Mplus VERSION 7
MUTHEN & MUTHEN
09/22/2012  10:55 PM

INPUT INSTRUCTIONS

  TITLE:	this is an example of a linear growth
  	model for a censored outcome using a
  	censored model
  DATA:	FILE IS ex6.2.dat;
  VARIABLE:	NAMES ARE y11-y14;
  	CENSORED ARE y11-y14 (b);
  ANALYSIS:	ESTIMATOR = MLR;
  MODEL:	i s | y11@0 y12@1 y13@2 y14@3;
  OUTPUT:	TECH1 TECH8;



INPUT READING TERMINATED NORMALLY



this is an example of a linear growth
model for a censored outcome using a
censored model

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         500

Number of dependent variables                                    4
Number of independent variables                                  0
Number of continuous latent variables                            2

Observed dependent variables

  Censored
   Y11         Y12         Y13         Y14

Continuous latent variables
   I           S


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-02
    Relative loglikelihood change                        0.100D-05
    Derivative                                           0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-02
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-02
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA
Integration Specifications
  Type                                                    STANDARD
  Number of integration points                                  15
  Dimensions of numerical integration                            2
  Adaptive quadrature                                           ON
Cholesky                                                        ON

Input data file(s)
  ex6.2.dat
Input data format  FREE


SUMMARY OF CENSORED LIMITS

      Y11                0.000
      Y12                0.000
      Y13                0.000
      Y14                0.000



THE MODEL ESTIMATION TERMINATED NORMALLY



MODEL FIT INFORMATION

Number of Free Parameters                        9

Loglikelihood

          H0 Value                       -2857.721
          H0 Scaling Correction Factor      0.9835
            for MLR

Information Criteria

          Akaike (AIC)                    5733.441
          Bayesian (BIC)                  5771.373
          Sample-Size Adjusted BIC        5742.806
            (n* = (n + 2) / 24)



MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 I        |
    Y11                1.000      0.000    999.000    999.000
    Y12                1.000      0.000    999.000    999.000
    Y13                1.000      0.000    999.000    999.000
    Y14                1.000      0.000    999.000    999.000

 S        |
    Y11                0.000      0.000    999.000    999.000
    Y12                1.000      0.000    999.000    999.000
    Y13                2.000      0.000    999.000    999.000
    Y14                3.000      0.000    999.000    999.000

 S        WITH
    I                  0.148      0.035      4.169      0.000

 Means
    I                  0.485      0.054      8.907      0.000
    S                  1.050      0.025     42.070      0.000

 Intercepts
    Y11                0.000      0.000    999.000    999.000
    Y12                0.000      0.000    999.000    999.000
    Y13                0.000      0.000    999.000    999.000
    Y14                0.000      0.000    999.000    999.000

 Variances
    I                  0.958      0.099      9.729      0.000
    S                  0.189      0.024      7.992      0.000

 Residual Variances
    Y11                0.547      0.073      7.505      0.000
    Y12                0.595      0.047     12.566      0.000
    Y13                0.507      0.053      9.574      0.000
    Y14                0.455      0.087      5.228      0.000


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.424E-01
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION


           NU
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 1                  0             0             0             0             0


           NU
              Y13           Y14#1         Y14
              ________      ________      ________
 1                  0             0             0


           LAMBDA
              I             S
              ________      ________
 Y11#1              0             0
 Y11                0             0
 Y12#1              0             0
 Y12                0             0
 Y13#1              0             0
 Y13                0             0
 Y14#1              0             0
 Y14                0             0


           THETA
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 Y11#1              0
 Y11                0             1
 Y12#1              0             0             0
 Y12                0             0             0             2
 Y13#1              0             0             0             0             0
 Y13                0             0             0             0             0
 Y14#1              0             0             0             0             0
 Y14                0             0             0             0             0


           THETA
              Y13           Y14#1         Y14
              ________      ________      ________
 Y13                3
 Y14#1              0             0
 Y14                0             0             4


           ALPHA
              I             S
              ________      ________
 1                  5             6


           BETA
              I             S
              ________      ________
 I                  0             0
 S                  0             0


           PSI
              I             S
              ________      ________
 I                  7
 S                  8             9


     STARTING VALUES


           NU
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 1            -20.000         0.000       -20.000         0.000       -20.000


           NU
              Y13           Y14#1         Y14
              ________      ________      ________
 1              0.000       -20.000         0.000


           LAMBDA
              I             S
              ________      ________
 Y11#1          0.000         0.000
 Y11            1.000         0.000
 Y12#1          0.000         0.000
 Y12            1.000         1.000
 Y13#1          0.000         0.000
 Y13            1.000         2.000
 Y14#1          0.000         0.000
 Y14            1.000         3.000


           THETA
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 Y11#1          0.000
 Y11            0.000         0.378
 Y12#1          0.000         0.000         0.000
 Y12            0.000         0.000         0.000         0.821
 Y13#1          0.000         0.000         0.000         0.000         0.000
 Y13            0.000         0.000         0.000         0.000         0.000
 Y14#1          0.000         0.000         0.000         0.000         0.000
 Y14            0.000         0.000         0.000         0.000         0.000


           THETA
              Y13           Y14#1         Y14
              ________      ________      ________
 Y13            1.248
 Y14#1          0.000         0.000
 Y14            0.000         0.000         1.866


           ALPHA
              I             S
              ________      ________
 1              0.718         0.970


           BETA
              I             S
              ________      ________
 I              0.000         0.000
 S              0.000         0.000


           PSI
              I             S
              ________      ________
 I              0.767
 S              0.000         0.298


TECHNICAL 8 OUTPUT


   E STEP  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE  ALGORITHM
              1 -0.30153739D+04    0.0000000    0.0000000  EM
              2 -0.29151066D+04  100.2672910    0.0332520  EM
              3 -0.28851970D+04   29.9095502    0.0102602  EM
              4 -0.28722755D+04   12.9215184    0.0044786  EM
              5 -0.28689327D+04    3.3428385    0.0011638  EM
              6 -0.28668734D+04    2.0592411    0.0007178  EM
              7 -0.28653741D+04    1.4993242    0.0005230  EM
              8 -0.28642127D+04    1.1614078    0.0004053  EM
              9 -0.28632859D+04    0.9268061    0.0003236  EM
             10 -0.28625324D+04    0.7535118    0.0002632  EM
             11 -0.28619111D+04    0.6212662    0.0002170  EM
             12 -0.28613930D+04    0.5181510    0.0001811  EM
             13 -0.28609566D+04    0.4364012    0.0001525  EM
             14 -0.28605859D+04    0.3706817    0.0001296  EM
             15 -0.28602687D+04    0.3172130    0.0001109  EM
             16 -0.28599954D+04    0.2732584    0.0000955  EM
             17 -0.28597586D+04    0.2367938    0.0000828  EM
             18 -0.28595523D+04    0.2062999    0.0000721  EM
             19 -0.28593717D+04    0.1806166    0.0000632  EM
             20 -0.28592129D+04    0.1588448    0.0000556  EM
             21 -0.28590726D+04    0.1402807    0.0000491  EM
             22 -0.28589482D+04    0.1243672    0.0000435  EM
             23 -0.28588376D+04    0.1106569    0.0000387  EM
             24 -0.28587388D+04    0.0987893    0.0000346  EM
             25 -0.28586503D+04    0.0884717    0.0000309  EM
             26 -0.28585708D+04    0.0794639    0.0000278  EM
             27 -0.28584993D+04    0.0715687    0.0000250  EM
             28 -0.28584346D+04    0.0646220    0.0000226  EM
             29 -0.28583761D+04    0.0584868    0.0000205  EM
             30 -0.28583231D+04    0.0530513    0.0000186  EM
             31 -0.28582749D+04    0.0482179    0.0000169  EM
             32 -0.28582310D+04    0.0439071    0.0000154  EM
             33 -0.28581909D+04    0.0400510    0.0000140  EM
             34 -0.28581543D+04    0.0365916    0.0000128  EM
             35 -0.28581208D+04    0.0334796    0.0000117  EM
             36 -0.28580902D+04    0.0306732    0.0000107  EM
             37 -0.28580620D+04    0.0281367    0.0000098  EM
             38 -0.28580362D+04    0.0258384    0.0000090  EM
             39 -0.28580124D+04    0.0237519    0.0000083  EM
             40 -0.28579906D+04    0.0218544    0.0000076  EM
             41 -0.28579705D+04    0.0201254    0.0000070  EM
             42 -0.28579519D+04    0.0185470    0.0000065  EM
             43 -0.28579348D+04    0.0171045    0.0000060  EM
             44 -0.28579190D+04    0.0157843    0.0000055  EM
             45 -0.28579045D+04    0.0145739    0.0000051  EM
             46 -0.28578910D+04    0.0134635    0.0000047  EM
             47 -0.28577252D+04    0.1657557    0.0000580  FS
             48 -0.28577208D+04    0.0044315    0.0000016  FS
             49 -0.28577207D+04    0.0001490    0.0000001  FS


     Beginning Time:  22:55:49
        Ending Time:  22:55:58
       Elapsed Time:  00:00:09



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2012 Muthen & Muthen

Back to examples