Mplus VERSION 7.2
MUTHEN & MUTHEN
05/07/2014   2:04 PM

INPUT INSTRUCTIONS

  title:		this is an example of a linear growth
  	model for a censored outcome using a
  	censored model

  montecarlo:
  	names = y11-y14;
  	generate = y11-y14(cb 0);
  	censored = y11-y14(b);
  	nobs = 500;
  	nreps = 1;
  	save = ex6.2.dat;

  analysis:
  	estimator = mlr;

  model population:

  	i s | y11@0 y12@1 y13@2 y14@3;
  	[y11-y14@0];
  	y11-y14*.5;
  	[i*.5 s*1];
  	! censored below at zero gives many zeros at time 1
  	i*1; s*.2; i with s*.1;

  model:
  	
  	i s | y11@0 y12@1 y13@2 y14@3;

  	y11-y14*.5;
  	[i*.5 s*1];
  	i*1; s*.2; i with s*.1;

  output:
  	tech8 tech9;




INPUT READING TERMINATED NORMALLY



this is an example of a linear growth
model for a censored outcome using a
censored model

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         500

Number of replications
    Requested                                                    1
    Completed                                                    1
Value of seed                                                    0

Number of dependent variables                                    4
Number of independent variables                                  0
Number of continuous latent variables                            2

Observed dependent variables

  Censored
   Y11         Y12         Y13         Y14

Continuous latent variables
   I           S


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-02
    Relative loglikelihood change                        0.100D-05
    Derivative                                           0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-02
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-02
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA
Integration Specifications
  Type                                                    STANDARD
  Number of integration points                                  15
  Dimensions of numerical integration                            2
  Adaptive quadrature                                           ON
Cholesky                                                        ON


SUMMARY OF CENSORED LIMITS

      Y11                0.000
      Y12                0.000
      Y13                0.000
      Y14                0.000





MODEL FIT INFORMATION

Number of Free Parameters                        9

Loglikelihood

    H0 Value

        Mean                             -2857.721
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000        -2857.721      -2857.721
           0.980       0.000        -2857.721      -2857.721
           0.950       0.000        -2857.721      -2857.721
           0.900       0.000        -2857.721      -2857.721
           0.800       0.000        -2857.721      -2857.721
           0.700       0.000        -2857.721      -2857.721
           0.500       0.000        -2857.721      -2857.721
           0.300       0.000        -2857.721      -2857.721
           0.200       0.000        -2857.721      -2857.721
           0.100       0.000        -2857.721      -2857.721
           0.050       0.000        -2857.721      -2857.721
           0.020       0.000        -2857.721      -2857.721
           0.010       0.000        -2857.721      -2857.721

Information Criteria

    Akaike (AIC)

        Mean                              5733.441
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         5733.441       5733.441
           0.980       0.000         5733.441       5733.441
           0.950       0.000         5733.441       5733.441
           0.900       0.000         5733.441       5733.441
           0.800       0.000         5733.441       5733.441
           0.700       0.000         5733.441       5733.441
           0.500       0.000         5733.441       5733.441
           0.300       0.000         5733.441       5733.441
           0.200       0.000         5733.441       5733.441
           0.100       0.000         5733.441       5733.441
           0.050       0.000         5733.441       5733.441
           0.020       0.000         5733.441       5733.441
           0.010       0.000         5733.441       5733.441

    Bayesian (BIC)

        Mean                              5771.373
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         5771.373       5771.373
           0.980       0.000         5771.373       5771.373
           0.950       0.000         5771.373       5771.373
           0.900       0.000         5771.373       5771.373
           0.800       0.000         5771.373       5771.373
           0.700       0.000         5771.373       5771.373
           0.500       0.000         5771.373       5771.373
           0.300       0.000         5771.373       5771.373
           0.200       0.000         5771.373       5771.373
           0.100       0.000         5771.373       5771.373
           0.050       0.000         5771.373       5771.373
           0.020       0.000         5771.373       5771.373
           0.010       0.000         5771.373       5771.373

    Sample-Size Adjusted BIC (n* = (n + 2) / 24)

        Mean                              5742.806
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         5742.806       5742.806
           0.980       0.000         5742.806       5742.806
           0.950       0.000         5742.806       5742.806
           0.900       0.000         5742.806       5742.806
           0.800       0.000         5742.806       5742.806
           0.700       0.000         5742.806       5742.806
           0.500       0.000         5742.806       5742.806
           0.300       0.000         5742.806       5742.806
           0.200       0.000         5742.806       5742.806
           0.100       0.000         5742.806       5742.806
           0.050       0.000         5742.806       5742.806
           0.020       0.000         5742.806       5742.806
           0.010       0.000         5742.806       5742.806



MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff
 I        |
  Y11                 1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y12                 1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y13                 1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y14                 1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000

 S        |
  Y11                 0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y12                 1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y13                 2.000     2.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y14                 3.000     3.0000     0.0000     0.0000     0.0000 1.000 0.000

 I        WITH
  S                   0.100     0.1478     0.0000     0.0355     0.0023 1.000 1.000

 Means
  I                   0.500     0.4845     0.0000     0.0544     0.0002 1.000 1.000
  S                   1.000     1.0504     0.0000     0.0250     0.0025 0.000 1.000

 Intercepts
  Y11                 0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y12                 0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y13                 0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y14                 0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000

 Variances
  I                   1.000     0.9582     0.0000     0.0985     0.0017 1.000 1.000
  S                   0.200     0.1888     0.0000     0.0236     0.0001 1.000 1.000

 Residual Variances
  Y11                 0.500     0.5472     0.0000     0.0729     0.0022 1.000 1.000
  Y12                 0.500     0.5945     0.0000     0.0473     0.0089 0.000 1.000
  Y13                 0.500     0.5074     0.0000     0.0530     0.0001 1.000 1.000
  Y14                 0.500     0.4554     0.0000     0.0871     0.0020 1.000 1.000


QUALITY OF NUMERICAL RESULTS

     Average Condition Number for the Information Matrix      0.424E-01
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION


           NU
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 1                  0             0             0             0             0


           NU
              Y13           Y14#1         Y14
              ________      ________      ________
 1                  0             0             0


           LAMBDA
              I             S
              ________      ________
 Y11#1              0             0
 Y11                0             0
 Y12#1              0             0
 Y12                0             0
 Y13#1              0             0
 Y13                0             0
 Y14#1              0             0
 Y14                0             0


           THETA
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 Y11#1              0
 Y11                0             1
 Y12#1              0             0             0
 Y12                0             0             0             2
 Y13#1              0             0             0             0             0
 Y13                0             0             0             0             0
 Y14#1              0             0             0             0             0
 Y14                0             0             0             0             0


           THETA
              Y13           Y14#1         Y14
              ________      ________      ________
 Y13                3
 Y14#1              0             0
 Y14                0             0             4


           ALPHA
              I             S
              ________      ________
 1                  5             6


           BETA
              I             S
              ________      ________
 I                  0             0
 S                  0             0


           PSI
              I             S
              ________      ________
 I                  7
 S                  8             9


     STARTING VALUES


           NU
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 1            -20.000         0.000       -20.000         0.000       -20.000


           NU
              Y13           Y14#1         Y14
              ________      ________      ________
 1              0.000       -20.000         0.000


           LAMBDA
              I             S
              ________      ________
 Y11#1          0.000         0.000
 Y11            1.000         0.000
 Y12#1          0.000         0.000
 Y12            1.000         1.000
 Y13#1          0.000         0.000
 Y13            1.000         2.000
 Y14#1          0.000         0.000
 Y14            1.000         3.000


           THETA
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 Y11#1          0.000
 Y11            0.000         0.500
 Y12#1          0.000         0.000         0.000
 Y12            0.000         0.000         0.000         0.500
 Y13#1          0.000         0.000         0.000         0.000         0.000
 Y13            0.000         0.000         0.000         0.000         0.000
 Y14#1          0.000         0.000         0.000         0.000         0.000
 Y14            0.000         0.000         0.000         0.000         0.000


           THETA
              Y13           Y14#1         Y14
              ________      ________      ________
 Y13            0.500
 Y14#1          0.000         0.000
 Y14            0.000         0.000         0.500


           ALPHA
              I             S
              ________      ________
 1              0.500         1.000


           BETA
              I             S
              ________      ________
 I              0.000         0.000
 S              0.000         0.000


           PSI
              I             S
              ________      ________
 I              1.000
 S              0.100         0.200


     POPULATION VALUES


           NU
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 1            -20.000         0.000       -20.000         0.000       -20.000


           NU
              Y13           Y14#1         Y14
              ________      ________      ________
 1              0.000       -20.000         0.000


           LAMBDA
              I             S
              ________      ________
 Y11#1          0.000         0.000
 Y11            1.000         0.000
 Y12#1          0.000         0.000
 Y12            1.000         1.000
 Y13#1          0.000         0.000
 Y13            1.000         2.000
 Y14#1          0.000         0.000
 Y14            1.000         3.000


           THETA
              Y11#1         Y11           Y12#1         Y12           Y13#1
              ________      ________      ________      ________      ________
 Y11#1          0.000
 Y11            0.000         0.500
 Y12#1          0.000         0.000         0.000
 Y12            0.000         0.000         0.000         0.500
 Y13#1          0.000         0.000         0.000         0.000         0.000
 Y13            0.000         0.000         0.000         0.000         0.000
 Y14#1          0.000         0.000         0.000         0.000         0.000
 Y14            0.000         0.000         0.000         0.000         0.000


           THETA
              Y13           Y14#1         Y14
              ________      ________      ________
 Y13            0.500
 Y14#1          0.000         0.000
 Y14            0.000         0.000         0.500


           ALPHA
              I             S
              ________      ________
 1              0.500         1.000


           BETA
              I             S
              ________      ________
 I              0.000         0.000
 S              0.000         0.000


           PSI
              I             S
              ________      ________
 I              1.000
 S              0.100         0.200


TECHNICAL 8 OUTPUT


  TECHNICAL 8 OUTPUT FOR REPLICATION 1


   E STEP  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE  ALGORITHM
              1 -0.28629863D+04    0.0000000    0.0000000  EM
              2 -0.28578680D+04    5.1183169    0.0017878  FS
              3 -0.28577253D+04    0.1427526    0.0000500  FS
              4 -0.28577209D+04    0.0043725    0.0000015  FS
              5 -0.28577207D+04    0.0002145    0.0000001  FS


TECHNICAL 9 OUTPUT

  Error messages for each replication (if any)



SAVEDATA INFORMATION

  Order of variables

    Y11
    Y12
    Y13
    Y14

  Save file
    ex6.2.dat

  Save file format           Free
  Save file record length    10000


     Beginning Time:  14:04:51
        Ending Time:  14:04:52
       Elapsed Time:  00:00:01



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2014 Muthen & Muthen

Back to examples