Mplus VERSION 7.2
MUTHEN & MUTHEN
05/07/2014   2:40 PM

INPUT INSTRUCTIONS

  TITLE:	this is an example of an EFA with residual variances constrained to be greater than
  DATA:	FILE = ex5.28.dat;
  VARIABLE:	NAMES = y1-y10;
  ANALYSIS:	ROTATION = GEOMIN;
  MODEL:	f1-f2 BY y1-y10 (*1);
  	y1-y10 (v1-v10);
  MODEL CONSTRAINT:
  	DO(1,10) v#>0;
  OUTPUT:	STDY;





INPUT READING TERMINATED NORMALLY



this is an example of an EFA with residual variances constrained to be greater than

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                          50

Number of dependent variables                                   10
Number of independent variables                                  0
Number of continuous latent variables                            2

Observed dependent variables

  Continuous
   Y1          Y2          Y3          Y4          Y5          Y6
   Y7          Y8          Y9          Y10

Continuous latent variables

  EFA factors
  *1:   F1          F2


Estimator                                                       ML
Rotation                                                    GEOMIN
Row standardization                                    CORRELATION
Type of rotation                                           OBLIQUE
Epsilon value                                               Varies
Information matrix                                        OBSERVED
Maximum number of iterations                                  1000
Convergence criterion                                    0.500D-04
Maximum number of steepest descent iterations                   20
Optimization Specifications for the Exploratory Factor Analysis
Rotation Algorithm
  Number of random starts                                       30
  Maximum number of iterations                               10000
  Derivative convergence criterion                       0.100D-04

Input data file(s)
  ex5.28.dat

Input data format  FREE



THE MODEL ESTIMATION TERMINATED NORMALLY



MODEL FIT INFORMATION

Number of Free Parameters                       39

Loglikelihood

          H0 Value                        -540.347
          H1 Value                        -528.971

Information Criteria

          Akaike (AIC)                    1158.693
          Bayesian (BIC)                  1233.262
          Sample-Size Adjusted BIC        1110.847
            (n* = (n + 2) / 24)

Chi-Square Test of Model Fit

          Value                             22.751
          Degrees of Freedom                    26
          P-Value                           0.6470

RMSEA (Root Mean Square Error Of Approximation)

          Estimate                           0.000
          90 Percent C.I.                    0.000  0.094
          Probability RMSEA <= .05           0.783

CFI/TLI

          CFI                                1.000
          TLI                                1.017

Chi-Square Test of Model Fit for the Baseline Model

          Value                            377.580
          Degrees of Freedom                    45
          P-Value                           0.0000

SRMR (Standardized Root Mean Square Residual)

          Value                              0.029



MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 F1       BY
    Y1                 0.813      0.114      7.137      0.000
    Y2                 0.728      0.114      6.406      0.000
    Y3                 0.882      0.121      7.314      0.000
    Y4                 0.798      0.118      6.763      0.000
    Y5                 0.888      0.139      6.411      0.000
    Y6                 0.794      0.107      7.407      0.000
    Y7                 0.775      0.132      5.867      0.000
    Y8                 0.797      0.136      5.856      0.000
    Y9                 0.009      0.007      1.272      0.203
    Y10               -0.024      0.063     -0.372      0.710

 F2       BY
    Y1                -0.001      0.058     -0.010      0.992
    Y2                 0.019      0.091      0.206      0.837
    Y3                 0.006      0.074      0.084      0.933
    Y4                -0.022      0.093     -0.235      0.814
    Y5                -0.196      0.116     -1.692      0.091
    Y6                 0.152      0.084      1.813      0.070
    Y7                -0.065      0.112     -0.575      0.565
    Y8                 0.000      0.085      0.006      0.996
    Y9                 0.991      0.099      9.985      0.000
    Y10                0.891      0.112      7.994      0.000

 F2       WITH
    F1                -0.129      0.148     -0.870      0.384

 Intercepts
    Y1                -0.191      0.138     -1.383      0.167
    Y2                 0.041      0.132      0.311      0.756
    Y3                -0.072      0.147     -0.489      0.625
    Y4                -0.041      0.140     -0.294      0.769
    Y5                 0.052      0.166      0.315      0.753
    Y6                 0.095      0.131      0.729      0.466
    Y7                 0.058      0.151      0.385      0.700
    Y8                 0.046      0.154      0.295      0.768
    Y9                -0.142      0.140     -1.015      0.310
    Y10               -0.196      0.143     -1.370      0.171

 Variances
    F1                 1.000      0.000    999.000    999.000
    F2                 1.000      0.000    999.000    999.000

 Residual Variances
    Y1                 0.289      0.069      4.206      0.000
    Y2                 0.345      0.077      4.464      0.000
    Y3                 0.303      0.074      4.088      0.000
    Y4                 0.338      0.078      4.311      0.000
    Y5                 0.508      0.114      4.446      0.000
    Y6                 0.230      0.058      4.001      0.000
    Y7                 0.517      0.113      4.572      0.000
    Y8                 0.555      0.121      4.588      0.000
    Y9                 0.000      0.000    597.016      0.000
    Y10                0.219      0.044      4.998      0.000


STANDARDIZED MODEL RESULTS


STDY Standardization

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 F1       BY
    Y1                 0.834      0.050     16.786      0.000
    Y2                 0.780      0.063     12.436      0.000
    Y3                 0.849      0.047     18.040      0.000
    Y4                 0.806      0.057     14.194      0.000
    Y5                 0.756      0.065     11.551      0.000
    Y6                 0.860      0.050     17.247      0.000
    Y7                 0.728      0.073      9.994      0.000
    Y8                 0.730      0.072     10.087      0.000
    Y9                 0.009      0.007      1.288      0.198
    Y10               -0.023      0.063     -0.372      0.710

 F2       BY
    Y1                -0.001      0.059     -0.010      0.992
    Y2                 0.020      0.098      0.206      0.837
    Y3                 0.006      0.071      0.084      0.933
    Y4                -0.022      0.094     -0.235      0.814
    Y5                -0.167      0.098     -1.707      0.088
    Y6                 0.164      0.090      1.817      0.069
    Y7                -0.061      0.105     -0.576      0.565
    Y8                 0.000      0.078      0.006      0.996
    Y9                 1.001      0.001    697.561      0.000
    Y10                0.883      0.032     27.441      0.000

 F2       WITH
    F1                -0.129      0.148     -0.870      0.384

 Intercepts
    Y1                -0.196      0.143     -1.370      0.171
    Y2                 0.044      0.141      0.311      0.756
    Y3                -0.069      0.142     -0.489      0.625
    Y4                -0.042      0.141     -0.294      0.769
    Y5                 0.045      0.141      0.315      0.753
    Y6                 0.103      0.142      0.727      0.467
    Y7                 0.054      0.142      0.385      0.700
    Y8                 0.042      0.141      0.295      0.768
    Y9                -0.144      0.142     -1.010      0.312
    Y10               -0.194      0.143     -1.358      0.175

 Variances
    F1                 1.000      0.000    999.000    999.000
    F2                 1.000      0.000    999.000    999.000

 Residual Variances
    Y1                 0.304      0.082      3.721      0.000
    Y2                 0.395      0.096      4.133      0.000
    Y3                 0.281      0.078      3.595      0.000
    Y4                 0.345      0.089      3.887      0.000
    Y5                 0.368      0.091      4.044      0.000
    Y6                 0.270      0.077      3.516      0.000
    Y7                 0.455      0.103      4.410      0.000
    Y8                 0.467      0.105      4.464      0.000
    Y9                 0.000      0.000      5.000      0.000
    Y10                0.215      0.054      3.990      0.000


R-SQUARE

    Observed                                        Two-Tailed
    Variable        Estimate       S.E.  Est./S.E.    P-Value

    Y1                 0.696      0.082      8.519      0.000
    Y2                 0.605      0.096      6.319      0.000
    Y3                 0.719      0.078      9.206      0.000
    Y4                 0.655      0.089      7.381      0.000
    Y5                 0.632      0.091      6.948      0.000
    Y6                 0.730      0.077      9.510      0.000
    Y7                 0.545      0.103      5.280      0.000
    Y8                 0.533      0.105      5.104      0.000
    Y9                 1.000      0.000   ********      0.000
    Y10                0.785      0.054     14.554      0.000


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.882E-07
       (ratio of smallest to largest eigenvalue)


     Beginning Time:  14:40:41
        Ending Time:  14:40:41
       Elapsed Time:  00:00:00



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2014 Muthen & Muthen

Back to examples