Mplus VERSION 7.3
MUTHEN & MUTHEN
09/22/2014   5:18 PM

INPUT INSTRUCTIONS

  title:
  	this is an example of CFA mixture modeling

  montecarlo:
  	names are y1-y5;
  	genclasses = c(2);
  	classes = c(2);
  	nobs = 500;
  	seed = 3454367;
  	nrep = 1;
  	save = ex7.17.dat;

  analysis:
  	type = mixture;

  model population:

  	%overall%

  	y1-y5*.25;
  	f by y1@1 y2-y5*.75;
  	[f@0];
  	f*1;

  	[c#1*0];
  	
  	%c#1%
  	[f*2];

  model:
  	
  	%overall%

  	y1-y5*.25;
  	f by y1@1 y2-y5*.75;
  	[f@0];
  	f*1;

  	[c#1*0];
  	
  	%c#1%
  	[f*2];

  output:
  	tech8 tech9;	



INPUT READING TERMINATED NORMALLY




this is an example of CFA mixture modeling

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         500

Number of replications
    Requested                                                    1
    Completed                                                    1
Value of seed                                              3454367

Number of dependent variables                                    5
Number of independent variables                                  0
Number of continuous latent variables                            1
Number of categorical latent variables                           1

Observed dependent variables

  Continuous
   Y1          Y2          Y3          Y4          Y5

Continuous latent variables
   F

Categorical latent variables
   C


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-06
    Relative loglikelihood change                        0.100D-06
    Derivative                                           0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA


SAMPLE STATISTICS FOR THE FIRST REPLICATION


     SAMPLE STATISTICS


           Means
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 1              0.969         0.702         0.744         0.685         0.717


           Covariances
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 Y1             2.039
 Y2             1.357         1.322
 Y3             1.398         1.060         1.355
 Y4             1.409         1.077         1.081         1.330
 Y5             1.339         1.017         1.009         1.043         1.237


           Correlations
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 Y1             1.000
 Y2             0.826         1.000
 Y3             0.841         0.792         1.000
 Y4             0.856         0.812         0.805         1.000
 Y5             0.843         0.795         0.780         0.813         1.000




MODEL FIT INFORMATION

Number of Free Parameters                       17

Loglikelihood

    H0 Value

        Mean                             -2643.223
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000        -2643.223      -2643.223
           0.980       0.000        -2643.223      -2643.223
           0.950       0.000        -2643.223      -2643.223
           0.900       0.000        -2643.223      -2643.223
           0.800       0.000        -2643.223      -2643.223
           0.700       0.000        -2643.223      -2643.223
           0.500       0.000        -2643.223      -2643.223
           0.300       0.000        -2643.223      -2643.223
           0.200       0.000        -2643.223      -2643.223
           0.100       0.000        -2643.223      -2643.223
           0.050       0.000        -2643.223      -2643.223
           0.020       0.000        -2643.223      -2643.223
           0.010       0.000        -2643.223      -2643.223

Information Criteria

    Akaike (AIC)

        Mean                              5320.446
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         5320.446       5320.446
           0.980       0.000         5320.446       5320.446
           0.950       0.000         5320.446       5320.446
           0.900       0.000         5320.446       5320.446
           0.800       0.000         5320.446       5320.446
           0.700       0.000         5320.446       5320.446
           0.500       0.000         5320.446       5320.446
           0.300       0.000         5320.446       5320.446
           0.200       0.000         5320.446       5320.446
           0.100       0.000         5320.446       5320.446
           0.050       0.000         5320.446       5320.446
           0.020       0.000         5320.446       5320.446
           0.010       0.000         5320.446       5320.446

    Bayesian (BIC)

        Mean                              5392.094
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         5392.094       5392.094
           0.980       0.000         5392.094       5392.094
           0.950       0.000         5392.094       5392.094
           0.900       0.000         5392.094       5392.094
           0.800       0.000         5392.094       5392.094
           0.700       0.000         5392.094       5392.094
           0.500       0.000         5392.094       5392.094
           0.300       0.000         5392.094       5392.094
           0.200       0.000         5392.094       5392.094
           0.100       0.000         5392.094       5392.094
           0.050       0.000         5392.094       5392.094
           0.020       0.000         5392.094       5392.094
           0.010       0.000         5392.094       5392.094

    Sample-Size Adjusted BIC (n* = (n + 2) / 24)

        Mean                              5338.135
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         5338.135       5338.135
           0.980       0.000         5338.135       5338.135
           0.950       0.000         5338.135       5338.135
           0.900       0.000         5338.135       5338.135
           0.800       0.000         5338.135       5338.135
           0.700       0.000         5338.135       5338.135
           0.500       0.000         5338.135       5338.135
           0.300       0.000         5338.135       5338.135
           0.200       0.000         5338.135       5338.135
           0.100       0.000         5338.135       5338.135
           0.050       0.000         5338.135       5338.135
           0.020       0.000         5338.135       5338.135
           0.010       0.000         5338.135       5338.135



FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL

    Latent
   Classes

       1        236.98513          0.47397
       2        263.01487          0.52603


FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON ESTIMATED POSTERIOR PROBABILITIES

    Latent
   Classes

       1        236.98511          0.47397
       2        263.01489          0.52603


FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

    Latent
   Classes

       1              230          0.46000
       2              270          0.54000


CLASSIFICATION QUALITY

     Entropy                         0.400


Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)

           1        2

    1   0.807    0.193
    2   0.190    0.810


Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)

           1        2

    1   0.783    0.217
    2   0.169    0.831


Logits for the Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)

              1        2

    1      1.284    0.000
    2     -1.594    0.000


MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff
Latent Class 1

 F        BY
  Y1                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y2                  0.750     0.7590     0.0000     0.0221     0.0001 1.000 1.000
  Y3                  0.750     0.7687     0.0000     0.0220     0.0004 1.000 1.000
  Y4                  0.750     0.7815     0.0000     0.0220     0.0010 1.000 1.000
  Y5                  0.750     0.7380     0.0000     0.0217     0.0001 1.000 1.000

 Means
  F                   2.000     1.8003     0.0000     0.1824     0.0399 1.000 1.000

 Intercepts
  Y1                  0.000     0.1161     0.0000     0.1448     0.0135 1.000 0.000
  Y2                  0.000     0.0545     0.0000     0.1112     0.0030 1.000 0.000
  Y3                  0.000     0.0885     0.0000     0.1128     0.0078 1.000 0.000
  Y4                  0.000     0.0182     0.0000     0.1161     0.0003 1.000 0.000
  Y5                  0.000     0.0877     0.0000     0.1099     0.0077 1.000 0.000

 Variances
  F                   1.000     0.9978     0.0000     0.1519     0.0000 1.000 1.000

 Residual Variances
  Y1                  0.250     0.2335     0.0000     0.0208     0.0003 1.000 1.000
  Y2                  0.250     0.2820     0.0000     0.0214     0.0010 1.000 1.000
  Y3                  0.250     0.2876     0.0000     0.0194     0.0014 1.000 1.000
  Y4                  0.250     0.2270     0.0000     0.0172     0.0005 1.000 1.000
  Y5                  0.250     0.2538     0.0000     0.0187     0.0000 1.000 1.000

Latent Class 2

 F        BY
  Y1                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y2                  0.750     0.7590     0.0000     0.0221     0.0001 1.000 1.000
  Y3                  0.750     0.7687     0.0000     0.0220     0.0004 1.000 1.000
  Y4                  0.750     0.7815     0.0000     0.0220     0.0010 1.000 1.000
  Y5                  0.750     0.7380     0.0000     0.0217     0.0001 1.000 1.000

 Means
  F                   0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000

 Intercepts
  Y1                  0.000     0.1161     0.0000     0.1448     0.0135 1.000 0.000
  Y2                  0.000     0.0545     0.0000     0.1112     0.0030 1.000 0.000
  Y3                  0.000     0.0885     0.0000     0.1128     0.0078 1.000 0.000
  Y4                  0.000     0.0182     0.0000     0.1161     0.0003 1.000 0.000
  Y5                  0.000     0.0877     0.0000     0.1099     0.0077 1.000 0.000

 Variances
  F                   1.000     0.9978     0.0000     0.1519     0.0000 1.000 1.000

 Residual Variances
  Y1                  0.250     0.2335     0.0000     0.0208     0.0003 1.000 1.000
  Y2                  0.250     0.2820     0.0000     0.0214     0.0010 1.000 1.000
  Y3                  0.250     0.2876     0.0000     0.0194     0.0014 1.000 1.000
  Y4                  0.250     0.2270     0.0000     0.0172     0.0005 1.000 1.000
  Y5                  0.250     0.2538     0.0000     0.0187     0.0000 1.000 1.000

Categorical Latent Variables

 Means
  C#1                 0.000    -0.1042     0.0000     0.2819     0.0109 1.000 0.000


QUALITY OF NUMERICAL RESULTS

     Average Condition Number for the Information Matrix      0.924E-03
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION FOR LATENT CLASS 1


           NU
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 1                  1             2             3             4             5


           LAMBDA
              F
              ________
 Y1                 0
 Y2                 6
 Y3                 7
 Y4                 8
 Y5                 9


           THETA
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 Y1                10
 Y2                 0            11
 Y3                 0             0            12
 Y4                 0             0             0            13
 Y5                 0             0             0             0            14


           ALPHA
              F
              ________
 1                 15


           BETA
              F
              ________
 F                  0


           PSI
              F
              ________
 F                 16


     PARAMETER SPECIFICATION FOR LATENT CLASS 2


           NU
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 1                  1             2             3             4             5


           LAMBDA
              F
              ________
 Y1                 0
 Y2                 6
 Y3                 7
 Y4                 8
 Y5                 9


           THETA
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 Y1                10
 Y2                 0            11
 Y3                 0             0            12
 Y4                 0             0             0            13
 Y5                 0             0             0             0            14


           ALPHA
              F
              ________
 1                  0


           BETA
              F
              ________
 F                  0


           PSI
              F
              ________
 F                 16


     PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1                 17             0


     STARTING VALUES FOR LATENT CLASS 1


           NU
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           LAMBDA
              F
              ________
 Y1             1.000
 Y2             0.750
 Y3             0.750
 Y4             0.750
 Y5             0.750


           THETA
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 Y1             0.250
 Y2             0.000         0.250
 Y3             0.000         0.000         0.250
 Y4             0.000         0.000         0.000         0.250
 Y5             0.000         0.000         0.000         0.000         0.250


           ALPHA
              F
              ________
 1              2.000


           BETA
              F
              ________
 F              0.000


           PSI
              F
              ________
 F              1.000


     STARTING VALUES FOR LATENT CLASS 2


           NU
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           LAMBDA
              F
              ________
 Y1             1.000
 Y2             0.750
 Y3             0.750
 Y4             0.750
 Y5             0.750


           THETA
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 Y1             0.250
 Y2             0.000         0.250
 Y3             0.000         0.000         0.250
 Y4             0.000         0.000         0.000         0.250
 Y5             0.000         0.000         0.000         0.000         0.250


           ALPHA
              F
              ________
 1              0.000


           BETA
              F
              ________
 F              0.000


           PSI
              F
              ________
 F              1.000


     STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1              0.000         0.000


     POPULATION VALUES FOR LATENT CLASS 1


           NU
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           LAMBDA
              F
              ________
 Y1             1.000
 Y2             0.750
 Y3             0.750
 Y4             0.750
 Y5             0.750


           THETA
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 Y1             0.250
 Y2             0.000         0.250
 Y3             0.000         0.000         0.250
 Y4             0.000         0.000         0.000         0.250
 Y5             0.000         0.000         0.000         0.000         0.250


           ALPHA
              F
              ________
 1              2.000


           BETA
              F
              ________
 F              0.000


           PSI
              F
              ________
 F              1.000


     POPULATION VALUES FOR LATENT CLASS 2


           NU
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           LAMBDA
              F
              ________
 Y1             1.000
 Y2             0.750
 Y3             0.750
 Y4             0.750
 Y5             0.750


           THETA
              Y1            Y2            Y3            Y4            Y5
              ________      ________      ________      ________      ________
 Y1             0.250
 Y2             0.000         0.250
 Y3             0.000         0.000         0.250
 Y4             0.000         0.000         0.000         0.250
 Y5             0.000         0.000         0.000         0.000         0.250


           ALPHA
              F
              ________
 1              0.000


           BETA
              F
              ________
 F              0.000


           PSI
              F
              ________
 F              1.000


     POPULATION VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1              0.000         0.000


TECHNICAL 8 OUTPUT


  TECHNICAL 8 OUTPUT FOR REPLICATION 1


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.26527714D+04    0.0000000    0.0000000    244.011   255.989    EM
     2 -0.26433500D+04    9.4214256    0.0035515    243.552   256.448    EM
     3 -0.26433146D+04    0.0354355    0.0000134    243.130   256.870    EM
     4 -0.26432910D+04    0.0235631    0.0000089    242.742   257.258    EM
     5 -0.26432743D+04    0.0167419    0.0000063    242.382   257.618    EM
     6 -0.26432622D+04    0.0120951    0.0000046    242.048   257.952    EM
     7 -0.26432533D+04    0.0088672    0.0000034    241.737   258.263    EM
     8 -0.26432467D+04    0.0065878    0.0000025    241.448   258.552    EM
     9 -0.26432417D+04    0.0049546    0.0000019    241.178   258.822    EM
    10 -0.26432380D+04    0.0037692    0.0000014    240.925   259.075    EM
    11 -0.26432351D+04    0.0028988    0.0000011    240.689   259.311    EM
    12 -0.26432328D+04    0.0022527    0.0000009    240.467   259.533    EM
    13 -0.26432311D+04    0.0017683    0.0000007    240.259   259.741    EM
    14 -0.26432297D+04    0.0014017    0.0000005    240.064   259.936    EM
    15 -0.26432285D+04    0.0011215    0.0000004    239.882   260.118    EM
    16 -0.26432276D+04    0.0009054    0.0000003    239.710   260.290    EM
    17 -0.26432269D+04    0.0007374    0.0000003    239.548   260.452    EM
    18 -0.26432263D+04    0.0006055    0.0000002    239.397   260.603    EM
    19 -0.26432258D+04    0.0005010    0.0000002    239.254   260.746    EM
    20 -0.26432254D+04    0.0004177    0.0000002    239.120   260.880    EM
    21 -0.26432250D+04    0.0003505    0.0000001    238.994   261.006    EM
    22 -0.26432247D+04    0.0002960    0.0000001    238.876   261.124    EM
    23 -0.26432245D+04    0.0002514    0.0000001    238.764   261.236    EM
    24 -0.26432243D+04    0.0002148    0.0000001    238.659   261.341    EM
    25 -0.26432241D+04    0.0001842    0.0000001    238.561   261.439    EM
    26 -0.26432239D+04    0.0001586    0.0000001    238.468   261.532    EM
    27 -0.26432238D+04    0.0001371    0.0000001    238.380   261.620    EM
    28 -0.26432237D+04    0.0001189    0.0000000    238.298   261.702    EM
    29 -0.26432236D+04    0.0001034    0.0000000    238.221   261.779    EM
    30 -0.26432235D+04    0.0000902    0.0000000    238.148   261.852    EM
    31 -0.26432234D+04    0.0000788    0.0000000    238.080   261.920    EM
    32 -0.26432233D+04    0.0000690    0.0000000    238.015   261.985    EM
    33 -0.26432233D+04    0.0000605    0.0000000    237.954   262.046    EM
    34 -0.26432232D+04    0.0000531    0.0000000    237.897   262.103    EM
    35 -0.26432228D+04    0.0003658    0.0000001    236.886   263.114    FS
    36 -0.26432228D+04    0.0000270    0.0000000    237.059   262.941    FS
    37 -0.26432228D+04    0.0000045    0.0000000    236.965   263.035    FS
    38 -0.26432228D+04    0.0000011    0.0000000    236.998   263.002    FS
    39 -0.26432228D+04    0.0000003    0.0000000    236.980   263.020    FS
    40 -0.26432228D+04    0.0000001    0.0000000    236.988   263.012    FS
    41 -0.26432228D+04    0.0000000    0.0000000    236.984   263.016    FS
    42 -0.26432228D+04    0.0000000    0.0000000    236.986   263.014    FS
    43 -0.26432228D+04    0.0000000    0.0000000    236.985   263.015    FS
    44 -0.26432228D+04    0.0000000    0.0000000    236.986   263.014    FS
    45 -0.26432228D+04    0.0000000    0.0000000    236.985   263.015    FS


TECHNICAL 9 OUTPUT

  Error messages for each replication (if any)



SAVEDATA INFORMATION

  Order of variables

    Y1
    Y2
    Y3
    Y4
    Y5
    C

  Save file
    ex7.17.dat

  Save file format           Free
  Save file record length    10000


     Beginning Time:  17:18:32
        Ending Time:  17:18:32
       Elapsed Time:  00:00:00



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2014 Muthen & Muthen

Back to examples