Mplus VERSION 7.3
MUTHEN & MUTHEN
09/22/2014   5:42 PM

INPUT INSTRUCTIONS

  TITLE:	    this is an example of multiple imputation
  		    for a set of variables with missing values
              followed by a growth model analysis by
              maximum-likelihood estimation
  DATA:		FILE = ex11.6.dat;
  VARIABLE:	NAMES = x1 y1-y4 z x2;
              USEVARIABLES = y1-y4 x1 x2;
  		    MISSING = ALL(999);
  DATA IMPUTATION:
  		    IMPUTE = y1-y4 x1 (c) x2;
  	    	NDATASETS = 10;
  ANALYSIS:   ESTIMATOR = ML;
  MODEL:      i s | y1@0 y2@1 y3@2 y4@3;
              i s ON x1 x2;
  OUTPUT:     TECH1;



*** WARNING in OUTPUT command
  TECH1 option is the default for multiple imputation.
*** WARNING
  Data set contains cases with missing on all variables except
  x-variables.  These cases were not included in the analysis.
  Number of cases with missing on all variables except x-variables:  13
   2 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS



this is an example of multiple imputation
for a set of variables with missing values
followed by a growth model analysis by
maximum-likelihood estimation

SUMMARY OF ANALYSIS

Number of groups                                                 1
Average number of observations                                 187

Number of replications
    Requested                                                   10
    Completed                                                   10

Number of dependent variables                                    4
Number of independent variables                                  2
Number of continuous latent variables                            2

Observed dependent variables

  Continuous
   Y1          Y2          Y3          Y4

Observed independent variables
   X1          X2

Continuous latent variables
   I           S


Variables used for imputation

  Variables imputed as continuous
   Y1          Y2          Y3          Y4          X2

  Variables imputed as categorical
   X1


Estimator                                                       ML
Information matrix                                        OBSERVED
Maximum number of iterations                                  1000
Convergence criterion                                    0.500D-04
Maximum number of steepest descent iterations                   20
Maximum number of iterations for H1                           2000
Convergence criterion for H1                             0.100D-03
Specifications for Bayesian Estimation
  Point estimate                                            MEDIAN
  Number of Markov chain Monte Carlo (MCMC) chains               2
  Random seed for the first chain                                0
  Starting value information                           UNPERTURBED
  Treatment of categorical mediator                       OBSERVED
  Algorithm used for Markov chain Monte Carlo           GIBBS(PX1)
  Convergence criterion                                  0.500D-01
  Maximum number of iterations                               50000
  K-th iteration used for thinning                               1
Specifications for Data Imputation
  Number of imputed data sets                                   10
  H1 imputation model type                              COVARIANCE
  Iteration intervals for thinning                             100

Input data file(s)
  ex11.6.dat

Input data format  FREE


SUMMARY OF DATA FOR THE FIRST DATA SET

     Number of missing data patterns             1


SUMMARY OF MISSING DATA PATTERNS FOR THE FIRST DATA SET


     MISSING DATA PATTERNS (x = not missing)

           1
 Y1        x
 Y2        x
 Y3        x
 Y4        x
 X1        x
 X2        x


     MISSING DATA PATTERN FREQUENCIES

    Pattern   Frequency
          1         187


COVARIANCE COVERAGE OF DATA FOR THE FIRST DATA SET

Minimum covariance coverage value   0.100


     PROPORTION OF DATA PRESENT


           Covariance Coverage
              Y1            Y2            Y3            Y4            X1
              ________      ________      ________      ________      ________
 Y1             1.000
 Y2             1.000         1.000
 Y3             1.000         1.000         1.000
 Y4             1.000         1.000         1.000         1.000
 X1             1.000         1.000         1.000         1.000         1.000
 X2             1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              X2
              ________
 X2             1.000


SAMPLE STATISTICS

NOTE:  These are average results over 10 data sets.


     SAMPLE STATISTICS


           Means
              Y1            Y2            Y3            Y4            X1
              ________      ________      ________      ________      ________
      1         1.401         3.454         5.562         7.539         0.446


           Means
              X2
              ________
      1        -0.142


           Covariances
              Y1            Y2            Y3            Y4            X1
              ________      ________      ________      ________      ________
 Y1             1.718
 Y2             1.315         2.237
 Y3             1.636         2.460         3.935
 Y4             1.825         2.734         4.023         5.198
 X1             0.246         0.306         0.389         0.382         0.247
 X2             0.438         0.532         0.791         1.131         0.000


           Covariances
              X2
              ________
 X2             1.094


           Correlations
              Y1            Y2            Y3            Y4            X1
              ________      ________      ________      ________      ________
 Y1             1.000
 Y2             0.671         1.000
 Y3             0.629         0.829         1.000
 Y4             0.611         0.802         0.890         1.000
 X1             0.378         0.412         0.395         0.337         1.000
 X2             0.319         0.340         0.381         0.474         0.001


           Correlations
              X2
              ________
 X2             1.000


MODEL FIT INFORMATION

Number of Free Parameters                       13

Loglikelihood

          H0 Value                       -1102.804
          H1 Value                       -1085.163

*   The loglikelihood cannot be used directly for chi-square testing with
    imputed data.

Information Criteria

          Akaike (AIC)                    2231.607
          Bayesian (BIC)                  2273.612
          Sample-Size Adjusted BIC        2232.435
            (n* = (n + 2) / 24)

Chi-Square Test of Model Fit

          Value                              4.392
          Degrees of Freedom                     9
          P-Value                           0.8838

RMSEA (Root Mean Square Error Of Approximation)

          Estimate                           0.000
          90 Percent C.I.                    0.000  0.040
          Probability RMSEA <= .05           0.970

CFI/TLI

          CFI                                1.000
          TLI                                1.038

Chi-Square Test of Model Fit for the Baseline Model

          Value                            200.582
          Degrees of Freedom                    14
          P-Value                           0.0000

SRMR (Standardized Root Mean Square Residual)

          Value                              0.028



MODEL RESULTS

                                                    Two-Tailed   Rate of
                    Estimate       S.E.  Est./S.E.    P-Value    Missing

 I        |
    Y1                 1.000      0.000    999.000    999.000      0.000
    Y2                 1.000      0.000    999.000    999.000      0.000
    Y3                 1.000      0.000    999.000    999.000      0.000
    Y4                 1.000      0.000    999.000    999.000      0.000

 S        |
    Y1                 0.000      0.000    999.000    999.000      0.000
    Y2                 1.000      0.000    999.000    999.000      0.000
    Y3                 2.000      0.000    999.000    999.000      0.000
    Y4                 3.000      0.000    999.000    999.000      0.000

 I        ON
    X1                 1.053      0.196      5.358      0.000      0.393
    X2                 0.323      0.086      3.749      0.000      0.265

 S        ON
    X1                 0.189      0.112      1.683      0.092      0.512
    X2                 0.224      0.073      3.087      0.002      0.747

 S        WITH
    I                  0.115      0.091      1.262      0.207      0.751

 Intercepts
    Y1                 0.000      0.000    999.000    999.000      0.000
    Y2                 0.000      0.000    999.000    999.000      0.000
    Y3                 0.000      0.000    999.000    999.000      0.000
    Y4                 0.000      0.000    999.000    999.000      0.000
    I                  0.991      0.144      6.894      0.000      0.500
    S                  1.993      0.077     25.736      0.000      0.549

 Residual Variances
    Y1                 0.655      0.186      3.524      0.000      0.692
    Y2                 0.456      0.085      5.361      0.000      0.446
    Y3                 0.554      0.137      4.033      0.000      0.664
    Y4                 0.340      0.254      1.337      0.181      0.776
    I                  0.707      0.193      3.667      0.000      0.631
    S                  0.199      0.061      3.284      0.001      0.709


QUALITY OF NUMERICAL RESULTS

     Average Condition Number for the Information Matrix      0.307E-01
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION


           NU
              Y1            Y2            Y3            Y4            X1
              ________      ________      ________      ________      ________
      1           0             0             0             0             0


           NU
              X2
              ________
      1           0


           LAMBDA
              I             S             X1            X2
              ________      ________      ________      ________
 Y1                 0             0             0             0
 Y2                 0             0             0             0
 Y3                 0             0             0             0
 Y4                 0             0             0             0
 X1                 0             0             0             0
 X2                 0             0             0             0


           THETA
              Y1            Y2            Y3            Y4            X1
              ________      ________      ________      ________      ________
 Y1                 1
 Y2                 0             2
 Y3                 0             0             3
 Y4                 0             0             0             4
 X1                 0             0             0             0             0
 X2                 0             0             0             0             0


           THETA
              X2
              ________
 X2                 0


           ALPHA
              I             S             X1            X2
              ________      ________      ________      ________
      1           5             6             0             0


           BETA
              I             S             X1            X2
              ________      ________      ________      ________
 I                  0             0             7             8
 S                  0             0             9            10
 X1                 0             0             0             0
 X2                 0             0             0             0


           PSI
              I             S             X1            X2
              ________      ________      ________      ________
 I                 11
 S                 12            13
 X1                 0             0             0
 X2                 0             0             0             0


     STARTING VALUES


           NU
              Y1            Y2            Y3            Y4            X1
              ________      ________      ________      ________      ________
      1         0.000         0.000         0.000         0.000         0.000


           NU
              X2
              ________
      1         0.000


           LAMBDA
              I             S             X1            X2
              ________      ________      ________      ________
 Y1             1.000         0.000         0.000         0.000
 Y2             1.000         1.000         0.000         0.000
 Y3             1.000         2.000         0.000         0.000
 Y4             1.000         3.000         0.000         0.000
 X1             0.000         0.000         1.000         0.000
 X2             0.000         0.000         0.000         1.000


           THETA
              Y1            Y2            Y3            Y4            X1
              ________      ________      ________      ________      ________
 Y1             0.893
 Y2             0.000         1.094
 Y3             0.000         0.000         1.953
 Y4             0.000         0.000         0.000         2.393
 X1             0.000         0.000         0.000         0.000         0.000
 X2             0.000         0.000         0.000         0.000         0.000


           THETA
              X2
              ________
 X2             0.000


           ALPHA
              I             S             X1            X2
              ________      ________      ________      ________
      1         1.303         1.991         0.444        -0.131


           BETA
              I             S             X1            X2
              ________      ________      ________      ________
 I              0.000         0.000         0.000         0.000
 S              0.000         0.000         0.000         0.000
 X1             0.000         0.000         0.000         0.000
 X2             0.000         0.000         0.000         0.000


           PSI
              I             S             X1            X2
              ________      ________      ________      ________
 I              1.557
 S              0.000         0.633
 X1             0.000         0.000         0.247
 X2             0.000         0.000         0.016         1.069


     Beginning Time:  17:42:55
        Ending Time:  17:42:55
       Elapsed Time:  00:00:00



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2014 Muthen & Muthen

Back to examples