Mplus VERSION 7.2
MUTHEN & MUTHEN
05/07/2014   2:41 PM

INPUT INSTRUCTIONS

  TITLE:	this is an example of a linear growth
  	model for a censored outcome using a
  	censored-inflated model
  DATA:	FILE IS ex6.3.dat;
  VARIABLE:	NAMES ARE y11-y14;
  	CENSORED ARE y11-y14 (bi);
  ANALYSIS: INTEGRATION = 7;
  MODEL:	i s | y11@0 y12@1 y13@2 y14@3;
  	ii si | y11#1@0 y12#1@1 y13#1@2 y14#1@3;
  	si@0;
  OUTPUT:	TECH1 TECH8;



*** WARNING in MODEL command
  All continuous latent variable covariances involving SI have been fixed to 0
  because the variance of SI is fixed at 0.
   1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS



this is an example of a linear growth
model for a censored outcome using a
censored-inflated model

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                        1000

Number of dependent variables                                    4
Number of independent variables                                  0
Number of continuous latent variables                            4

Observed dependent variables

  Censored
   Y11         Y12         Y13         Y14

Continuous latent variables
   I           S           II          SI


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-02
    Relative loglikelihood change                        0.100D-05
    Derivative                                           0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-02
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-02
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA
Integration Specifications
  Type                                                    STANDARD
  Number of integration points                                   7
  Dimensions of numerical integration                            3
  Adaptive quadrature                                           ON
Cholesky                                                        ON

Input data file(s)
  ex6.3.dat
Input data format  FREE


SUMMARY OF CENSORED LIMITS

      Y11                0.000
      Y12                0.000
      Y13                0.000
      Y14                0.000



THE MODEL ESTIMATION TERMINATED NORMALLY



MODEL FIT INFORMATION

Number of Free Parameters                       14

Loglikelihood

          H0 Value                       -8014.921
          H0 Scaling Correction Factor      0.9616
            for MLR

Information Criteria

          Akaike (AIC)                   16057.841
          Bayesian (BIC)                 16126.550
          Sample-Size Adjusted BIC       16082.085
            (n* = (n + 2) / 24)



MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 I        |
    Y11                1.000      0.000    999.000    999.000
    Y12                1.000      0.000    999.000    999.000
    Y13                1.000      0.000    999.000    999.000
    Y14                1.000      0.000    999.000    999.000

 S        |
    Y11                0.000      0.000    999.000    999.000
    Y12                1.000      0.000    999.000    999.000
    Y13                2.000      0.000    999.000    999.000
    Y14                3.000      0.000    999.000    999.000

 II       |
    Y11#1              1.000      0.000    999.000    999.000
    Y12#1              1.000      0.000    999.000    999.000
    Y13#1              1.000      0.000    999.000    999.000
    Y14#1              1.000      0.000    999.000    999.000

 SI       |
    Y11#1              0.000      0.000    999.000    999.000
    Y12#1              1.000      0.000    999.000    999.000
    Y13#1              2.000      0.000    999.000    999.000
    Y14#1              3.000      0.000    999.000    999.000

 S        WITH
    I                  0.104      0.053      1.959      0.050

 II       WITH
    I                  0.025      0.098      0.258      0.797
    S                  0.035      0.057      0.620      0.535

 Means
    I                  3.610      0.055     65.599      0.000
    S                  1.519      0.030     51.361      0.000
    II                 0.000      0.000    999.000    999.000
    SI                 0.017      0.035      0.495      0.621

 Intercepts
    Y11#1             -1.396      0.080    -17.469      0.000
    Y11                0.000      0.000    999.000    999.000
    Y12#1             -1.396      0.080    -17.469      0.000
    Y12                0.000      0.000    999.000    999.000
    Y13#1             -1.396      0.080    -17.469      0.000
    Y13                0.000      0.000    999.000    999.000
    Y14#1             -1.396      0.080    -17.469      0.000
    Y14                0.000      0.000    999.000    999.000

 Variances
    I                  1.095      0.134      8.199      0.000
    S                  0.336      0.040      8.401      0.000
    II                 0.981      0.146      6.738      0.000
    SI                 0.000      0.000    999.000    999.000

 Residual Variances
    Y11                1.424      0.139     10.239      0.000
    Y12                1.519      0.101     15.110      0.000
    Y13                1.648      0.123     13.434      0.000
    Y14                1.215      0.211      5.755      0.000


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.101E-01
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION


           NU
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 1                  1             0             1             0             1


           NU
              Y13           Y14#1         Y14
              ________      ________      ________
 1                  0             1             0


           LAMBDA
              I             S             II            SI
              ________      ________      ________      ________
 Y11#1              0             0             0             0
 Y11                0             0             0             0
 Y12#1              0             0             0             0
 Y12                0             0             0             0
 Y13#1              0             0             0             0
 Y13                0             0             0             0
 Y14#1              0             0             0             0
 Y14                0             0             0             0


           THETA
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 Y11#1              0
 Y11                0             2
 Y12#1              0             0             0
 Y12                0             0             0             3
 Y13#1              0             0             0             0             0
 Y13                0             0             0             0             0
 Y14#1              0             0             0             0             0
 Y14                0             0             0             0             0


           THETA
              Y13           Y14#1         Y14
              ________      ________      ________
 Y13                4
 Y14#1              0             0
 Y14                0             0             5


           ALPHA
              I             S             II            SI
              ________      ________      ________      ________
 1                  6             7             0             8


           BETA
              I             S             II            SI
              ________      ________      ________      ________
 I                  0             0             0             0
 S                  0             0             0             0
 II                 0             0             0             0
 SI                 0             0             0             0


           PSI
              I             S             II            SI
              ________      ________      ________      ________
 I                  9
 S                 10            11
 II                12            13            14
 SI                 0             0             0             0


     STARTING VALUES


           NU
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 1             -1.129         0.000        -1.129         0.000        -1.129


           NU
              Y13           Y14#1         Y14
              ________      ________      ________
 1              0.000        -1.129         0.000


           LAMBDA
              I             S             II            SI
              ________      ________      ________      ________
 Y11#1          0.000         0.000         1.000         0.000
 Y11            1.000         0.000         0.000         0.000
 Y12#1          0.000         0.000         1.000         1.000
 Y12            1.000         1.000         0.000         0.000
 Y13#1          0.000         0.000         1.000         2.000
 Y13            1.000         2.000         0.000         0.000
 Y14#1          0.000         0.000         1.000         3.000
 Y14            1.000         3.000         0.000         0.000


           THETA
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 Y11#1          0.000
 Y11            0.000         2.056
 Y12#1          0.000         0.000         0.000
 Y12            0.000         0.000         0.000         3.728
 Y13#1          0.000         0.000         0.000         0.000         0.000
 Y13            0.000         0.000         0.000         0.000         0.000
 Y14#1          0.000         0.000         0.000         0.000         0.000
 Y14            0.000         0.000         0.000         0.000         0.000


           THETA
              Y13           Y14#1         Y14
              ________      ________      ________
 Y13            5.882
 Y14#1          0.000         0.000
 Y14            0.000         0.000         8.066


           ALPHA
              I             S             II            SI
              ________      ________      ________      ________
 1              2.716         1.161         0.000         0.000


           BETA
              I             S             II            SI
              ________      ________      ________      ________
 I              0.000         0.000         0.000         0.000
 S              0.000         0.000         0.000         0.000
 II             0.000         0.000         0.000         0.000
 SI             0.000         0.000         0.000         0.000


           PSI
              I             S             II            SI
              ________      ________      ________      ________
 I              4.029
 S              0.000         1.816
 II             0.000         0.000         0.050
 SI             0.000         0.000         0.000         0.000


TECHNICAL 8 OUTPUT


   E STEP  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE  ALGORITHM
              1 -0.88199514D+04    0.0000000    0.0000000  EM
              2 -0.82595974D+04  560.3540175    0.0635326  EM
              3 -0.81467821D+04  112.8153616    0.0136587  EM
              4 -0.80934609D+04   53.3211364    0.0065451  EM
              5 -0.80694766D+04   23.9843177    0.0029634  EM
              6 -0.80518419D+04   17.6346638    0.0021854  EM
              7 -0.80392953D+04   12.5466177    0.0015582  EM
              8 -0.80309758D+04    8.3195272    0.0010349  EM
              9 -0.80256900D+04    5.2857632    0.0006582  EM
             10 -0.80223412D+04    3.3488216    0.0004173  EM
             11 -0.80201680D+04    2.1732224    0.0002709  EM
             12 -0.80187101D+04    1.4579005    0.0001818  EM
             13 -0.80177018D+04    1.0082853    0.0001257  EM
             14 -0.80169880D+04    0.7138162    0.0000890  EM
             15 -0.80164742D+04    0.5137710    0.0000641  EM
             16 -0.80161001D+04    0.3740928    0.0000467  EM
             17 -0.80158254D+04    0.2747073    0.0000343  EM
             18 -0.80156223D+04    0.2030946    0.0000253  EM
             19 -0.80154713D+04    0.1510506    0.0000188  EM
             20 -0.80153583D+04    0.1129953    0.0000141  EM
             21 -0.80152732D+04    0.0850359    0.0000106  EM
             22 -0.80152088D+04    0.0644108    0.0000080  EM
             23 -0.80151597D+04    0.0491396    0.0000061  EM
             24 -0.80151219D+04    0.0377911    0.0000047  EM
             25 -0.80150926D+04    0.0293259    0.0000037  EM
             26 -0.80150696D+04    0.0229860    0.0000029  EM
             27 -0.80150514D+04    0.0182169    0.0000023  EM
             28 -0.80150368D+04    0.0146116    0.0000018  EM
             29 -0.80150249D+04    0.0118711    0.0000015  EM
             30 -0.80150151D+04    0.0097751    0.0000012  EM
             31 -0.80150069D+04    0.0081606    0.0000010  EM
             32 -0.80150000D+04    0.0069072    0.0000009  EM
             33 -0.80149941D+04    0.0059255    0.0000007  EM
             34 -0.80149890D+04    0.0051489    0.0000006  EM
             35 -0.80149844D+04    0.0045280    0.0000006  EM
             36 -0.80149804D+04    0.0040258    0.0000005  EM
             37 -0.80149768D+04    0.0036146    0.0000005  EM
             38 -0.80149735D+04    0.0032737    0.0000004  EM
             39 -0.80149705D+04    0.0029874    0.0000004  EM
             40 -0.80149678D+04    0.0027440    0.0000003  EM
             41 -0.80149653D+04    0.0025343    0.0000003  EM
             42 -0.80149629D+04    0.0023517    0.0000003  EM
             43 -0.80149607D+04    0.0021909    0.0000003  EM
             44 -0.80149587D+04    0.0020479    0.0000003  EM
             45 -0.80149568D+04    0.0019196    0.0000002  EM
             46 -0.80149549D+04    0.0018035    0.0000002  EM
             47 -0.80149389D+04    0.0160016    0.0000020  FS
             48 -0.80149186D+04    0.0203669    0.0000025  FS
             49 -0.80149207D+04   -0.0021312   -0.0000003  EM


     Beginning Time:  14:41:04
        Ending Time:  14:41:32
       Elapsed Time:  00:00:28



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2014 Muthen & Muthen

Back to examples