Mplus VERSION 7.3
MUTHEN & MUTHEN
09/22/2014   5:46 PM

INPUT INSTRUCTIONS

  TITLE:	this is an example of a path analysis
  	with a categorical dependent variable and
  	a continuous mediating variable with
  	missing data
  DATA:	FILE IS ex3.17.dat;
  VARIABLE:	NAMES ARE u y x;
  	CATEGORICAL IS u;
  	MISSING IS y (999);
  ANALYSIS:ESTIMATOR = MLR;
  	INTEGRATION = MONTECARLO;
  MODEL:	y ON x;	
  	u ON y x;
  OUTPUT:	TECH1 TECH8;



INPUT READING TERMINATED NORMALLY



this is an example of a path analysis
with a categorical dependent variable and
a continuous mediating variable with
missing data

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         500

Number of dependent variables                                    2
Number of independent variables                                  1
Number of continuous latent variables                            0

Observed dependent variables

  Continuous
   Y

  Binary and ordered categorical (ordinal)
   U

Observed independent variables
   X


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-02
    Relative loglikelihood change                        0.100D-05
    Derivative                                           0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-02
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-02
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Maximum number of iterations for H1                           2000
Convergence criterion for H1                             0.100D-03
Optimization algorithm                                         EMA
Integration Specifications
  Type                                                  MONTECARLO
  Number of integration points                                  25
  Dimensions of numerical integration                            1
  Adaptive quadrature                                           ON
  Monte Carlo integration seed                                   0
Link                                                         LOGIT
Cholesky                                                       OFF

Input data file(s)
  ex3.17.dat
Input data format  FREE


SUMMARY OF DATA

     Number of missing data patterns             2


COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value   0.100


     PROPORTION OF DATA PRESENT FOR Y


           Covariance Coverage
              Y             X
              ________      ________
 Y              0.698
 X              0.698         1.000


UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

    U
      Category 1    0.470      235.000
      Category 2    0.530      265.000



THE MODEL ESTIMATION TERMINATED NORMALLY



MODEL FIT INFORMATION

Number of Free Parameters                        6

Loglikelihood

          H0 Value                        -820.356
          H0 Scaling Correction Factor      1.0242
            for MLR

Information Criteria

          Akaike (AIC)                    1652.712
          Bayesian (BIC)                  1678.000
          Sample-Size Adjusted BIC        1658.955
            (n* = (n + 2) / 24)



MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 Y          ON
    X                 -1.015      0.060    -16.983      0.000

 U          ON
    Y                  0.500      0.122      4.103      0.000
    X                  1.045      0.171      6.124      0.000

 Intercepts
    Y                  0.526      0.056      9.391      0.000

 Thresholds
    U$1                0.093      0.116      0.800      0.424

 Residual Variances
    Y                  1.043      0.079     13.203      0.000


LOGISTIC REGRESSION ODDS RATIO RESULTS

 U          ON
    Y                  1.649
    X                  2.844


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.510E-01
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION


           TAU
              U$1
              ________
 1                  6


           NU
              U             Y             X
              ________      ________      ________
 1                  0             0             0


           LAMBDA
              U             Y             X
              ________      ________      ________
 U                  0             0             0
 Y                  0             0             0
 X                  0             0             0


           THETA
              U             Y             X
              ________      ________      ________
 U                  0
 Y                  0             0
 X                  0             0             0


           ALPHA
              U             Y             X
              ________      ________      ________
 1                  0             1             0


           BETA
              U             Y             X
              ________      ________      ________
 U                  0             2             3
 Y                  0             0             4
 X                  0             0             0


           PSI
              U             Y             X
              ________      ________      ________
 U                  0
 Y                  0             5
 X                  0             0             0


     STARTING VALUES


           TAU
              U$1
              ________
 1             -0.120


           NU
              U             Y             X
              ________      ________      ________
 1              0.000         0.000         0.000


           LAMBDA
              U             Y             X
              ________      ________      ________
 U              1.000         0.000         0.000
 Y              0.000         1.000         0.000
 X              0.000         0.000         1.000


           THETA
              U             Y             X
              ________      ________      ________
 U              0.000
 Y              0.000         0.000
 X              0.000         0.000         0.000


           ALPHA
              U             Y             X
              ________      ________      ________
 1              0.000         0.820         0.000


           BETA
              U             Y             X
              ________      ________      ________
 U              0.000         0.000         0.000
 Y              0.000         0.000         0.000
 X              0.000         0.000         0.000


           PSI
              U             Y             X
              ________      ________      ________
 U              1.000
 Y              0.000         0.965
 X              0.000         0.000         0.480


TECHNICAL 8 OUTPUT


   E STEP  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE  ALGORITHM
              1 -0.10091903D+04    0.0000000    0.0000000  EM
              2 -0.84431604D+03  164.8742357    0.1633728  EM
              3 -0.82574140D+03   18.5746372    0.0219996  EM
              4 -0.82143576D+03    4.3056459    0.0052143  EM
              5 -0.82054147D+03    0.8942838    0.0010887  EM
              6 -0.82037696D+03    0.1645182    0.0002005  EM
              7 -0.82035328D+03    0.0236775    0.0000289  EM
              8 -0.82035348D+03   -0.0002038   -0.0000002  EM
              9 -0.82035606D+03   -0.0025769   -0.0000031  EM


     Beginning Time:  17:46:25
        Ending Time:  17:46:25
       Elapsed Time:  00:00:00



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2014 Muthen & Muthen

Back to examples