Mplus VERSION 7.2
MUTHEN & MUTHEN
05/07/2014   2:04 PM

INPUT INSTRUCTIONS

  title:
  	this is an example of a mixture regression
  	analysis for a continuous dependent
  	variable using automatic starting values
  	with random starts

  montecarlo:
  	names are y x1 x2;
  	genclasses = c(2);
  	classes = c(2);
  	nobs = 500;
  	seed = 3454367;
  	nrep = 1;
  	save = ex7.1.dat;

  analysis:
  	type = mixture;

  model population:

  	%overall%

  	x1-x2*1;
  	[x1-x2*0];


  	[c#1*0];

  	c#1 on x1*1;

  	y on x1*2 x2*1;
  	
  	[y*1]; y*1;
  	
  	%c#1%

  	y on x2*2;
  	[y*2];
  	y*2;

  model:

  	%overall%


  	[c#1*0];

  	c#1 on x1*1;

  	y on x1*2 x2*1;
  	
  	[y*1]; y*1;
  	
  	%c#1%

  	y on x2*2;
  	[y*2];
  	y*2;

  output:
  	tech8 tech9;
  	
  	
  	

  	
  	



INPUT READING TERMINATED NORMALLY




this is an example of a mixture regression
analysis for a continuous dependent
variable using automatic starting values
with random starts

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         500

Number of replications
    Requested                                                    1
    Completed                                                    1
Value of seed                                              3454367

Number of dependent variables                                    1
Number of independent variables                                  2
Number of continuous latent variables                            0
Number of categorical latent variables                           1

Observed dependent variables

  Continuous
   Y

Observed independent variables
   X1          X2

Categorical latent variables
   C


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-06
    Relative loglikelihood change                        0.100D-06
    Derivative                                           0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA


SAMPLE STATISTICS FOR THE FIRST REPLICATION


     SAMPLE STATISTICS


           Means
              Y             X1            X2
              ________      ________      ________
 1              1.310        -0.061        -0.006


           Covariances
              Y             X1            X2
              ________      ________      ________
 Y              9.259
 X1             2.294         1.039
 X2             1.466        -0.014         0.983


           Correlations
              Y             X1            X2
              ________      ________      ________
 Y              1.000
 X1             0.740         1.000
 X2             0.486        -0.014         1.000




MODEL FIT INFORMATION

Number of Free Parameters                        9

Loglikelihood

    H0 Value

        Mean                              -836.899
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         -836.899       -836.899
           0.980       0.000         -836.899       -836.899
           0.950       0.000         -836.899       -836.899
           0.900       0.000         -836.899       -836.899
           0.800       0.000         -836.899       -836.899
           0.700       0.000         -836.899       -836.899
           0.500       0.000         -836.899       -836.899
           0.300       0.000         -836.899       -836.899
           0.200       0.000         -836.899       -836.899
           0.100       0.000         -836.899       -836.899
           0.050       0.000         -836.899       -836.899
           0.020       0.000         -836.899       -836.899
           0.010       0.000         -836.899       -836.899

Information Criteria

    Akaike (AIC)

        Mean                              1691.797
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         1691.797       1691.797
           0.980       0.000         1691.797       1691.797
           0.950       0.000         1691.797       1691.797
           0.900       0.000         1691.797       1691.797
           0.800       0.000         1691.797       1691.797
           0.700       0.000         1691.797       1691.797
           0.500       0.000         1691.797       1691.797
           0.300       0.000         1691.797       1691.797
           0.200       0.000         1691.797       1691.797
           0.100       0.000         1691.797       1691.797
           0.050       0.000         1691.797       1691.797
           0.020       0.000         1691.797       1691.797
           0.010       0.000         1691.797       1691.797

    Bayesian (BIC)

        Mean                              1729.729
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         1729.729       1729.729
           0.980       0.000         1729.729       1729.729
           0.950       0.000         1729.729       1729.729
           0.900       0.000         1729.729       1729.729
           0.800       0.000         1729.729       1729.729
           0.700       0.000         1729.729       1729.729
           0.500       0.000         1729.729       1729.729
           0.300       0.000         1729.729       1729.729
           0.200       0.000         1729.729       1729.729
           0.100       0.000         1729.729       1729.729
           0.050       0.000         1729.729       1729.729
           0.020       0.000         1729.729       1729.729
           0.010       0.000         1729.729       1729.729

    Sample-Size Adjusted BIC (n* = (n + 2) / 24)

        Mean                              1701.162
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         1701.162       1701.162
           0.980       0.000         1701.162       1701.162
           0.950       0.000         1701.162       1701.162
           0.900       0.000         1701.162       1701.162
           0.800       0.000         1701.162       1701.162
           0.700       0.000         1701.162       1701.162
           0.500       0.000         1701.162       1701.162
           0.300       0.000         1701.162       1701.162
           0.200       0.000         1701.162       1701.162
           0.100       0.000         1701.162       1701.162
           0.050       0.000         1701.162       1701.162
           0.020       0.000         1701.162       1701.162
           0.010       0.000         1701.162       1701.162



FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL

    Latent
   Classes

       1        275.54162          0.55108
       2        224.45838          0.44892


FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS
BASED ON ESTIMATED POSTERIOR PROBABILITIES

    Latent
   Classes

       1        275.54165          0.55108
       2        224.45835          0.44892


CLASSIFICATION QUALITY

     Entropy                         0.389


CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

    Latent
   Classes

       1              270          0.54000
       2              230          0.46000


Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)

           1        2

    1   0.816    0.184
    2   0.240    0.760


Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)

           1        2

    1   0.800    0.200
    2   0.221    0.779


Logits for the Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)

              1        2

    1      1.385    0.000
    2     -1.259    0.000


MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff
Latent Class 1

 Y          ON
  X1                  2.000     1.9992     0.0000     0.0633     0.0000 1.000 1.000
  X2                  2.000     2.0594     0.0000     0.1077     0.0035 1.000 1.000

 Intercepts
  Y                   2.000     1.9669     0.0000     0.1253     0.0011 1.000 1.000

 Residual Variances
  Y                   2.000     1.9643     0.0000     0.1729     0.0013 1.000 1.000

Latent Class 2

 Y          ON
  X1                  2.000     1.9992     0.0000     0.0633     0.0000 1.000 1.000
  X2                  1.000     0.9706     0.0000     0.0757     0.0009 1.000 1.000

 Intercepts
  Y                   1.000     0.8623     0.0000     0.1018     0.0190 1.000 1.000

 Residual Variances
  Y                   1.000     0.6519     0.0000     0.0783     0.1211 0.000 1.000

Categorical Latent Variables

 C#1        ON
  X1                  1.000     1.0093     0.0000     0.2573     0.0001 1.000 1.000

 Intercepts
  C#1                 0.000     0.3093     0.0000     0.2615     0.0956 1.000 0.000


QUALITY OF NUMERICAL RESULTS

     Average Condition Number for the Information Matrix      0.165E-01
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION FOR LATENT CLASS 1


           NU
              Y             X1            X2
              ________      ________      ________
 1                  0             0             0


           LAMBDA
              Y             X1            X2
              ________      ________      ________
 Y                  0             0             0
 X1                 0             0             0
 X2                 0             0             0


           THETA
              Y             X1            X2
              ________      ________      ________
 Y                  0
 X1                 0             0
 X2                 0             0             0


           ALPHA
              Y             X1            X2
              ________      ________      ________
 1                  1             0             0


           BETA
              Y             X1            X2
              ________      ________      ________
 Y                  0             2             3
 X1                 0             0             0
 X2                 0             0             0


           PSI
              Y             X1            X2
              ________      ________      ________
 Y                  4
 X1                 0             0
 X2                 0             0             0


     PARAMETER SPECIFICATION FOR LATENT CLASS 2


           NU
              Y             X1            X2
              ________      ________      ________
 1                  0             0             0


           LAMBDA
              Y             X1            X2
              ________      ________      ________
 Y                  0             0             0
 X1                 0             0             0
 X2                 0             0             0


           THETA
              Y             X1            X2
              ________      ________      ________
 Y                  0
 X1                 0             0
 X2                 0             0             0


           ALPHA
              Y             X1            X2
              ________      ________      ________
 1                  5             0             0


           BETA
              Y             X1            X2
              ________      ________      ________
 Y                  0             2             6
 X1                 0             0             0
 X2                 0             0             0


           PSI
              Y             X1            X2
              ________      ________      ________
 Y                  7
 X1                 0             0
 X2                 0             0             0


     PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1                  8             0


           GAMMA(C)
              X1            X2
              ________      ________
 C#1                9             0
 C#2                0             0


     STARTING VALUES FOR LATENT CLASS 1


           NU
              Y             X1            X2
              ________      ________      ________
 1              0.000         0.000         0.000


           LAMBDA
              Y             X1            X2
              ________      ________      ________
 Y              1.000         0.000         0.000
 X1             0.000         1.000         0.000
 X2             0.000         0.000         1.000


           THETA
              Y             X1            X2
              ________      ________      ________
 Y              0.000
 X1             0.000         0.000
 X2             0.000         0.000         0.000


           ALPHA
              Y             X1            X2
              ________      ________      ________
 1              2.000         0.000         0.000


           BETA
              Y             X1            X2
              ________      ________      ________
 Y              0.000         2.000         2.000
 X1             0.000         0.000         0.000
 X2             0.000         0.000         0.000


           PSI
              Y             X1            X2
              ________      ________      ________
 Y              2.000
 X1             0.000         0.500
 X2             0.000         0.000         0.500


     STARTING VALUES FOR LATENT CLASS 2


           NU
              Y             X1            X2
              ________      ________      ________
 1              0.000         0.000         0.000


           LAMBDA
              Y             X1            X2
              ________      ________      ________
 Y              1.000         0.000         0.000
 X1             0.000         1.000         0.000
 X2             0.000         0.000         1.000


           THETA
              Y             X1            X2
              ________      ________      ________
 Y              0.000
 X1             0.000         0.000
 X2             0.000         0.000         0.000


           ALPHA
              Y             X1            X2
              ________      ________      ________
 1              1.000         0.000         0.000


           BETA
              Y             X1            X2
              ________      ________      ________
 Y              0.000         2.000         1.000
 X1             0.000         0.000         0.000
 X2             0.000         0.000         0.000


           PSI
              Y             X1            X2
              ________      ________      ________
 Y              1.000
 X1             0.000         0.500
 X2             0.000         0.000         0.500


     STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1              0.000         0.000


           GAMMA(C)
              X1            X2
              ________      ________
 C#1            1.000         0.000
 C#2            0.000         0.000


     POPULATION VALUES FOR LATENT CLASS 1


           NU
              Y             X1            X2
              ________      ________      ________
 1              0.000         0.000         0.000


           LAMBDA
              Y             X1            X2
              ________      ________      ________
 Y              1.000         0.000         0.000
 X1             0.000         1.000         0.000
 X2             0.000         0.000         1.000


           THETA
              Y             X1            X2
              ________      ________      ________
 Y              0.000
 X1             0.000         0.000
 X2             0.000         0.000         0.000


           ALPHA
              Y             X1            X2
              ________      ________      ________
 1              2.000         0.000         0.000


           BETA
              Y             X1            X2
              ________      ________      ________
 Y              0.000         2.000         2.000
 X1             0.000         0.000         0.000
 X2             0.000         0.000         0.000


           PSI
              Y             X1            X2
              ________      ________      ________
 Y              2.000
 X1             0.000         1.000
 X2             0.000         0.000         1.000


     POPULATION VALUES FOR LATENT CLASS 2


           NU
              Y             X1            X2
              ________      ________      ________
 1              0.000         0.000         0.000


           LAMBDA
              Y             X1            X2
              ________      ________      ________
 Y              1.000         0.000         0.000
 X1             0.000         1.000         0.000
 X2             0.000         0.000         1.000


           THETA
              Y             X1            X2
              ________      ________      ________
 Y              0.000
 X1             0.000         0.000
 X2             0.000         0.000         0.000


           ALPHA
              Y             X1            X2
              ________      ________      ________
 1              1.000         0.000         0.000


           BETA
              Y             X1            X2
              ________      ________      ________
 Y              0.000         2.000         1.000
 X1             0.000         0.000         0.000
 X2             0.000         0.000         0.000


           PSI
              Y             X1            X2
              ________      ________      ________
 Y              1.000
 X1             0.000         1.000
 X2             0.000         0.000         1.000


     POPULATION VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1              0.000         0.000


           GAMMA(C)
              X1            X2
              ________      ________
 C#1            1.000         0.000
 C#2            0.000         0.000


TECHNICAL 8 OUTPUT


  TECHNICAL 8 OUTPUT FOR REPLICATION 1


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.84190782D+03    0.0000000    0.0000000    245.674   254.326    EM
     2 -0.83903557D+03    2.8722516    0.0034116    247.749   252.251    EM
     3 -0.83812776D+03    0.9078128    0.0010820    250.095   249.905    EM
     4 -0.83769423D+03    0.4335247    0.0005173    252.558   247.442    EM
     5 -0.83745353D+03    0.2407079    0.0002873    254.962   245.038    EM
     6 -0.83730263D+03    0.1508922    0.0001802    257.206   242.794    EM
     7 -0.83720018D+03    0.1024495    0.0001224    259.249   240.751    EM
     8 -0.83712723D+03    0.0729577    0.0000871    261.083   238.917    EM
     9 -0.83707373D+03    0.0534958    0.0000639    262.719   237.281    EM
    10 -0.83703375D+03    0.0399838    0.0000478    264.172   235.828    EM
    11 -0.83700346D+03    0.0302879    0.0000362    265.460   234.540    EM
    12 -0.83698029D+03    0.0231667    0.0000277    266.601   233.399    EM
    13 -0.83696244D+03    0.0178499    0.0000213    267.611   232.389    EM
    14 -0.83694861D+03    0.0138292    0.0000165    268.505   231.495    EM
    15 -0.83693785D+03    0.0107591    0.0000129    269.297   230.703    EM
    16 -0.83692945D+03    0.0083991    0.0000100    269.999   230.001    EM
    17 -0.83692288D+03    0.0065741    0.0000079    270.620   229.380    EM
    18 -0.83691772D+03    0.0051561    0.0000062    271.171   228.829    EM
    19 -0.83691367D+03    0.0040510    0.0000048    271.659   228.341    EM
    20 -0.83691049D+03    0.0031870    0.0000038    272.092   227.908    EM
    21 -0.83690798D+03    0.0025101    0.0000030    272.476   227.524    EM
    22 -0.83690600D+03    0.0019788    0.0000024    272.817   227.183    EM
    23 -0.83690444D+03    0.0015611    0.0000019    273.120   226.880    EM
    24 -0.83690320D+03    0.0012324    0.0000015    273.389   226.611    EM
    25 -0.83690223D+03    0.0009734    0.0000012    273.627   226.373    EM
    26 -0.83690146D+03    0.0007692    0.0000009    273.839   226.161    EM
    27 -0.83690085D+03    0.0006085    0.0000007    274.028   225.972    EM
    28 -0.83690037D+03    0.0004811    0.0000006    274.195   225.805    EM
    29 -0.83689999D+03    0.0003804    0.0000005    274.344   225.656    EM
    30 -0.83689969D+03    0.0003009    0.0000004    274.476   225.524    EM
    31 -0.83689945D+03    0.0002381    0.0000003    274.594   225.406    EM
    32 -0.83689926D+03    0.0001884    0.0000002    274.699   225.301    EM
    33 -0.83689911D+03    0.0001491    0.0000002    274.792   225.208    EM
    34 -0.83689900D+03    0.0001180    0.0000001    274.875   225.125    EM
    35 -0.83689890D+03    0.0000934    0.0000001    274.948   225.052    EM
    36 -0.83689862D+03    0.0002830    0.0000003    275.671   224.329    FS
    37 -0.83689860D+03    0.0000218    0.0000000    275.418   224.582    FS
    38 -0.83689859D+03    0.0000124    0.0000000    275.642   224.358    FS
    39 -0.83689858D+03    0.0000095    0.0000000    275.454   224.546    FS
    40 -0.83689857D+03    0.0000069    0.0000000    275.618   224.382    FS
    41 -0.83689856D+03    0.0000054    0.0000000    275.476   224.524    FS
    42 -0.83689856D+03    0.0000040    0.0000000    275.600   224.400    FS
    43 -0.83689856D+03    0.0000031    0.0000000    275.492   224.508    FS
    44 -0.83689855D+03    0.0000023    0.0000000    275.586   224.414    FS
    45 -0.83689855D+03    0.0000018    0.0000000    275.504   224.496    FS
    46 -0.83689855D+03    0.0000013    0.0000000    275.575   224.425    FS
    47 -0.83689855D+03    0.0000010    0.0000000    275.514   224.486    FS
    48 -0.83689855D+03    0.0000008    0.0000000    275.567   224.433    FS
    49 -0.83689855D+03    0.0000006    0.0000000    275.521   224.479    FS
    50 -0.83689855D+03    0.0000004    0.0000000    275.561   224.439    FS
    51 -0.83689855D+03    0.0000003    0.0000000    275.526   224.474    FS
    52 -0.83689855D+03    0.0000002    0.0000000    275.557   224.443    FS
    53 -0.83689855D+03    0.0000002    0.0000000    275.530   224.470    FS
    54 -0.83689855D+03    0.0000001    0.0000000    275.553   224.447    FS
    55 -0.83689855D+03    0.0000001    0.0000000    275.533   224.467    FS
    56 -0.83689855D+03    0.0000001    0.0000000    275.550   224.450    FS
    57 -0.83689855D+03    0.0000001    0.0000000    275.535   224.465    FS
    58 -0.83689855D+03    0.0000000    0.0000000    275.548   224.452    FS
    59 -0.83689855D+03    0.0000000    0.0000000    275.537   224.463    FS
    60 -0.83689855D+03    0.0000000    0.0000000    275.547   224.453    FS
    61 -0.83689855D+03    0.0000000    0.0000000    275.538   224.462    FS
    62 -0.83689855D+03    0.0000000    0.0000000    275.546   224.454    FS
    63 -0.83689855D+03    0.0000000    0.0000000    275.539   224.461    FS
    64 -0.83689855D+03    0.0000000    0.0000000    275.545   224.455    FS
    65 -0.83689855D+03    0.0000000    0.0000000    275.540   224.460    FS
    66 -0.83689855D+03    0.0000000    0.0000000    275.544   224.456    FS
    67 -0.83689855D+03    0.0000000    0.0000000    275.540   224.460    FS
    68 -0.83689855D+03    0.0000000    0.0000000    275.544   224.456    FS
    69 -0.83689855D+03    0.0000000    0.0000000    275.541   224.459    FS
    70 -0.83689855D+03    0.0000000    0.0000000    275.543   224.457    FS
    71 -0.83689855D+03    0.0000000    0.0000000    275.541   224.459    FS
    72 -0.83689855D+03    0.0000000    0.0000000    275.543   224.457    FS
    73 -0.83689855D+03    0.0000000    0.0000000    275.541   224.459    FS
    74 -0.83689855D+03    0.0000000    0.0000000    275.543   224.457    FS
    75 -0.83689855D+03    0.0000000    0.0000000    275.542   224.458    FS


TECHNICAL 9 OUTPUT

  Error messages for each replication (if any)



SAVEDATA INFORMATION

  Order of variables

    Y
    X1
    X2
    C

  Save file
    ex7.1.dat

  Save file format           Free
  Save file record length    10000


     Beginning Time:  14:04:56
        Ending Time:  14:04:56
       Elapsed Time:  00:00:00



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2014 Muthen & Muthen

Back to examples