 200, Ng = 500,

and Ng = 2000, the latter being close to the real-data group size. The table

contains the true values as well as the average estimates and coverage across 500

replications for the first five groups. Intercepts and loadings are shown for only the

IPFRULE item. The variation across the groups of intercept and loadings gives

an indication of the magnitude of non-invariance in this example. Interestingly,

good recovery for all parameters except the factor variances is found already for

Ng = 100. For sample size Ng = 2000 almost flawless results are seen.

[Table 8 about here.]

It is interesting that good recovery of measurement parameters as well factor

means and factor variances is possible even when there is a large degree of

non-invariance. It cannot be expected, however, that all real-data settings can

give acceptable alignment results and Monte Carlo studies are therefore a useful

complement to the alignment method.

7This is conveniently carried out in Mplus using the SVALUES option to save parameter
estimates in a form suitable for input in a Monte Carlo run.
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7 Conclusions

The alignment method described in this article can be used to estimate group-

specific factor means and variances without requiring exact measurement invari-

ance. A strength of the method is the ability to conveniently estimate models

for many groups. The method can be used to estimate models with multiple

factors and many indicator variables. The method is a valuable alternative

to the currently used multiple-group CFA methods for studying measurement

invariance that require multiple manual model adjustments guided by imperfect

modification indices or other ad-hoc procedures based on multiple likelihood

ratio tests. Multiple-group CFA is simply not practical with many groups.

In contrast, the alignment method essentially automates and greatly simplifies

measurement invariance analysis. The method provides a detailed account of

parameter invariance for every model parameter in every group.

The alignment method can also be viewed as an exploratory method. Aligned

factor analysis can be followed by an informed multiple-group CFA model similar

to the way CFA models are used as a followup to an EFA model. The alignment

method can be used to determine individual parameter invariance status, but

it can also be used to determine the most invariant indicator variables in the

measurement instrument. That information can be taken into account when

constructing a well fitting CFA model that accommodates partial measurement

non-invariance while still estimating group-specific factor means and variances.

Current limitations to this methodology are that indicator variables can load

on only one factor, i.e., models with cross-loadings are not accommodated. In

addition, CFA models with covariates can not be estimated with the alignment
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method. Only continuous and binary variables are currently accommodated in the

above framework, i.e., ordered polytomous variables are currently not included.

These extensions can in principle be developed in the future using the same

techniques. Alignment methods for multiple-group EFA models (referred to as

ESEM; Asparouhov & Muthén, 2009) can also be developed in the future.

As our simulation studies illustrate, the aligned parameter estimates can

have small biases in certain situations. The extent of these biases have to

be studied further and the method has to be evaluated further with more

practical applications. It is still unclear what amount of measurement non-

invariance this methodology can accommodate. The fundamental assumption

of the alignment method is that there is approximate measurement invariance in

the data. Currently the method does not provide a clear instrument to indicate

when this assumption is violated to a significant degree, although Monte Carlo

studies are helpful as illustrated in Section 6.1. The alignment method will always

estimate the simplest model with the largest amount of non-invariance, but if

the assumption of approximate measurement invariance is violated the simplest

and most invariant model may not be the true model. For example, if data are

generated where a minority of the factor indicators have invariant measurement

parameters and the majority of the indicators have the same amount of non-

invariance, the alignment method will choose the non-invariant indicators as the

invariant ones, singling out the other indicators as non-invariant.

The alignment method is unique in that there is no simple alternative for

estimating factor means and variances in the context of measurement non-

invariance given that these parameters are deemed unidentified by traditional

methods accommodating measurement non-invariance. The alignment method
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formalizes the analyst’s assumption and belief that the measurement instrument

should be similar across the groups while the actual factor distribution can

vary across the groups. No other method automatically accommodates this

intangible information within its estimation procedure. The alignment method

is implemented in Mplus Version 7.11 and scripts for all of the above analyses are

available at www.statmodel.com.
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Figure 1: Factor Means for Tradition-Conformity in 26 Countries: Alignment
Method vs Scalar Model
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Table 1: Tradition-Conformity Items from the European Social Survey

Tradition (TR): 9. It is important for him to be humble and modest.
He tries not to draw attention to himself (ipmodst).

20. Tradition is important to him. He tries to follow
the customs handed down by his religion or family
(imptrad).

Conformity (CO): 7. He believes that people should do what they’re told.
He thinks people should follow rules at all times, even
when no one is watching (ipfrule).

16. It is important for him to always behave properly.
He wants to avoid doing anything people would say is
wrong (ipbhprp).

32



Table 2: Absolute Bias (Coverage) for the FIXED Alignment Estimates using ML

G N I α2 = 0.3 ψ2 = 1.5 λ1,2 = 1 ν2,2 = 0 λ5,2 = 0.5 ν1,2 = −0.5

2 100 0 .02(.97) .00(.99) .00(0.98) .01(.96) .01(1.00) .03(.98)

2 100 10 .01(.98) .04(.96) .02(0.96) .01(.97) .00(.96) .00(.96)

2 100 20 .06(.96) .20(.86) .09(1.00) .05(.91) .04(.92) .03(.96)

3 100 0 .01(.96) .07(.98) .02(.97) .01(.99) .03(.98) .00(.98)

3 100 10 .04(.97) .00(.98) .00(.98) .03(.98) .01(.94) .02(.98)

3 100 20 .12(.95) .20(.91) .08(.94) .09(.92) .03(.91) .08(.92)

15 100 0 .03(.96) .02(.97) .00(.99) .04(.99) .00(1.00) .04(1.00)

15 100 10 .04(.98) .05(.97) .01(1.00) .05(.98) .01(.97) .04(.98)

15 100 20 .10(.94) .17(.89) .06(.98) .09(.99) .03(.96) .09(.98)

60 100 0 .18(.97) .02(.99) .00(0.99) .19(0.98) .01(1.00) .18(.96)

60 100 10 .08(.98) .02(.97) .02(1.00) .09(1.00) .02(.99) .07(1.00)

60 100 20 .10(.97) .12(.93) .05(1.00) .10(1.00) .04(.98) .08(.98)

2 1000 0 .01(1.00) .00(.98) .00(.97) .00(.99) .00(.98) .01(.99)

2 1000 10 .00(.98) .02(.97) .00(.97) .00(.97) .01(.96) .00(.99)

2 1000 20 .00(.99) .01(.98) .00(.98) .00(.96) .01(.97) .00(.98)

3 1000 0 .01(.99) .00(.97) .01(1.00) .00(.99) .00(.99) .00(.96)

3 1000 10 .01(.99) .01(.98) .00(.98) .00(.99) .00(.98) .01(.99)

3 1000 20 .02(.97) .04(.95) .01(.99) .01(.99) .01(.97) .02(.97)

15 1000 0 .01(.97) .00(.95) .00(.98) .00(.99) .00(.96) .00(.98)

15 1000 10 .01(.97) .00(.96) .00(.97) .01(.99) .00(.93) .01(.99)

15 1000 20 .02(.97) .03(.96) .01(.98) .01(.99) .00(.97) .01(.98)

60 1000 0 .01(0.97) .01(.95) .00(0.99) .01(.96) .01(.96) .01(.99)

60 1000 10 .01(0.97) .01(.95) .00(0.99) .01(.99) .00(.94) .01(.99)

60 1000 20 .01(1.00) .02(.97) .01(1.00) .01(.99) .00(.97) .01(.99)
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Table 3: Absolute Bias (Coverage) for the FREE Alignment Estimates using ML

G N I α2 = 0.3 ψ2 = 1.5 λ1,2 = 1 ν2,2 = 0 λ5,2 = 0.5 ν1,2 = −0.5

2 100 0 .08(1.00) .00(.99) .00(0.98) .08(1.00) .01(1.00) .08(1.00)

2 100 10 .81(.86) .04(.96) .02(0.96) .82(.83) .00(.96) .85(.83)

2 100 20 .42(.93) .20(.86) .09(1.00) .46(.90) .04(.92) .48(.89)

3 100 0 .41(.96) .07(.98) .02(.97) .40(.96) .03(.98) .40(.96)

3 100 10 .04(.94) .00(.98) .00(.98) .03(.93) .01(.94) .01(.90)

3 100 20 .03(.93) .22(.91) .09(.95) .01(.96) .04(.92) .01(.97)

15 100 0 .39(.92) .02(.97) .00(.99) .40(.95) .00(1.00) .39(.94)

15 100 10 .07(.98) .05(.97) .01(1.00) .07(.99) .01(.97) .06(.99)

15 100 20 .10(.95) .18(.89) .06(.98) .09(.99) .03(.96) .09(.98)

60 100 0 .40(.79) .02(.99) .00(0.99) .41(0.76) .01(1.00) .39(.69)

60 100 10 .09(.99) .03(.98) .02(1.00) .11(0.98) .02(.99) .09(1.00)

60 100 20 .11(.98) .11(.91) .05(1.00) .09(0.98) .04(.98) .09(.98)

2 1000 0 .00(1.00) .00(.98) .00(.97) .00(1.00) .00(.98) .00(1.00)

2 1000 10 .99(.00) .02(.97) .00(.97) .99(.00) .01(.96) .99(.00)

2 1000 20 .86(.08) .02(.98) .00(.97) .87(.08) .01(.96) .86(.08)

3 1000 0 .39(.94) .00(.97) .01(1.00) .38(0.94) .00(.99) .38(.95)

3 1000 10 .04(.94) .01(.98) .00(.98) .05(0.93) .00(.98) .05(.94)

3 1000 20 .01(.96) .04(.95) .01(.99) .00(1.00) .01(.97) .01(.98)

15 1000 0 .40(0.87) .00(.95) .00(.98) .39(.90) .00(.96) .39(0.89)

15 1000 10 .02(0.98) .00(.96) .00(.97) .01(.97) .00(.93) .01(0.96)

15 1000 20 .02(1.00) .03(.96) .01(.98) .01(.98) .00(.97) .01(1.00)

60 1000 0 .39(0.09) .01(.95) .00(0.99) .39(.09) .01(.96) .39(.12)

60 1000 10 .01(0.96) .01(.95) .00(0.99) .01(.99) .00(.94) .01(.99)

60 1000 20 .01(0.99) .02(.97) .01(1.00) .01(.98) .00(.97) .01(.99)
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Table 4: Ratio between the Average Standard Errors and the Standard Deviation
using ML and Bayes for Three Groups

Estimator N α2 = 0.3 ψ2 = 1.5 λ1,2 = 1 ν2,2 = 0 λ5,2 = 0.5 ν1,2 = −0.5

ML 300 1.11 1.11 1.11 1.16 1.01 1.04

Bayes 300 1.09 1.32 1.27 1.23 1.12 1.19

ML 1000 1.12 1.26 1.44 1.19 1.10 1.20

Bayes 1000 1.09 1.19 1.27 1.10 1.06 1.16

ML 2000 1.14 1.52 1.60 1.06 1.15 1.10

Bayes 2000 1.05 1.13 1.10 1.06 0.99 0.97

ML 5000 1.02 1.13 1.19 1.00 1.12 1.02

Bayes 5000 0.96 1.09 1.18 0.94 0.99 0.97

ML 10000 1.05 1.08 1.22 1.00 1.05 0.99

Bayes 10000 0.94 1.13 1.08 0.96 0.99 0.97
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Table 5: Comparing FIXED and FREE Alignment. Bias (Coverage)

FREE FREE FIXED FIXED FREE FIXED

G α1 α2 α2 α∗
2 ν1,1 ν1,1

3 .01(1.00) .01(.94) 1.28(.00) 0.28(0.43) .00(.98) 1.00(.00)

5 .01(0.99) .01(.97) 1.23(.00) 0.23(0.46) .02(.97) 1.00(.00)

10 .01(1.00) .01(.99) 1.23(.11) 0.23(0.13) .01(1.00) 1.00(.00)

15 .00(1.00) .02(1.00) 0.05(.94) 0.95(0.00) .00(1.00) 1.00(.00)

20 .00(0.98) .02(.99) 0.04(.96) 0.96(0.00) .01(.98) 1.00(.00)
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Table 6: ESS Tradition-Conformity Items: Approximate Measurement (Non-)
Invariance for Intercepts and Loadings over 26 Countries

Intercepts:

IPMODST (1) (2) (3) 4 (5) (6) (7) 8 (9) (10) (11) 12 13 (14) 15 16 (17) (18) (19) (20)

(21) 22 23 (24) 25 (26)

IMPTRAD (1) (2) (3) (4) 5 (6) 7 8 (9) 10 (11) 12 (13) (14) (15) (16) 17 (18) (19) (20)

(21) (22) 23 24 (25) (26)

IPFRULE (1) 2 (3) (4) 5 (6) (7) (8) (9) 10 (11) (12) (13) (14) (15) (16) 17 (18) (19)

(20) 21 (22) 23 (24) 25 26

IPBHPRP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Loadings:

IPMODST (1) 2 (3) 4 5 (6) (7) 8 (9) (10) (11) (12) 13 14 15 16 17 18 19 20 21 22

(23) (24) 25 26

IMPTRAD 1 2 3 4 5 6 (7) 8 9 10 11 12 13 14 15 16 17 18 19 20 (21) 22 (23) 24

(25) 26

IPFRULE 1 2 3 4 5 (6) 7 8 9 (10) (11) 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26

IPBHPRP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
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Table 7: ESS Tradition-Conformity Items: Factor Mean Comparisons of 26
Countries

Ranking Group Value Groups with significantly smaller factor mean

1 23 0.928 21 18 6 10 3 11 26 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

2 21 0.613 18 6 10 3 11 26 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

3 18 0.391 26 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

4 6 0.357 26 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

5 10 0.342 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

6 3 0.331 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

7 11 0.310 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

8 26 0.247 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

9 7 0.200 12 19 22 14 20 25 15 17 9 2 13 24 4

10 5 0.161 19 22 14 20 25 15 17 9 2 13 24 4

11 16 0.130 19 22 14 20 25 15 17 9 2 13 24 4

12 8 0.121 19 22 14 20 25 15 17 9 2 13 24 4

13 1 0.114 19 22 14 20 25 15 17 9 2 13 24 4

14 12 0.100 22 14 20 25 15 17 9 2 13 24 4

15 19 0.007 14 20 25 15 17 9 2 13 24 4

16 22 0.000 14 20 25 15 17 9 2 13 24 4

17 14 -0.114 17 9 2 13 24 4

18 20 -0.145 9 2 13 24 4

19 25 -0.185 2 13 24 4

20 15 -0.190 2 13 24 4

21 17 -0.214 13 24 4

22 9 -0.234 13 24 4

23 2 -0.288 4

24 13 -0.314 4

25 24 -0.327 4

26 4 -0.478
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Table 8: Monte Carlo Simulation Check of 26-Country Alignment: True Values,
Estimates, and Coverage (in parentheses) for Four Group Sizes

Parameter True Value Ng = 1001 Ng = 200 Ng = 500 Ng = 2000

Group 1

Factor Mean 0.114 .01(.99) -.01(.96) -.01(.99) -.01(.94)
Factor Variance 0.902 -.09(.93) -.08(.95) .04(.96) .00(.97)

Intercept 3.177 -.01(.96) -.01(.96) .01(.96) .00(.96)
Loading 0.725 .10(.99) .06(.99) -.06(.94) .00(.97)

Group 2

Factor Mean -0.288 -.01(.98) .00(.97) .01(.96) .00(.96)
Factor Variance 1.059 .06(.97) .00(.95) -.06(.96) .00(.95)

Intercept 2.741 .00(.97) .01(.97) .00(.96) .00(.94)
Loading 0.704 .01(.98) .01(.98) .00(.96) .00(.97)

Group 3

Factor Mean 0.331 -.02(.95) -.02(.94) .00(.96) -.01(.95)
Factor Variance 1.222 -.18(.90) -.19(.91) .04(.93) -.09(.89)

Intercept 3.202 -.01(.95) .01(.95) .01(.96) .00(.95)
Loading 0.654 .10(.98) .08(.98) -.05(.91) .03(.94)

Group 4

Factor Mean -0.478 .00(.97) .00(.97) .00(.98) .00(.94)
Factor Variance 0.881 .02(.96) -.04(.97) -.03(.95) -.01(.96)

Intercept 3.197 .01(.96) .00(.97) .00(.94) .00(.93)
Loading 0.716 .02(.98) .03(.98) -.01(.97) .00(.96)

Group 5

Factor Mean 0.161 .01(.98) .00(.99) -.01(.96) .00(.96)
Factor Variance 1.065 -.05(.94) -.04(.94) .02(.96) -.01(.95)

Intercept 2.699 -.02(.97) .00(.96) .02(.95) .00(.94)
Loading 0.608 .05(.97) .03(.96) -.03(.93) .00(.95)

1 Only 488 out of 500 replications are reported because remaining replications
did not replicate the best alignment fit function value.
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