Mplus VERSION 7.3
MUTHEN & MUTHEN
09/22/2014   5:48 PM

INPUT INSTRUCTIONS

  TITLE:	this is an example of a CFA with
  	covariates (MIMIC) with continuous factor
  	indicators
  DATA:	FILE IS ex5.8.dat;
  VARIABLE:	NAMES ARE y1-y6 x1-x3;
  MODEL:	f1 BY y1-y3;
  	f2 BY y4-y6;
  	f1 f2 ON x1-x3;



INPUT READING TERMINATED NORMALLY



this is an example of a CFA with
covariates (MIMIC) with continuous factor
indicators

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         500

Number of dependent variables                                    6
Number of independent variables                                  3
Number of continuous latent variables                            2

Observed dependent variables

  Continuous
   Y1          Y2          Y3          Y4          Y5          Y6

Observed independent variables
   X1          X2          X3

Continuous latent variables
   F1          F2


Estimator                                                       ML
Information matrix                                        OBSERVED
Maximum number of iterations                                  1000
Convergence criterion                                    0.500D-04
Maximum number of steepest descent iterations                   20

Input data file(s)
  ex5.8.dat

Input data format  FREE



THE MODEL ESTIMATION TERMINATED NORMALLY



MODEL FIT INFORMATION

Number of Free Parameters                       25

Loglikelihood

          H0 Value                       -4000.617
          H1 Value                       -3990.606

Information Criteria

          Akaike (AIC)                    8051.235
          Bayesian (BIC)                  8156.600
          Sample-Size Adjusted BIC        8077.248
            (n* = (n + 2) / 24)

Chi-Square Test of Model Fit

          Value                             20.023
          Degrees of Freedom                    20
          P-Value                           0.4565

RMSEA (Root Mean Square Error Of Approximation)

          Estimate                           0.002
          90 Percent C.I.                    0.000  0.038
          Probability RMSEA <= .05           0.994

CFI/TLI

          CFI                                1.000
          TLI                                1.000

Chi-Square Test of Model Fit for the Baseline Model

          Value                           4176.601
          Degrees of Freedom                    33
          P-Value                           0.0000

SRMR (Standardized Root Mean Square Residual)

          Value                              0.008



MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 F1       BY
    Y1                 1.000      0.000    999.000    999.000
    Y2                 1.032      0.030     34.711      0.000
    Y3                 1.022      0.029     34.981      0.000

 F2       BY
    Y4                 1.000      0.000    999.000    999.000
    Y5                 0.973      0.026     38.093      0.000
    Y6                 0.977      0.027     35.735      0.000

 F1       ON
    X1                 0.497      0.026     18.964      0.000
    X2                 0.566      0.031     18.283      0.000
    X3                 0.691      0.043     15.968      0.000

 F2       ON
    X1                 0.678      0.026     25.863      0.000
    X2                 0.601      0.030     20.268      0.000
    X3                 0.432      0.040     10.711      0.000

 F2       WITH
    F1                 0.228      0.040      5.762      0.000

 Intercepts
    Y1                 0.068      0.108      0.633      0.527
    Y2                 0.025      0.110      0.227      0.820
    Y3                 0.046      0.109      0.421      0.674
    Y4                 0.179      0.101      1.774      0.076
    Y5                 0.180      0.096      1.873      0.061
    Y6                 0.147      0.099      1.488      0.137

 Residual Variances
    Y1                 0.529      0.046     11.496      0.000
    Y2                 0.512      0.046     11.064      0.000
    Y3                 0.477      0.044     10.789      0.000
    Y4                 0.541      0.046     11.655      0.000
    Y5                 0.399      0.038     10.485      0.000
    Y6                 0.522      0.045     11.659      0.000
    F1                 0.720      0.061     11.717      0.000
    F2                 0.643      0.056     11.471      0.000


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.364E-02
       (ratio of smallest to largest eigenvalue)


     Beginning Time:  17:48:45
        Ending Time:  17:48:45
       Elapsed Time:  00:00:00



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2014 Muthen & Muthen

Back to examples