Mplus VERSION 7.2
MUTHEN & MUTHEN
05/07/2014   2:41 PM

INPUT INSTRUCTIONS

  TITLE:	this is an example of a linear growth
  	model for a count outcome using a Poisson
  	model
  DATA:	FILE IS ex6.6.dat;
  VARIABLE:	NAMES ARE u11-u14;
  	COUNT ARE u11-u14;
  MODEL:	i s | u11@0 u12@1 u13@2 u14@3;
  OUTPUT:	TECH1 TECH8;



INPUT READING TERMINATED NORMALLY



this is an example of a linear growth
model for a count outcome using a Poisson
model

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         500

Number of dependent variables                                    4
Number of independent variables                                  0
Number of continuous latent variables                            2

Observed dependent variables

  Count
   U11         U12         U13         U14

Continuous latent variables
   I           S


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-02
    Relative loglikelihood change                        0.100D-05
    Derivative                                           0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-02
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-02
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA
Integration Specifications
  Type                                                    STANDARD
  Number of integration points                                  15
  Dimensions of numerical integration                            2
  Adaptive quadrature                                           ON
Cholesky                                                        ON

Input data file(s)
  ex6.6.dat
Input data format  FREE


COUNT PROPORTION OF ZERO, MINIMUM AND MAXIMUM VALUES

      U11         0.308         0         8
      U12         0.320         0        11
      U13         0.330         0        19
      U14         0.306         0        71



THE MODEL ESTIMATION TERMINATED NORMALLY



MODEL FIT INFORMATION

Number of Free Parameters                        5

Loglikelihood

          H0 Value                       -3446.329
          H0 Scaling Correction Factor      0.9141
            for MLR

Information Criteria

          Akaike (AIC)                    6902.658
          Bayesian (BIC)                  6923.732
          Sample-Size Adjusted BIC        6907.861
            (n* = (n + 2) / 24)

Chi-Square Test of Model Fit for the Count Outcomes**

          Pearson Chi-Square

          Value                           3714.728
          Degrees of Freedom                  8974
          P-Value                           1.0000

          Likelihood Ratio Chi-Square

          Value                           1095.265
          Degrees of Freedom                  8974
          P-Value                           1.0000

** Of the 9000 cells in the frequency table, 20
   were deleted in the calculation of chi-square due to extreme values.

** Large values were truncated at 9.



MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 I        |
    U11                1.000      0.000    999.000    999.000
    U12                1.000      0.000    999.000    999.000
    U13                1.000      0.000    999.000    999.000
    U14                1.000      0.000    999.000    999.000

 S        |
    U11                0.000      0.000    999.000    999.000
    U12                1.000      0.000    999.000    999.000
    U13                2.000      0.000    999.000    999.000
    U14                3.000      0.000    999.000    999.000

 S        WITH
    I                  0.022      0.019      1.138      0.255

 Means
    I                  0.204      0.047      4.327      0.000
    S                  0.039      0.025      1.559      0.119

 Intercepts
    U11                0.000      0.000    999.000    999.000
    U12                0.000      0.000    999.000    999.000
    U13                0.000      0.000    999.000    999.000
    U14                0.000      0.000    999.000    999.000

 Variances
    I                  0.373      0.052      7.154      0.000
    S                  0.094      0.012      7.878      0.000


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.503E-01
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION


           NU
              U11#1         U11           U12#1         U12           U13#1
              ________      ________      ________      ________      ________
 1                  0             0             0             0             0


           NU
              U13           U14#1         U14
              ________      ________      ________
 1                  0             0             0


           LAMBDA
              I             S
              ________      ________
 U11#1              0             0
 U11                0             0
 U12#1              0             0
 U12                0             0
 U13#1              0             0
 U13                0             0
 U14#1              0             0
 U14                0             0


           THETA
              U11#1         U11           U12#1         U12           U13#1
              ________      ________      ________      ________      ________
 U11#1              0
 U11                0             0
 U12#1              0             0             0
 U12                0             0             0             0
 U13#1              0             0             0             0             0
 U13                0             0             0             0             0
 U14#1              0             0             0             0             0
 U14                0             0             0             0             0


           THETA
              U13           U14#1         U14
              ________      ________      ________
 U13                0
 U14#1              0             0
 U14                0             0             0


           ALPHA
              I             S
              ________      ________
 1                  1             2


           BETA
              I             S
              ________      ________
 I                  0             0
 S                  0             0


           PSI
              I             S
              ________      ________
 I                  3
 S                  4             5


     STARTING VALUES


           NU
              U11#1         U11           U12#1         U12           U13#1
              ________      ________      ________      ________      ________
 1            -20.000         0.000       -20.000         0.000       -20.000


           NU
              U13           U14#1         U14
              ________      ________      ________
 1              0.000       -20.000         0.000


           LAMBDA
              I             S
              ________      ________
 U11#1          0.000         0.000
 U11            1.000         0.000
 U12#1          0.000         0.000
 U12            1.000         1.000
 U13#1          0.000         0.000
 U13            1.000         2.000
 U14#1          0.000         0.000
 U14            1.000         3.000


           THETA
              U11#1         U11           U12#1         U12           U13#1
              ________      ________      ________      ________      ________
 U11#1          0.000
 U11            0.000         0.000
 U12#1          0.000         0.000         0.000
 U12            0.000         0.000         0.000         0.000
 U13#1          0.000         0.000         0.000         0.000         0.000
 U13            0.000         0.000         0.000         0.000         0.000
 U14#1          0.000         0.000         0.000         0.000         0.000
 U14            0.000         0.000         0.000         0.000         0.000


           THETA
              U13           U14#1         U14
              ________      ________      ________
 U13            0.000
 U14#1          0.000         0.000
 U14            0.000         0.000         0.000


           ALPHA
              I             S
              ________      ________
 1              1.352         0.392


           BETA
              I             S
              ________      ________
 I              0.000         0.000
 S              0.000         0.000


           PSI
              I             S
              ________      ________
 I              1.967
 S              0.000         2.080


TECHNICAL 8 OUTPUT


   E STEP  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE  ALGORITHM
              1 -0.41106741D+04    0.0000000    0.0000000  EM
              2 -0.39536496D+04  157.0245182    0.0381992  FS
              3 -0.38759349D+04   77.7147670    0.0196565  EM
              4 -0.38200731D+04   55.8617847    0.0144125  EM
              5 -0.37813327D+04   38.7403643    0.0101413  EM
              6 -0.37542455D+04   27.0872313    0.0071634  EM
              7 -0.37334131D+04   20.8323939    0.0055490  EM
              8 -0.37154960D+04   17.9171193    0.0047991  EM
              9 -0.36989258D+04   16.5702132    0.0044598  EM
             10 -0.36830616D+04   15.8641845    0.0042889  EM
             11 -0.36677002D+04   15.3613202    0.0041708  EM
             12 -0.36528038D+04   14.8964664    0.0040615  EM
             13 -0.36384024D+04   14.4013483    0.0039425  EM
             14 -0.36245251D+04   13.8773351    0.0038141  EM
             15 -0.36112222D+04   13.3028611    0.0036702  EM
             16 -0.35985160D+04   12.7061945    0.0035185  EM
             17 -0.35864429D+04   12.0731188    0.0033550  EM
             18 -0.35750103D+04   11.4326561    0.0031877  EM
             19 -0.35642346D+04   10.7756918    0.0030142  EM
             20 -0.35541105D+04   10.1241162    0.0028405  EM
             21 -0.35446368D+04    9.4736675    0.0026656  EM
             22 -0.35357988D+04    8.8380381    0.0024934  EM
             23 -0.35275824D+04    8.2163726    0.0023238  EM
             24 -0.35199663D+04    7.6160872    0.0021590  EM
             25 -0.35129284D+04    7.0378809    0.0019994  EM
             26 -0.35064431D+04    6.4853128    0.0018461  EM
             27 -0.35004838D+04    5.9592714    0.0016995  EM
             28 -0.34950226D+04    5.4612087    0.0015601  EM
             29 -0.34900311D+04    4.9915654    0.0014282  EM
             30 -0.34854804D+04    4.5506512    0.0013039  EM
             31 -0.34813421D+04    4.1383290    0.0011873  EM
             32 -0.34775878D+04    3.7542281    0.0010784  EM
             33 -0.34741901D+04    3.3977248    0.0009770  EM
             34 -0.34711221D+04    3.0680078    0.0008831  EM
             35 -0.34683580D+04    2.7641041    0.0007963  EM
             36 -0.34658731D+04    2.4849177    0.0007165  EM
             37 -0.34636438D+04    2.2292559    0.0006432  EM
             38 -0.34616480D+04    1.9958567    0.0005762  EM
             39 -0.34598646D+04    1.7834148    0.0005152  EM
             40 -0.34582740D+04    1.5906023    0.0004597  EM
             41 -0.34568579D+04    1.4160860    0.0004095  EM
             42 -0.34555993D+04    1.2585475    0.0003641  EM
             43 -0.34544826D+04    1.1166949    0.0003232  EM
             44 -0.34534934D+04    0.9892756    0.0002864  EM
             45 -0.34471191D+04    6.3742866    0.0018458  FS
             46 -0.34463775D+04    0.7415830    0.0002151  FS
             47 -0.34463317D+04    0.0458161    0.0000133  FS
             48 -0.34463243D+04    0.0073372    0.0000021  FS
             49 -0.34463292D+04   -0.0048998   -0.0000014  EM


     Beginning Time:  14:41:32
        Ending Time:  14:41:37
       Elapsed Time:  00:00:05



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2014 Muthen & Muthen

Back to examples