```Mplus VERSION 8
MUTHEN & MUTHEN
04/10/2017   3:29 AM

INPUT INSTRUCTIONS

title:		this is an example of a linear growth
model for a continuous outcome

montecarlo:
names = y11-y14;
nobs = 500;
nreps = 1;
save = ex6.1.dat;

model population:

i s | y11@0 y12@1 y13@2 y14@3;
[y11-y14@0]; ! this is actually default in MC
y11-y14*.5;
[i*.5 s*1];
i*1; s*.2; i with s*.1;

model:

i s | y11@0 y12@1 y13@2 y14@3;

y11-y14*.5;
[i*.5 s*1];
i*1; s*.2; i with s*.1;

output:
tech9;

this is an example of a linear growth
model for a continuous outcome

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         500

Number of replications
Requested                                                    1
Completed                                                    1
Value of seed                                                    0

Number of dependent variables                                    4
Number of independent variables                                  0
Number of continuous latent variables                            2

Observed dependent variables

Continuous
Y11         Y12         Y13         Y14

Continuous latent variables
I           S

Estimator                                                       ML
Information matrix                                        OBSERVED
Maximum number of iterations                                  1000
Convergence criterion                                    0.500D-04
Maximum number of steepest descent iterations                   20

SAMPLE STATISTICS FOR THE FIRST REPLICATION

SAMPLE STATISTICS

Means
Y11           Y12           Y13           Y14
________      ________      ________      ________
0.514         1.566         2.568         3.601

Covariances
Y11           Y12           Y13           Y14
________      ________      ________      ________
Y11            1.449
Y12            1.131         1.974
Y13            1.224         1.866         2.931
Y14            1.389         2.161         3.013         4.298

Correlations
Y11           Y12           Y13           Y14
________      ________      ________      ________
Y11            1.000
Y12            0.668         1.000
Y13            0.594         0.776         1.000
Y14            0.557         0.742         0.849         1.000

MODEL FIT INFORMATION

Number of Free Parameters                        9

Loglikelihood

H0 Value

Mean                             -3016.386
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000        -3016.386      -3016.386
0.980       0.000        -3016.386      -3016.386
0.950       0.000        -3016.386      -3016.386
0.900       0.000        -3016.386      -3016.386
0.800       0.000        -3016.386      -3016.386
0.700       0.000        -3016.386      -3016.386
0.500       0.000        -3016.386      -3016.386
0.300       0.000        -3016.386      -3016.386
0.200       0.000        -3016.386      -3016.386
0.100       0.000        -3016.386      -3016.386
0.050       0.000        -3016.386      -3016.386
0.020       0.000        -3016.386      -3016.386
0.010       0.000        -3016.386      -3016.386

H1 Value

Mean                             -3014.089
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000        -3014.089      -3014.089
0.980       0.000        -3014.089      -3014.089
0.950       0.000        -3014.089      -3014.089
0.900       0.000        -3014.089      -3014.089
0.800       0.000        -3014.089      -3014.089
0.700       0.000        -3014.089      -3014.089
0.500       0.000        -3014.089      -3014.089
0.300       0.000        -3014.089      -3014.089
0.200       0.000        -3014.089      -3014.089
0.100       0.000        -3014.089      -3014.089
0.050       0.000        -3014.089      -3014.089
0.020       0.000        -3014.089      -3014.089
0.010       0.000        -3014.089      -3014.089

Information Criteria

Akaike (AIC)

Mean                              6050.772
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000         6050.772       6050.772
0.980       0.000         6050.772       6050.772
0.950       0.000         6050.772       6050.772
0.900       0.000         6050.772       6050.772
0.800       0.000         6050.772       6050.772
0.700       0.000         6050.772       6050.772
0.500       0.000         6050.772       6050.772
0.300       0.000         6050.772       6050.772
0.200       0.000         6050.772       6050.772
0.100       0.000         6050.772       6050.772
0.050       0.000         6050.772       6050.772
0.020       0.000         6050.772       6050.772
0.010       0.000         6050.772       6050.772

Bayesian (BIC)

Mean                              6088.703
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000         6088.703       6088.703
0.980       0.000         6088.703       6088.703
0.950       0.000         6088.703       6088.703
0.900       0.000         6088.703       6088.703
0.800       0.000         6088.703       6088.703
0.700       0.000         6088.703       6088.703
0.500       0.000         6088.703       6088.703
0.300       0.000         6088.703       6088.703
0.200       0.000         6088.703       6088.703
0.100       0.000         6088.703       6088.703
0.050       0.000         6088.703       6088.703
0.020       0.000         6088.703       6088.703
0.010       0.000         6088.703       6088.703

Sample-Size Adjusted BIC (n* = (n + 2) / 24)

Mean                              6060.137
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000         6060.137       6060.137
0.980       0.000         6060.137       6060.137
0.950       0.000         6060.137       6060.137
0.900       0.000         6060.137       6060.137
0.800       0.000         6060.137       6060.137
0.700       0.000         6060.137       6060.137
0.500       0.000         6060.137       6060.137
0.300       0.000         6060.137       6060.137
0.200       0.000         6060.137       6060.137
0.100       0.000         6060.137       6060.137
0.050       0.000         6060.137       6060.137
0.020       0.000         6060.137       6060.137
0.010       0.000         6060.137       6060.137

Chi-Square Test of Model Fit

Degrees of freedom                       5

Mean                                 4.593
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       1.000            0.554          4.593
0.980       1.000            0.752          4.593
0.950       1.000            1.145          4.593
0.900       1.000            1.610          4.593
0.800       1.000            2.343          4.593
0.700       1.000            3.000          4.593
0.500       1.000            4.351          4.593
0.300       0.000            6.064          4.593
0.200       0.000            7.289          4.593
0.100       0.000            9.236          4.593
0.050       0.000           11.070          4.593
0.020       0.000           13.388          4.593
0.010       0.000           15.086          4.593

RMSEA (Root Mean Square Error Of Approximation)

Mean                                 0.000
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000            0.000          0.000
0.980       0.000            0.000          0.000
0.950       0.000            0.000          0.000
0.900       0.000            0.000          0.000
0.800       0.000            0.000          0.000
0.700       0.000            0.000          0.000
0.500       0.000            0.000          0.000
0.300       0.000            0.000          0.000
0.200       0.000            0.000          0.000
0.100       0.000            0.000          0.000
0.050       0.000            0.000          0.000
0.020       0.000            0.000          0.000
0.010       0.000            0.000          0.000

SRMR (Standardized Root Mean Square Residual)

Mean                                 0.010
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000            0.010          0.010
0.980       0.000            0.010          0.010
0.950       0.000            0.010          0.010
0.900       0.000            0.010          0.010
0.800       0.000            0.010          0.010
0.700       0.000            0.010          0.010
0.500       0.000            0.010          0.010
0.300       0.000            0.010          0.010
0.200       0.000            0.010          0.010
0.100       0.000            0.010          0.010
0.050       0.000            0.010          0.010
0.020       0.000            0.010          0.010
0.010       0.000            0.010          0.010

MODEL RESULTS

ESTIMATES              S. E.     M. S. E.  95%  % Sig
Population   Average   Std. Dev.   Average             Cover Coeff
I        |
Y11                 1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
Y12                 1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
Y13                 1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
Y14                 1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000

S        |
Y11                 0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
Y12                 1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
Y13                 2.000     2.0000     0.0000     0.0000     0.0000 1.000 0.000
Y14                 3.000     3.0000     0.0000     0.0000     0.0000 1.000 0.000

I        WITH
S                   0.100     0.1329     0.0000     0.0324     0.0011 1.000 1.000

Means
I                   0.500     0.5227     0.0000     0.0515     0.0005 1.000 1.000
S                   1.000     1.0263     0.0000     0.0255     0.0007 1.000 1.000

Intercepts
Y11                 0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
Y12                 0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
Y13                 0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
Y14                 0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000

Variances
I                   1.000     0.9889     0.0000     0.0885     0.0001 1.000 1.000
S                   0.200     0.2238     0.0000     0.0222     0.0006 1.000 1.000

Residual Variances
Y11                 0.500     0.4747     0.0000     0.0584     0.0006 1.000 1.000
Y12                 0.500     0.4821     0.0000     0.0402     0.0003 1.000 1.000
Y13                 0.500     0.4732     0.0000     0.0469     0.0007 1.000 1.000
Y14                 0.500     0.5447     0.0000     0.0826     0.0020 1.000 1.000

QUALITY OF NUMERICAL RESULTS

Average Condition Number for the Information Matrix      0.462E-01
(ratio of smallest to largest eigenvalue)

TECHNICAL OUTPUT

PARAMETER SPECIFICATION

NU
Y11           Y12           Y13           Y14
________      ________      ________      ________
0             0             0             0

LAMBDA
I             S
________      ________
Y11                0             0
Y12                0             0
Y13                0             0
Y14                0             0

THETA
Y11           Y12           Y13           Y14
________      ________      ________      ________
Y11                1
Y12                0             2
Y13                0             0             3
Y14                0             0             0             4

ALPHA
I             S
________      ________
5             6

BETA
I             S
________      ________
I                  0             0
S                  0             0

PSI
I             S
________      ________
I                  7
S                  8             9

STARTING VALUES

NU
Y11           Y12           Y13           Y14
________      ________      ________      ________
0.000         0.000         0.000         0.000

LAMBDA
I             S
________      ________
Y11            1.000         0.000
Y12            1.000         1.000
Y13            1.000         2.000
Y14            1.000         3.000

THETA
Y11           Y12           Y13           Y14
________      ________      ________      ________
Y11            0.500
Y12            0.000         0.500
Y13            0.000         0.000         0.500
Y14            0.000         0.000         0.000         0.500

ALPHA
I             S
________      ________
0.500         1.000

BETA
I             S
________      ________
I              0.000         0.000
S              0.000         0.000

PSI
I             S
________      ________
I              1.000
S              0.100         0.200

POPULATION VALUES

NU
Y11           Y12           Y13           Y14
________      ________      ________      ________
0.000         0.000         0.000         0.000

LAMBDA
I             S
________      ________
Y11            1.000         0.000
Y12            1.000         1.000
Y13            1.000         2.000
Y14            1.000         3.000

THETA
Y11           Y12           Y13           Y14
________      ________      ________      ________
Y11            0.500
Y12            0.000         0.500
Y13            0.000         0.000         0.500
Y14            0.000         0.000         0.000         0.500

ALPHA
I             S
________      ________
0.500         1.000

BETA
I             S
________      ________
I              0.000         0.000
S              0.000         0.000

PSI
I             S
________      ________
I              1.000
S              0.100         0.200

TECHNICAL 9 OUTPUT

Error messages for each replication (if any)

SAVEDATA INFORMATION

Order of variables

Y11
Y12
Y13
Y14

Save file
ex6.1.dat

Save file format           Free
Save file record length    10000

Beginning Time:  03:29:13
Ending Time:  03:29:13
Elapsed Time:  00:00:00

MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2017 Muthen & Muthen
```