Mplus VERSION 7.2
MUTHEN & MUTHEN
05/07/2014   2:04 PM

INPUT INSTRUCTIONS

  TITLE:	this is an example of a LCA with binary,
  	censored, unordered, and count latent
  	class indicators using user-specified
  	starting values without random starts

  montecarlo:
  	names are u1 y1 u2 u3;
  	genclasses = c(2);
  	classes = c(2);
  	generate =  u1(1) y1(cb 0) u2(n 2) u3(ci);
  	categorical = u1;
  	censored = y1(b);
  	nominal = u2;
  	count = u3(i);
  	nobs = 1000;
  	seed = 3454367;
  	nrep = 1;
  	save = ex7.11.dat;

  ANALYSIS:	TYPE = MIXTURE;

  MODEL population:
  	
  	%OVERALL%
  	%c#1%
  	[u1$1*-1 y1*3 u2#1*0 u2#2*1 u3*.5 u3#1*1.5];
  	y1*2;
  	%c#2%
  	[u1$1*0 y1*1 u2#1*-1 u2#2*0 u3*1 u3#1*1];
  	y1*1;

  MODEL:
  	
  	%OVERALL%
  	%c#1%
  	[u1$1*-1 y1*3 u2#1*0 u2#2*1 u3*.5 u3#1*1.5];
  	y1*2;
  	%c#2%
  	[u1$1*0 y1*1 u2#1*-1 u2#2*0 u3*1 u3#1*1];
  	y1*1;



  OUTPUT:	tech8 tech9;



INPUT READING TERMINATED NORMALLY



this is an example of a LCA with binary,
censored, unordered, and count latent
class indicators using user-specified
starting values without random starts

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                        1000

Number of replications
    Requested                                                    1
    Completed                                                    1
Value of seed                                              3454367

Number of dependent variables                                    4
Number of independent variables                                  0
Number of continuous latent variables                            0
Number of categorical latent variables                           1

Observed dependent variables

  Censored
   Y1

  Binary and ordered categorical (ordinal)
   U1

  Unordered categorical (nominal)
   U2

  Count
   U3

Categorical latent variables
   C


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-06
    Relative loglikelihood change                        0.100D-06
    Derivative                                           0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA
Link                                                         LOGIT


SUMMARY OF CENSORED LIMITS

      Y1                 0.000





MODEL FIT INFORMATION

Number of Free Parameters                       15

Loglikelihood

    H0 Value

        Mean                             -4348.434
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000        -4348.434      -4348.434
           0.980       0.000        -4348.434      -4348.434
           0.950       0.000        -4348.434      -4348.434
           0.900       0.000        -4348.434      -4348.434
           0.800       0.000        -4348.434      -4348.434
           0.700       0.000        -4348.434      -4348.434
           0.500       0.000        -4348.434      -4348.434
           0.300       0.000        -4348.434      -4348.434
           0.200       0.000        -4348.434      -4348.434
           0.100       0.000        -4348.434      -4348.434
           0.050       0.000        -4348.434      -4348.434
           0.020       0.000        -4348.434      -4348.434
           0.010       0.000        -4348.434      -4348.434

Information Criteria

    Akaike (AIC)

        Mean                              8726.869
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         8726.869       8726.869
           0.980       0.000         8726.869       8726.869
           0.950       0.000         8726.869       8726.869
           0.900       0.000         8726.869       8726.869
           0.800       0.000         8726.869       8726.869
           0.700       0.000         8726.869       8726.869
           0.500       0.000         8726.869       8726.869
           0.300       0.000         8726.869       8726.869
           0.200       0.000         8726.869       8726.869
           0.100       0.000         8726.869       8726.869
           0.050       0.000         8726.869       8726.869
           0.020       0.000         8726.869       8726.869
           0.010       0.000         8726.869       8726.869

    Bayesian (BIC)

        Mean                              8800.485
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         8800.485       8800.485
           0.980       0.000         8800.485       8800.485
           0.950       0.000         8800.485       8800.485
           0.900       0.000         8800.485       8800.485
           0.800       0.000         8800.485       8800.485
           0.700       0.000         8800.485       8800.485
           0.500       0.000         8800.485       8800.485
           0.300       0.000         8800.485       8800.485
           0.200       0.000         8800.485       8800.485
           0.100       0.000         8800.485       8800.485
           0.050       0.000         8800.485       8800.485
           0.020       0.000         8800.485       8800.485
           0.010       0.000         8800.485       8800.485

    Sample-Size Adjusted BIC (n* = (n + 2) / 24)

        Mean                              8752.844
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         8752.844       8752.844
           0.980       0.000         8752.844       8752.844
           0.950       0.000         8752.844       8752.844
           0.900       0.000         8752.844       8752.844
           0.800       0.000         8752.844       8752.844
           0.700       0.000         8752.844       8752.844
           0.500       0.000         8752.844       8752.844
           0.300       0.000         8752.844       8752.844
           0.200       0.000         8752.844       8752.844
           0.100       0.000         8752.844       8752.844
           0.050       0.000         8752.844       8752.844
           0.020       0.000         8752.844       8752.844
           0.010       0.000         8752.844       8752.844

Chi-Square Test of Model Fit for the Binary and Ordered Categorical
(Ordinal) Outcomes

    Pearson Chi-Square

        Mean                                 0.000
        Std Dev                              0.000
        Degrees of freedom                       0
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000            0.000          0.000
           0.980       0.000            0.000          0.000
           0.950       0.000            0.000          0.000
           0.900       0.000            0.000          0.000
           0.800       0.000            0.000          0.000
           0.700       0.000            0.000          0.000
           0.500       0.000            0.000          0.000
           0.300       0.000            0.000          0.000
           0.200       0.000            0.000          0.000
           0.100       0.000            0.000          0.000
           0.050       0.000            0.000          0.000
           0.020       0.000            0.000          0.000
           0.010       0.000            0.000          0.000

    Likelihood Ratio Chi-Square

        Mean                                 0.000
        Std Dev                              0.000
        Degrees of freedom                       0
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000            0.000          0.000
           0.980       0.000            0.000          0.000
           0.950       0.000            0.000          0.000
           0.900       0.000            0.000          0.000
           0.800       0.000            0.000          0.000
           0.700       0.000            0.000          0.000
           0.500       0.000            0.000          0.000
           0.300       0.000            0.000          0.000
           0.200       0.000            0.000          0.000
           0.100       0.000            0.000          0.000
           0.050       0.000            0.000          0.000
           0.020       0.000            0.000          0.000
           0.010       0.000            0.000          0.000



FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL

    Latent
   Classes

       1        621.01520          0.62102
       2        378.98480          0.37898


FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS
BASED ON ESTIMATED POSTERIOR PROBABILITIES

    Latent
   Classes

       1        621.01529          0.62102
       2        378.98471          0.37898


CLASSIFICATION QUALITY

     Entropy                         0.369


CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

    Latent
   Classes

       1              582          0.58200
       2              418          0.41800


Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)

           1        2

    1   0.843    0.157
    2   0.312    0.688


Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)

           1        2

    1   0.790    0.210
    2   0.241    0.759


Logits for the Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)

              1        2

    1      1.327    0.000
    2     -1.149    0.000


MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff
Latent Class 1

 Means
  U3#1                1.500     1.5052     0.0000     0.1628     0.0000 1.000 1.000
  U3                  0.500     0.7256     0.0000     0.1027     0.0509 0.000 1.000
  Y1                  3.000     2.7354     0.0000     0.2066     0.0700 1.000 1.000
  U2#1                0.000    -0.0060     0.0000     0.1627     0.0000 1.000 0.000
  U2#2                1.000     0.9596     0.0000     0.1445     0.0016 1.000 1.000

 Thresholds
  U1$1               -1.000    -0.7555     0.0000     0.1362     0.0598 1.000 1.000

 Variances
  Y1                  2.000     2.3324     0.0000     0.3174     0.1105 1.000 1.000

Latent Class 2

 Means
  U3#1                1.000     0.8256     0.0000     0.1801     0.0304 1.000 1.000
  U3                  1.000     0.8966     0.0000     0.0749     0.0107 1.000 1.000
  Y1                  1.000     0.9388     0.0000     0.1407     0.0038 1.000 1.000
  U2#1               -1.000    -0.7716     0.0000     0.2413     0.0521 1.000 1.000
  U2#2                0.000     0.0761     0.0000     0.2082     0.0058 1.000 0.000

 Thresholds
  U1$1                0.000    -0.0526     0.0000     0.1797     0.0028 1.000 0.000

 Variances
  Y1                  1.000     0.9906     0.0000     0.2130     0.0001 1.000 1.000

Categorical Latent Variables

 Means
  C#1                 0.000     0.4939     0.0000     0.3441     0.2439 1.000 0.000


QUALITY OF NUMERICAL RESULTS

     Average Condition Number for the Information Matrix      0.481E-02
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION FOR LATENT CLASS 1


     PARAMETER SPECIFICATION FOR LATENT CLASS 2


     PARAMETER SPECIFICATION FOR LATENT CLASS INDICATOR MODEL PART


           TAU(U) FOR LATENT CLASS 1
              U1$1
              ________
 1                  1


           TAU(U) FOR LATENT CLASS 2
              U1$1
              ________
 1                  2


     PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1                  3             0


     PARAMETER SPECIFICATION FOR THE CENSORED/NOMINAL/COUNT MODEL PART


           NU(P) FOR LATENT CLASS 1
              U3#1          U3            Y1#1          Y1            U2#1
              ________      ________      ________      ________      ________
 1                  4             5             0             6             7


           NU(P) FOR LATENT CLASS 1
              U2#2
              ________
 1                  8


           THETA(C) FOR CLASS LATENT CLASS 1
              Y1
              ________
 1                  9


           NU(P) FOR LATENT CLASS 2
              U3#1          U3            Y1#1          Y1            U2#1
              ________      ________      ________      ________      ________
 1                 10            11             0            12            13


           NU(P) FOR LATENT CLASS 2
              U2#2
              ________
 1                 14


           THETA(C) FOR CLASS LATENT CLASS 2
              Y1
              ________
 1                 15


     STARTING VALUES FOR LATENT CLASS 1


     STARTING VALUES FOR LATENT CLASS 2


     STARTING VALUES FOR LATENT CLASS INDICATOR MODEL PART


           TAU(U) FOR LATENT CLASS 1
              U1$1
              ________
 1             -1.000


           TAU(U) FOR LATENT CLASS 2
              U1$1
              ________
 1              0.000


     STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1              0.000         0.000


     STARTING VALUES FOR THE CENSORED/NOMINAL/COUNT MODEL PART


           NU(P) FOR LATENT CLASS 1
              U3#1          U3            Y1#1          Y1            U2#1
              ________      ________      ________      ________      ________
 1              1.500         0.500       -20.000         3.000         0.000


           NU(P) FOR LATENT CLASS 1
              U2#2
              ________
 1              1.000


           THETA(C) FOR LATENT CLASS 1
              Y1
              ________
 1              2.000


           NU(P) FOR LATENT CLASS 2
              U3#1          U3            Y1#1          Y1            U2#1
              ________      ________      ________      ________      ________
 1              1.000         1.000       -20.000         1.000        -1.000


           NU(P) FOR LATENT CLASS 2
              U2#2
              ________
 1              0.000


           THETA(C) FOR LATENT CLASS 2
              Y1
              ________
 1              1.000


     POPULATION VALUES FOR LATENT CLASS 1


     POPULATION VALUES FOR LATENT CLASS 2


     POPULATION VALUES FOR LATENT CLASS INDICATOR MODEL PART


           TAU(U) FOR LATENT CLASS 1
              U1$1
              ________
 1             -1.000


           TAU(U) FOR LATENT CLASS 2
              U1$1
              ________
 1              0.000


     POPULATION VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1              0.000         0.000


     POPULATION VALUES FOR THE CENSORED/NOMINAL/COUNT MODEL PART


           NU(P) FOR LATENT CLASS 1
              U3#1          U3            Y1#1          Y1            U2#1
              ________      ________      ________      ________      ________
 1              1.500         0.500       -20.000         3.000         0.000


           NU(P) FOR LATENT CLASS 1
              U2#2
              ________
 1              1.000


           THETA(C) FOR LATENT CLASS 1
              Y1
              ________
 1              2.000


           NU(P) FOR LATENT CLASS 2
              U3#1          U3            Y1#1          Y1            U2#1
              ________      ________      ________      ________      ________
 1              1.000         1.000       -20.000         1.000        -1.000


           NU(P) FOR LATENT CLASS 2
              U2#2
              ________
 1              0.000


           THETA(C) FOR LATENT CLASS 2
              Y1
              ________
 1              1.000


TECHNICAL 8 OUTPUT


  TECHNICAL 8 OUTPUT FOR REPLICATION 1


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.43579548D+04    0.0000000    0.0000000    518.989   481.011    EM
     2 -0.43501136D+04    7.8411565    0.0017993    521.014   478.986    EM
     3 -0.43491950D+04    0.9186628    0.0002112    522.482   477.518    EM
     4 -0.43489540D+04    0.2409893    0.0000554    523.738   476.262    EM
     5 -0.43488802D+04    0.0737856    0.0000170    524.904   475.096    EM
     6 -0.43488517D+04    0.0284651    0.0000065    526.025   473.975    EM
     7 -0.43488364D+04    0.0153532    0.0000035    527.121   472.879    EM
     8 -0.43488251D+04    0.0112674    0.0000026    528.201   471.799    EM
     9 -0.43488153D+04    0.0098209    0.0000023    529.267   470.733    EM
    10 -0.43488061D+04    0.0091792    0.0000021    530.322   469.678    EM
    11 -0.43487973D+04    0.0087980    0.0000020    531.366   468.634    EM
    12 -0.43487888D+04    0.0085104    0.0000020    532.400   467.600    EM
    13 -0.43487805D+04    0.0082631    0.0000019    533.424   466.576    EM
    14 -0.43487725D+04    0.0080376    0.0000018    534.438   465.562    EM
    15 -0.43487647D+04    0.0078270    0.0000018    535.442   464.558    EM
    16 -0.43487570D+04    0.0076277    0.0000018    536.436   463.564    EM
    17 -0.43487496D+04    0.0074381    0.0000017    537.421   462.579    EM
    18 -0.43487423D+04    0.0072566    0.0000017    538.395   461.605    EM
    19 -0.43487352D+04    0.0070825    0.0000016    539.360   460.640    EM
    20 -0.43487283D+04    0.0069148    0.0000016    540.315   459.685    EM
    21 -0.43487216D+04    0.0067529    0.0000016    541.261   458.739    EM
    22 -0.43487150D+04    0.0065963    0.0000015    542.196   457.804    EM
    23 -0.43487085D+04    0.0064445    0.0000015    543.123   456.877    EM
    24 -0.43487022D+04    0.0062972    0.0000014    544.039   455.961    EM
    25 -0.43486961D+04    0.0061541    0.0000014    544.946   455.054    EM
    26 -0.43486901D+04    0.0060148    0.0000014    545.843   454.157    EM
    27 -0.43486842D+04    0.0058792    0.0000014    546.731   453.269    EM
    28 -0.43486784D+04    0.0057471    0.0000013    547.610   452.390    EM
    29 -0.43486728D+04    0.0056182    0.0000013    548.479   451.521    EM
    30 -0.43486673D+04    0.0054925    0.0000013    549.339   450.661    EM
    31 -0.43486620D+04    0.0053697    0.0000012    550.190   449.810    EM
    32 -0.43486567D+04    0.0052499    0.0000012    551.032   448.968    EM
    33 -0.43486516D+04    0.0051328    0.0000012    551.865   448.135    EM
    34 -0.43486466D+04    0.0050184    0.0000012    552.689   447.311    EM
    35 -0.43486417D+04    0.0049065    0.0000011    553.504   446.496    EM
    36 -0.43486369D+04    0.0047972    0.0000011    554.310   445.690    EM
    37 -0.43486322D+04    0.0046903    0.0000011    555.108   444.892    EM
    38 -0.43486276D+04    0.0045858    0.0000011    555.897   444.103    EM
    39 -0.43486231D+04    0.0044836    0.0000010    556.677   443.323    EM
    40 -0.43486187D+04    0.0043836    0.0000010    557.449   442.551    EM
    41 -0.43486144D+04    0.0042858    0.0000010    558.212   441.788    EM
    42 -0.43486102D+04    0.0041902    0.0000010    558.967   441.033    EM
    43 -0.43486061D+04    0.0040966    0.0000009    559.714   440.286    EM
    44 -0.43486021D+04    0.0040051    0.0000009    560.452   439.548    EM
    45 -0.43485982D+04    0.0039155    0.0000009    561.183   438.817    EM
    46 -0.43485944D+04    0.0038279    0.0000009    561.905   438.095    EM
    47 -0.43485907D+04    0.0037422    0.0000009    562.619   437.381    EM
    48 -0.43485870D+04    0.0036583    0.0000008    563.326   436.674    EM
    49 -0.43485834D+04    0.0035763    0.0000008    564.024   435.976    EM
    50 -0.43485799D+04    0.0034960    0.0000008    564.715   435.285    EM
    51 -0.43485765D+04    0.0034174    0.0000008    565.398   434.602    EM
    52 -0.43485732D+04    0.0033406    0.0000008    566.074   433.926    EM
    53 -0.43485699D+04    0.0032654    0.0000008    566.742   433.258    EM
    54 -0.43485667D+04    0.0031918    0.0000007    567.403   432.597    EM
    55 -0.43485636D+04    0.0031198    0.0000007    568.056   431.944    EM
    56 -0.43485605D+04    0.0030494    0.0000007    568.702   431.298    EM
    57 -0.43485576D+04    0.0029805    0.0000007    569.340   430.660    EM
    58 -0.43485546D+04    0.0029131    0.0000007    569.972   430.028    EM
    59 -0.43485518D+04    0.0028471    0.0000007    570.596   429.404    EM
    60 -0.43484345D+04    0.1173271    0.0000270    621.015   378.985    QN
    61 -0.43484345D+04    0.0000000    0.0000000    621.015   378.985    EM


TECHNICAL 9 OUTPUT

  Error messages for each replication (if any)



SAVEDATA INFORMATION

  Order of variables

    U3
    Y1
    U2
    U1
    C

  Save file
    ex7.11.dat

  Save file format           Free
  Save file record length    10000


     Beginning Time:  14:04:56
        Ending Time:  14:04:57
       Elapsed Time:  00:00:01



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2014 Muthen & Muthen

Back to examples