Mplus VERSION 8
MUTHEN & MUTHEN
04/10/2017 3:24 AM
INPUT INSTRUCTIONS
title:
monte carlo for two-level mixture
regression for a continuous
dependent variable
montecarlo:
names are y x1 x2 w;
nobservations = 1000;
ncsizes = 3;
csizes = 40 (5) 50 (10) 20 (15);
genclasses = c(2);
classes = c(2);
within = x1 x2;
between = w;
seed = 3454367;
nrep = 1;
save = ex10.1.dat;
analysis:
type = twolevel mixture;
model population:
%within%
%overall%
x1-x2*1;
[x1-x2*0];
[c#1*0];
c#1 on x1*1;
y on x1*2 x2*1;
y*1;
%c#1%
y on x2*2;
y*2;
%between%
%overall%
[w@0]; w@1;
y on w*.7; y*.5;
c#1 on w*1; c#1*.4;
[y*1];
%c#1%
[y*2];
model:
%within%
%overall%
[c#1*0];
c#1 on x1*1;
y on x1*2 x2*1;
y*1;
%c#1%
y on x2*2;
y*2;
%between%
%overall%
y on w*.7; y*.5;
c#1 on w*1; c#1*.4;
[y*1];
%c#1%
[y*2];
output:
tech8 tech9;
INPUT READING TERMINATED NORMALLY
monte carlo for two-level mixture
regression for a continuous
dependent variable
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 1000
Number of replications
Requested 1
Completed 1
Value of seed 3454367
Number of dependent variables 1
Number of independent variables 3
Number of continuous latent variables 0
Number of categorical latent variables 1
Observed dependent variables
Continuous
Y
Observed independent variables
X1 X2 W
Categorical latent variables
C
Variables with special functions
Within variables
X1 X2
Between variables
W
Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-02
Relative loglikelihood change 0.100D-05
Derivative 0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Optimization algorithm EMA
Integration Specifications
Type STANDARD
Number of integration points 15
Dimensions of numerical integration 2
Adaptive quadrature ON
Cholesky OFF
SUMMARY OF DATA FOR THE FIRST REPLICATION
Cluster information
Size (s) Number of clusters of Size s
5 40
10 50
15 20
SAMPLE STATISTICS FOR THE FIRST REPLICATION
SAMPLE STATISTICS
Means
Y X1 X2 W
________ ________ ________ ________
1.239 -0.024 -0.055 -0.087
Covariances
Y X1 X2 W
________ ________ ________ ________
Y 9.813
X1 2.126 1.008
X2 1.365 -0.020 0.961
W 0.905 0.000 0.000 0.943
Correlations
Y X1 X2 W
________ ________ ________ ________
Y 1.000
X1 0.676 1.000
X2 0.444 -0.021 1.000
W 0.297 0.000 0.000 1.000
MODEL FIT INFORMATION
Number of Free Parameters 13
Loglikelihood
H0 Value
Mean -1752.597
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 -1752.597 -1752.597
0.980 0.000 -1752.597 -1752.597
0.950 0.000 -1752.597 -1752.597
0.900 0.000 -1752.597 -1752.597
0.800 0.000 -1752.597 -1752.597
0.700 0.000 -1752.597 -1752.597
0.500 0.000 -1752.597 -1752.597
0.300 0.000 -1752.597 -1752.597
0.200 0.000 -1752.597 -1752.597
0.100 0.000 -1752.597 -1752.597
0.050 0.000 -1752.597 -1752.597
0.020 0.000 -1752.597 -1752.597
0.010 0.000 -1752.597 -1752.597
Information Criteria
Akaike (AIC)
Mean 3531.195
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 3531.195 3531.195
0.980 0.000 3531.195 3531.195
0.950 0.000 3531.195 3531.195
0.900 0.000 3531.195 3531.195
0.800 0.000 3531.195 3531.195
0.700 0.000 3531.195 3531.195
0.500 0.000 3531.195 3531.195
0.300 0.000 3531.195 3531.195
0.200 0.000 3531.195 3531.195
0.100 0.000 3531.195 3531.195
0.050 0.000 3531.195 3531.195
0.020 0.000 3531.195 3531.195
0.010 0.000 3531.195 3531.195
Bayesian (BIC)
Mean 3594.996
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 3594.996 3594.996
0.980 0.000 3594.996 3594.996
0.950 0.000 3594.996 3594.996
0.900 0.000 3594.996 3594.996
0.800 0.000 3594.996 3594.996
0.700 0.000 3594.996 3594.996
0.500 0.000 3594.996 3594.996
0.300 0.000 3594.996 3594.996
0.200 0.000 3594.996 3594.996
0.100 0.000 3594.996 3594.996
0.050 0.000 3594.996 3594.996
0.020 0.000 3594.996 3594.996
0.010 0.000 3594.996 3594.996
Sample-Size Adjusted BIC (n* = (n + 2) / 24)
Mean 3553.707
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 3553.707 3553.707
0.980 0.000 3553.707 3553.707
0.950 0.000 3553.707 3553.707
0.900 0.000 3553.707 3553.707
0.800 0.000 3553.707 3553.707
0.700 0.000 3553.707 3553.707
0.500 0.000 3553.707 3553.707
0.300 0.000 3553.707 3553.707
0.200 0.000 3553.707 3553.707
0.100 0.000 3553.707 3553.707
0.050 0.000 3553.707 3553.707
0.020 0.000 3553.707 3553.707
0.010 0.000 3553.707 3553.707
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON ESTIMATED POSTERIOR PROBABILITIES
Latent
Classes
1 461.57544 0.46158
2 538.42456 0.53842
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP
Class Counts and Proportions
Latent
Classes
1 438 0.43800
2 562 0.56200
CLASSIFICATION QUALITY
Entropy 0.406
Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)
1 2
1 0.807 0.193
2 0.192 0.808
Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)
1 2
1 0.766 0.234
2 0.157 0.843
Logits for the Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)
1 2
1 1.184 0.000
2 -1.680 0.000
MODEL RESULTS
ESTIMATES S. E. M. S. E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff
Within Level
Latent Class 1
Y ON
X1 2.000 1.9178 0.0000 0.1097 0.0068 1.000 1.000
X2 2.000 1.9533 0.0000 0.2366 0.0022 1.000 1.000
Residual Variances
Y 2.000 1.9703 0.0000 0.1803 0.0009 1.000 1.000
Latent Class 2
Y ON
X1 2.000 1.9178 0.0000 0.1097 0.0068 1.000 1.000
X2 1.000 0.9682 0.0000 0.0781 0.0010 1.000 1.000
Residual Variances
Y 1.000 1.0537 0.0000 0.1320 0.0029 1.000 1.000
Between Level
Latent Class 1
Y ON
W 0.700 0.7420 0.0000 0.1354 0.0018 1.000 1.000
Intercepts
Y 2.000 1.9752 0.0000 0.1441 0.0006 1.000 1.000
Residual Variances
Y 0.500 0.5186 0.0000 0.1092 0.0003 1.000 1.000
Latent Class 2
Y ON
W 0.700 0.7420 0.0000 0.1354 0.0018 1.000 1.000
Intercepts
Y 1.000 0.9452 0.0000 0.2976 0.0030 1.000 1.000
Residual Variances
Y 0.500 0.5186 0.0000 0.1092 0.0003 1.000 1.000
Categorical Latent Variables
Within Level
C#1 ON
X1 1.000 1.3514 0.0000 1.0804 0.1235 1.000 0.000
Intercepts
C#1 0.000 -0.1063 0.0000 0.8090 0.0113 1.000 0.000
Between Level
C#1 ON
W 1.000 1.1844 0.0000 1.0331 0.0340 1.000 0.000
Residual Variances
C#1 0.400 0.1313 0.0000 2.9225 0.0722 1.000 0.000
QUALITY OF NUMERICAL RESULTS
Average Condition Number for the Information Matrix 0.575E-03
(ratio of smallest to largest eigenvalue)
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION FOR WITHIN LEVEL, LATENT CLASS 1
NU
Y X1 X2 W
________ ________ ________ ________
0 0 0 0
LAMBDA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0 0 0 0 0
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0
X1 0 0
X2 0 0 0
W 0 0 0 0
ALPHA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
0 0 0 0 0
BETA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0 0 0 0 0
Y 0 0 1 2 0
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
PSI
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0
Y 0 3
X1 0 0 0
X2 0 0 0 0
W 0 0 0 0 0
PARAMETER SPECIFICATION FOR WITHIN LEVEL, LATENT CLASS 2
NU
Y X1 X2 W
________ ________ ________ ________
0 0 0 0
LAMBDA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0 0 0 0 0
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0
X1 0 0
X2 0 0 0
W 0 0 0 0
ALPHA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
0 0 0 0 0
BETA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0 0 0 0 0
Y 0 0 1 4 0
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
PSI
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0
Y 0 5
X1 0 0 0
X2 0 0 0 0
W 0 0 0 0 0
PARAMETER SPECIFICATION FOR BETWEEN LEVEL, LATENT CLASS 1
NU
Y X1 X2 W
________ ________ ________ ________
0 0 0 0
LAMBDA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0 0 0 0 0
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0
X1 0 0
X2 0 0 0
W 0 0 0 0
ALPHA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
0 6 0 0 0
BETA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0 0 0 0 7
Y 0 0 0 0 8
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
PSI
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 9
Y 0 10
X1 0 0 0
X2 0 0 0 0
W 0 0 0 0 0
PARAMETER SPECIFICATION FOR BETWEEN LEVEL, LATENT CLASS 2
NU
Y X1 X2 W
________ ________ ________ ________
0 0 0 0
LAMBDA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0 0 0 0 0
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0
X1 0 0
X2 0 0 0
W 0 0 0 0
ALPHA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
0 11 0 0 0
BETA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0 0 0 0 7
Y 0 0 0 0 8
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
PSI
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 9
Y 0 10
X1 0 0 0
X2 0 0 0 0
W 0 0 0 0 0
PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART
ALPHA(C)
C#1 C#2
________ ________
12 0
GAMMA(C)
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0 0 13 0 0
C#2 0 0 0 0 0
STARTING VALUES FOR WITHIN LEVEL, LATENT CLASS 1
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BETA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 2.000 2.000 0.000
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000
Y 0.000 2.000
X1 0.000 0.000 0.500
X2 0.000 0.000 0.000 0.500
W 0.000 0.000 0.000 0.000 0.000
STARTING VALUES FOR WITHIN LEVEL, LATENT CLASS 2
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BETA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 2.000 1.000 0.000
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000
Y 0.000 1.000
X1 0.000 0.000 0.500
X2 0.000 0.000 0.000 0.500
W 0.000 0.000 0.000 0.000 0.000
STARTING VALUES FOR BETWEEN LEVEL, LATENT CLASS 1
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 2.000 0.000 0.000 0.000
BETA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000 0.000 0.000 0.000 1.000
Y 0.000 0.000 0.000 0.000 0.700
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.400
Y 0.000 0.500
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.500
STARTING VALUES FOR BETWEEN LEVEL, LATENT CLASS 2
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 1.000 0.000 0.000 0.000
BETA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000 0.000 0.000 0.000 1.000
Y 0.000 0.000 0.000 0.000 0.700
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.400
Y 0.000 0.500
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.500
STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART
ALPHA(C)
C#1 C#2
________ ________
0.000 0.000
GAMMA(C)
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000 0.000 1.000 0.000 0.000
C#2 0.000 0.000 0.000 0.000 0.000
POPULATION VALUES FOR WITHIN LEVEL, LATENT CLASS 1
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BETA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 2.000 2.000 0.000
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000
Y 0.000 2.000
X1 0.000 0.000 1.000
X2 0.000 0.000 0.000 1.000
W 0.000 0.000 0.000 0.000 0.000
POPULATION VALUES FOR WITHIN LEVEL, LATENT CLASS 2
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BETA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 2.000 1.000 0.000
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000
Y 0.000 1.000
X1 0.000 0.000 1.000
X2 0.000 0.000 0.000 1.000
W 0.000 0.000 0.000 0.000 0.000
POPULATION VALUES FOR BETWEEN LEVEL, LATENT CLASS 1
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 2.000 0.000 0.000 0.000
BETA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000 0.000 0.000 0.000 1.000
Y 0.000 0.000 0.000 0.000 0.700
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.400
Y 0.000 0.500
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 1.000
POPULATION VALUES FOR BETWEEN LEVEL, LATENT CLASS 2
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 1.000 0.000 0.000 0.000
BETA
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000 0.000 0.000 0.000 1.000
Y 0.000 0.000 0.000 0.000 0.700
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.400
Y 0.000 0.500
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 1.000
POPULATION VALUES FOR LATENT CLASS REGRESSION MODEL PART
ALPHA(C)
C#1 C#2
________ ________
0.000 0.000
GAMMA(C)
C#1 Y X1 X2 W
________ ________ ________ ________ ________
C#1 0.000 0.000 1.000 0.000 0.000
C#2 0.000 0.000 0.000 0.000 0.000
TECHNICAL 8 OUTPUT
TECHNICAL 8 OUTPUT FOR REPLICATION 1
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.17562905D+04 0.0000000 0.0000000 472.123 527.877 EM
2 -0.17543654D+04 1.9251152 0.0010961 471.567 528.433 EM
3 -0.17539747D+04 0.3906791 0.0002227 470.558 529.442 EM
4 -0.17537510D+04 0.2236689 0.0001275 469.570 530.430 EM
5 -0.17535948D+04 0.1562547 0.0000891 468.709 531.291 EM
6 -0.17534795D+04 0.1152978 0.0000657 467.974 532.026 EM
7 -0.17533912D+04 0.0882446 0.0000503 467.347 532.653 EM
8 -0.17533216D+04 0.0696278 0.0000397 466.810 533.190 EM
9 -0.17532652D+04 0.0564124 0.0000322 466.346 533.654 EM
10 -0.17532184D+04 0.0467828 0.0000267 465.945 534.055 EM
11 -0.17531788D+04 0.0395994 0.0000226 465.595 534.405 EM
12 -0.17531447D+04 0.0341233 0.0000195 465.290 534.710 EM
13 -0.17531148D+04 0.0298629 0.0000170 465.022 534.978 EM
14 -0.17530883D+04 0.0264817 0.0000151 464.787 535.213 EM
15 -0.17530646D+04 0.0237482 0.0000135 464.580 535.420 EM
16 -0.17530431D+04 0.0215024 0.0000123 464.398 535.602 EM
17 -0.17530234D+04 0.0196255 0.0000112 464.237 535.763 EM
18 -0.17530054D+04 0.0180334 0.0000103 464.094 535.906 EM
19 -0.17529888D+04 0.0166642 0.0000095 463.968 536.032 EM
20 -0.17529733D+04 0.0154723 0.0000088 463.856 536.144 EM
21 -0.17529589D+04 0.0144234 0.0000082 463.757 536.243 EM
22 -0.17529454D+04 0.0134916 0.0000077 463.669 536.331 EM
23 -0.17529327D+04 0.0126565 0.0000072 463.590 536.410 EM
24 -0.17529208D+04 0.0119033 0.0000068 463.521 536.479 EM
25 -0.17529096D+04 0.0112194 0.0000064 463.459 536.541 EM
26 -0.17528990D+04 0.0105952 0.0000060 463.405 536.595 EM
27 -0.17528890D+04 0.0100229 0.0000057 463.356 536.644 EM
28 -0.17528795D+04 0.0094961 0.0000054 463.313 536.687 EM
29 -0.17528705D+04 0.0090095 0.0000051 463.274 536.726 EM
30 -0.17528619D+04 0.0085587 0.0000049 463.239 536.761 EM
31 -0.17528538D+04 0.0081400 0.0000046 463.209 536.791 EM
32 -0.17528460D+04 0.0077503 0.0000044 463.181 536.819 EM
33 -0.17528386D+04 0.0073869 0.0000042 463.156 536.844 EM
34 -0.17528316D+04 0.0070473 0.0000040 463.134 536.866 EM
35 -0.17528248D+04 0.0067296 0.0000038 463.114 536.886 EM
36 -0.17528184D+04 0.0064319 0.0000037 463.095 536.905 EM
37 -0.17528123D+04 0.0061524 0.0000035 463.079 536.921 EM
38 -0.17528064D+04 0.0058898 0.0000034 463.063 536.937 EM
39 -0.17528007D+04 0.0056429 0.0000032 463.049 536.951 EM
40 -0.17527953D+04 0.0054106 0.0000031 463.036 536.964 EM
41 -0.17527901D+04 0.0051914 0.0000030 463.024 536.976 EM
42 -0.17527851D+04 0.0049850 0.0000028 463.012 536.988 EM
43 -0.17527804D+04 0.0047900 0.0000027 463.001 536.999 EM
44 -0.17527757D+04 0.0046056 0.0000026 462.991 537.009 EM
45 -0.17527713D+04 0.0044314 0.0000025 462.981 537.019 EM
46 -0.17527670D+04 0.0042666 0.0000024 462.971 537.029 EM
47 -0.17527629D+04 0.0041104 0.0000023 462.961 537.039 EM
48 -0.17527590D+04 0.0039626 0.0000023 462.952 537.048 EM
49 -0.17527552D+04 0.0038223 0.0000022 462.942 537.058 EM
50 -0.17527515D+04 0.0036892 0.0000021 462.933 537.067 EM
51 -0.17527479D+04 0.0035628 0.0000020 462.924 537.076 EM
52 -0.17527445D+04 0.0034428 0.0000020 462.914 537.086 EM
53 -0.17527411D+04 0.0033287 0.0000019 462.905 537.095 EM
54 -0.17527379D+04 0.0032201 0.0000018 462.895 537.105 EM
55 -0.17527348D+04 0.0031168 0.0000018 462.885 537.115 EM
56 -0.17527318D+04 0.0030185 0.0000017 462.876 537.124 EM
57 -0.17527289D+04 0.0029248 0.0000017 462.865 537.135 EM
58 -0.17527260D+04 0.0028354 0.0000016 462.855 537.145 EM
59 -0.17527233D+04 0.0027502 0.0000016 462.845 537.155 EM
60 -0.17526010D+04 0.1222356 0.0000697 461.979 538.021 QN
61 -0.17525994D+04 0.0016697 0.0000010 461.824 538.176 EM
62 -0.17525983D+04 0.0010759 0.0000006 461.693 538.307 EM
63 -0.17525973D+04 0.0009378 0.0000005 461.575 538.425 EM
TECHNICAL 9 OUTPUT
Error messages for each replication (if any)
SAVEDATA INFORMATION
Order of variables
Y
X1
X2
W
C
CLUSTER
Save file
ex10.1.dat
Save file format Free
Save file record length 10000
Beginning Time: 03:24:30
Ending Time: 03:24:38
Elapsed Time: 00:00:08
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2017 Muthen & Muthen
Back to examples