Mplus VERSION 7.2
MUTHEN & MUTHEN
05/07/2014   2:04 PM

INPUT INSTRUCTIONS

  title:	this is an example of a mixture regression
  	analysis for a count variable using a
  	zero-inflated Poisson model using
  	automatic starting values with random
  	starts

  montecarlo:			
  	names = u x1 x2;
  	seed = 53487;
  	nobs = 500;
  	nreps = 1;
  	generate = u(ci);
  	count = u(i);
  	genclasses = c(2);
  	classes = c(2);
  	save = ex7.2.dat;

  analysis:
  	type = mixture;
  	
  model population:
  	
  	%overall%
  	
  	[x1-x2@0];
  	x1-x2@1;

  	u on x1*.5 x2*.3;
  	[u*1];
  	u#1 on x1*2 x2*1;
  	[u#1*-1] ;

  	c#1 on x1*1;

  	%c#1%
  	[u*2];
  	u on x2*0;

  model:

  	%overall%

  	u on x1*.5 x2*.3;
  	[u*1];
  	u#1 on x1*2 x2*1;
  	[u#1*-1] (1);

  	c#1 on x1*1;

  	%c#1%
  	[u*2];
  	u on x2*0;
  	

  output:
  	tech8;



INPUT READING TERMINATED NORMALLY



this is an example of a mixture regression
analysis for a count variable using a
zero-inflated Poisson model using
automatic starting values with random
starts

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         500

Number of replications
    Requested                                                    1
    Completed                                                    1
Value of seed                                                53487

Number of dependent variables                                    1
Number of independent variables                                  2
Number of continuous latent variables                            0
Number of categorical latent variables                           1

Observed dependent variables

  Count
   U

Observed independent variables
   X1          X2

Categorical latent variables
   C


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-06
    Relative loglikelihood change                        0.100D-06
    Derivative                                           0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA


SAMPLE STATISTICS FOR THE FIRST REPLICATION


     SAMPLE STATISTICS


           Means
              X1            X2
              ________      ________
 1              0.020        -0.022


           Covariances
              X1            X2
              ________      ________
 X1             1.070
 X2             0.043         0.974


           Correlations
              X1            X2
              ________      ________
 X1             1.000
 X2             0.042         1.000




MODEL FIT INFORMATION

Number of Free Parameters                       10

Loglikelihood

    H0 Value

        Mean                              -902.299
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         -902.299       -902.299
           0.980       0.000         -902.299       -902.299
           0.950       0.000         -902.299       -902.299
           0.900       0.000         -902.299       -902.299
           0.800       0.000         -902.299       -902.299
           0.700       0.000         -902.299       -902.299
           0.500       0.000         -902.299       -902.299
           0.300       0.000         -902.299       -902.299
           0.200       0.000         -902.299       -902.299
           0.100       0.000         -902.299       -902.299
           0.050       0.000         -902.299       -902.299
           0.020       0.000         -902.299       -902.299
           0.010       0.000         -902.299       -902.299

Information Criteria

    Akaike (AIC)

        Mean                              1824.598
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         1824.598       1824.598
           0.980       0.000         1824.598       1824.598
           0.950       0.000         1824.598       1824.598
           0.900       0.000         1824.598       1824.598
           0.800       0.000         1824.598       1824.598
           0.700       0.000         1824.598       1824.598
           0.500       0.000         1824.598       1824.598
           0.300       0.000         1824.598       1824.598
           0.200       0.000         1824.598       1824.598
           0.100       0.000         1824.598       1824.598
           0.050       0.000         1824.598       1824.598
           0.020       0.000         1824.598       1824.598
           0.010       0.000         1824.598       1824.598

    Bayesian (BIC)

        Mean                              1866.744
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         1866.744       1866.744
           0.980       0.000         1866.744       1866.744
           0.950       0.000         1866.744       1866.744
           0.900       0.000         1866.744       1866.744
           0.800       0.000         1866.744       1866.744
           0.700       0.000         1866.744       1866.744
           0.500       0.000         1866.744       1866.744
           0.300       0.000         1866.744       1866.744
           0.200       0.000         1866.744       1866.744
           0.100       0.000         1866.744       1866.744
           0.050       0.000         1866.744       1866.744
           0.020       0.000         1866.744       1866.744
           0.010       0.000         1866.744       1866.744

    Sample-Size Adjusted BIC (n* = (n + 2) / 24)

        Mean                              1835.003
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         1835.003       1835.003
           0.980       0.000         1835.003       1835.003
           0.950       0.000         1835.003       1835.003
           0.900       0.000         1835.003       1835.003
           0.800       0.000         1835.003       1835.003
           0.700       0.000         1835.003       1835.003
           0.500       0.000         1835.003       1835.003
           0.300       0.000         1835.003       1835.003
           0.200       0.000         1835.003       1835.003
           0.100       0.000         1835.003       1835.003
           0.050       0.000         1835.003       1835.003
           0.020       0.000         1835.003       1835.003
           0.010       0.000         1835.003       1835.003



FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL

    Latent
   Classes

       1        226.59823          0.45320
       2        273.40177          0.54680


FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS
BASED ON ESTIMATED POSTERIOR PROBABILITIES

    Latent
   Classes

       1        226.59822          0.45320
       2        273.40178          0.54680


CLASSIFICATION QUALITY

     Entropy                         0.409


CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

    Latent
   Classes

       1              238          0.47600
       2              262          0.52400


Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)

           1        2

    1   0.767    0.233
    2   0.168    0.832


Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)

           1        2

    1   0.806    0.194
    2   0.203    0.797


Logits for the Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)

              1        2

    1      1.422    0.000
    2     -1.369    0.000


MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff
Latent Class 1

 U        ON
  X1                  0.500     0.5615     0.0000     0.0544     0.0038 1.000 1.000
  X2                  0.000     0.0248     0.0000     0.0386     0.0006 1.000 0.000

 U#1      ON
  X1                  2.000     1.6538     0.0000     0.2092     0.1199 1.000 1.000
  X2                  1.000     0.8059     0.0000     0.1433     0.0377 1.000 1.000

 Intercepts
  U#1                -1.000    -0.8498     0.0000     0.1654     0.0226 1.000 1.000
  U                   2.000     2.0786     0.0000     0.0544     0.0062 1.000 1.000

Latent Class 2

 U        ON
  X1                  0.500     0.5615     0.0000     0.0544     0.0038 1.000 1.000
  X2                  0.300     0.3827     0.0000     0.0671     0.0068 1.000 1.000

 U#1      ON
  X1                  2.000     1.6538     0.0000     0.2092     0.1199 1.000 1.000
  X2                  1.000     0.8059     0.0000     0.1433     0.0377 1.000 1.000

 Intercepts
  U#1                -1.000    -0.8498     0.0000     0.1654     0.0226 1.000 1.000
  U                   1.000     1.0274     0.0000     0.0766     0.0008 1.000 1.000

Categorical Latent Variables

 C#1        ON
  X1                  1.000     0.9181     0.0000     0.2756     0.0067 1.000 1.000

 Intercepts
  C#1                 0.000    -0.2471     0.0000     0.2124     0.0611 1.000 0.000


QUALITY OF NUMERICAL RESULTS

     Average Condition Number for the Information Matrix      0.837E-02
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION FOR LATENT CLASS 1


           NU
              X1            X2
              ________      ________
 1                  0             0


           LAMBDA
              X1            X2
              ________      ________
 X1                 0             0
 X2                 0             0


           THETA
              X1            X2
              ________      ________
 X1                 0
 X2                 0             0


           ALPHA
              X1            X2
              ________      ________
 1                  0             0


           BETA
              X1            X2
              ________      ________
 X1                 0             0
 X2                 0             0


           PSI
              X1            X2
              ________      ________
 X1                 0
 X2                 0             0


     PARAMETER SPECIFICATION FOR LATENT CLASS 2


           NU
              X1            X2
              ________      ________
 1                  0             0


           LAMBDA
              X1            X2
              ________      ________
 X1                 0             0
 X2                 0             0


           THETA
              X1            X2
              ________      ________
 X1                 0
 X2                 0             0


           ALPHA
              X1            X2
              ________      ________
 1                  0             0


           BETA
              X1            X2
              ________      ________
 X1                 0             0
 X2                 0             0


           PSI
              X1            X2
              ________      ________
 X1                 0
 X2                 0             0


     PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1                  1             0


           GAMMA(C)
              X1            X2
              ________      ________
 C#1                2             0
 C#2                0             0


     PARAMETER SPECIFICATION FOR THE CENSORED/NOMINAL/COUNT MODEL PART


           NU(P) FOR LATENT CLASS 1
              U#1           U
              ________      ________
 1                  3             4


           KAPPA(P) FOR LATENT CLASS 1
              X1            X2
              ________      ________
 U#1                5             6
 U                  7             8


           NU(P) FOR LATENT CLASS 2
              U#1           U
              ________      ________
 1                  3             9


           KAPPA(P) FOR LATENT CLASS 2
              X1            X2
              ________      ________
 U#1                5             6
 U                  7            10


     STARTING VALUES FOR LATENT CLASS 1


           NU
              X1            X2
              ________      ________
 1              0.000         0.000


           LAMBDA
              X1            X2
              ________      ________
 X1             1.000         0.000
 X2             0.000         1.000


           THETA
              X1            X2
              ________      ________
 X1             0.000
 X2             0.000         0.000


           ALPHA
              X1            X2
              ________      ________
 1              0.000         0.000


           BETA
              X1            X2
              ________      ________
 X1             0.000         0.000
 X2             0.000         0.000


           PSI
              X1            X2
              ________      ________
 X1             0.500
 X2             0.000         0.500


     STARTING VALUES FOR LATENT CLASS 2


           NU
              X1            X2
              ________      ________
 1              0.000         0.000


           LAMBDA
              X1            X2
              ________      ________
 X1             1.000         0.000
 X2             0.000         1.000


           THETA
              X1            X2
              ________      ________
 X1             0.000
 X2             0.000         0.000


           ALPHA
              X1            X2
              ________      ________
 1              0.000         0.000


           BETA
              X1            X2
              ________      ________
 X1             0.000         0.000
 X2             0.000         0.000


           PSI
              X1            X2
              ________      ________
 X1             0.500
 X2             0.000         0.500


     STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1              0.000         0.000


           GAMMA(C)
              X1            X2
              ________      ________
 C#1            1.000         0.000
 C#2            0.000         0.000


     STARTING VALUES FOR THE CENSORED/NOMINAL/COUNT MODEL PART


           NU(P) FOR LATENT CLASS 1
              U#1           U
              ________      ________
 1             -1.000         2.000


           KAPPA(P) FOR LATENT CLASS 1
              X1            X2
              ________      ________
 U#1            2.000         1.000
 U              0.500         0.000


           NU(P) FOR LATENT CLASS 2
              U#1           U
              ________      ________
 1             -1.000         1.000


           KAPPA(P) FOR LATENT CLASS 2
              X1            X2
              ________      ________
 U#1            2.000         1.000
 U              0.500         0.300


     POPULATION VALUES FOR LATENT CLASS 1


           NU
              X1            X2
              ________      ________
 1              0.000         0.000


           LAMBDA
              X1            X2
              ________      ________
 X1             1.000         0.000
 X2             0.000         1.000


           THETA
              X1            X2
              ________      ________
 X1             0.000
 X2             0.000         0.000


           ALPHA
              X1            X2
              ________      ________
 1              0.000         0.000


           BETA
              X1            X2
              ________      ________
 X1             0.000         0.000
 X2             0.000         0.000


           PSI
              X1            X2
              ________      ________
 X1             1.000
 X2             0.000         1.000


     POPULATION VALUES FOR LATENT CLASS 2


           NU
              X1            X2
              ________      ________
 1              0.000         0.000


           LAMBDA
              X1            X2
              ________      ________
 X1             1.000         0.000
 X2             0.000         1.000


           THETA
              X1            X2
              ________      ________
 X1             0.000
 X2             0.000         0.000


           ALPHA
              X1            X2
              ________      ________
 1              0.000         0.000


           BETA
              X1            X2
              ________      ________
 X1             0.000         0.000
 X2             0.000         0.000


           PSI
              X1            X2
              ________      ________
 X1             1.000
 X2             0.000         1.000


     POPULATION VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1              0.000         0.000


           GAMMA(C)
              X1            X2
              ________      ________
 C#1            1.000         0.000
 C#2            0.000         0.000


     POPULATION VALUES FOR THE CENSORED/NOMINAL/COUNT MODEL PART


           NU(P) FOR LATENT CLASS 1
              U#1           U
              ________      ________
 1             -1.000         2.000


           KAPPA(P) FOR LATENT CLASS 1
              X1            X2
              ________      ________
 U#1            2.000         1.000
 U              0.500         0.000


           NU(P) FOR LATENT CLASS 2
              U#1           U
              ________      ________
 1             -1.000         1.000


           KAPPA(P) FOR LATENT CLASS 2
              X1            X2
              ________      ________
 U#1            2.000         1.000
 U              0.500         0.300


TECHNICAL 8 OUTPUT


  TECHNICAL 8 OUTPUT FOR REPLICATION 1


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.90883707D+03    0.0000000    0.0000000    247.900   252.100    EM
     2 -0.90323047D+03    5.6065950    0.0061690    244.764   255.236    EM
     3 -0.90279340D+03    0.4370704    0.0004839    241.508   258.492    EM
     4 -0.90261232D+03    0.1810828    0.0002006    238.795   261.205    EM
     5 -0.90250313D+03    0.1091911    0.0001210    236.580   263.420    EM
     6 -0.90243313D+03    0.0699986    0.0000776    234.777   265.223    EM
     7 -0.90238752D+03    0.0456139    0.0000505    233.307   266.693    EM
     8 -0.90235759D+03    0.0299221    0.0000332    232.107   267.893    EM
     9 -0.90233789D+03    0.0197072    0.0000218    231.126   268.874    EM
    10 -0.90232487D+03    0.0130193    0.0000144    230.324   269.676    EM
    11 -0.90231624D+03    0.0086239    0.0000096    229.667   270.333    EM
    12 -0.90231052D+03    0.0057265    0.0000063    229.128   270.872    EM
    13 -0.90230671D+03    0.0038115    0.0000042    228.686   271.314    EM
    14 -0.90230416D+03    0.0025429    0.0000028    228.323   271.677    EM
    15 -0.90230246D+03    0.0017006    0.0000019    228.024   271.976    EM
    16 -0.90230132D+03    0.0011401    0.0000013    227.779   272.221    EM
    17 -0.90230056D+03    0.0007664    0.0000008    227.576   272.424    EM
    18 -0.90230004D+03    0.0005166    0.0000006    227.410   272.590    EM
    19 -0.90229969D+03    0.0003493    0.0000004    227.272   272.728    EM
    20 -0.90229945D+03    0.0002369    0.0000003    227.159   272.841    EM
    21 -0.90229929D+03    0.0001612    0.0000002    227.065   272.935    EM
    22 -0.90229918D+03    0.0001102    0.0000001    226.987   273.013    EM
    23 -0.90229911D+03    0.0000756    0.0000001    226.922   273.078    EM
    24 -0.90229905D+03    0.0000521    0.0000001    226.869   273.131    EM
    25 -0.90229902D+03    0.0000360    0.0000000    226.825   273.175    EM
    26 -0.90229899D+03    0.0000250    0.0000000    226.788   273.212    EM
    27 -0.90229898D+03    0.0000175    0.0000000    226.757   273.243    EM
    28 -0.90229896D+03    0.0000123    0.0000000    226.732   273.268    EM
    29 -0.90229895D+03    0.0000087    0.0000000    226.710   273.290    EM
    30 -0.90229895D+03    0.0000062    0.0000000    226.693   273.307    EM
    31 -0.90229894D+03    0.0000044    0.0000000    226.678   273.322    EM
    32 -0.90229894D+03    0.0000031    0.0000000    226.665   273.335    EM
    33 -0.90229894D+03    0.0000023    0.0000000    226.655   273.345    EM
    34 -0.90229894D+03    0.0000016    0.0000000    226.646   273.354    EM
    35 -0.90229894D+03    0.0000012    0.0000000    226.639   273.361    EM
    36 -0.90229893D+03    0.0000033    0.0000000    226.597   273.403    FS
    37 -0.90229893D+03    0.0000000    0.0000000    226.599   273.401    FS
    38 -0.90229893D+03    0.0000000    0.0000000    226.598   273.402    FS
    39 -0.90229893D+03    0.0000000    0.0000000    226.598   273.402    FS


SAVEDATA INFORMATION

  Order of variables

    U
    X1
    X2
    C

  Save file
    ex7.2.dat

  Save file format           Free
  Save file record length    10000


     Beginning Time:  14:04:58
        Ending Time:  14:04:58
       Elapsed Time:  00:00:00



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2014 Muthen & Muthen

Back to examples