Mplus VERSION 7
MUTHEN & MUTHEN
09/22/2012  10:03 PM

INPUT INSTRUCTIONS

  TITLE:	this is an example of a zero-inflated
  		Poisson regression carried out as a two-
  		class model
  MONTECARLO:			
  		NAMES = u1 x1 x3;
  		NOBSERVATIONS = 500;
  		NREPS = 1;
  		SEED = 53487;
  		GENCLASSES = c(2);
  		CLASSES = c(2);
  		GENERATE = u1(c);
  		COUNT = u1;
  		SAVE = ex7.25.dat;	
  MODEL POPULATION:
  		%OVERALL%
  		[x1-x3@0];
  		x1-x3@1;
  		[c#1*-1];
  		c#1 ON x1*2 x3*1;
  		%c#1%
  		[u1@-15];
  		u1 ON x1@0 x3@0;
  		%c#2%
  		[u1*1];
  		u1 ON x1*.5 x3*.3;
  ANALYSIS:
  		TYPE = MIXTURE;
  MODEL:
  		%OVERALL%
  		[c#1*-1];
  		c#1 ON x1*2 x3*1;
  		%c#1%
  		[u1@-15];
  		u1 ON x1@0 x3@0;
  		%c#2%
  		[u1*1];
  		u1 ON x1*.5 x3*.3;
  OUTPUT:	TECH8;



INPUT READING TERMINATED NORMALLY



this is an example of a zero-inflated
Poisson regression carried out as a two-
class model

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         500

Number of replications
    Requested                                                    1
    Completed                                                    1
Value of seed                                                53487

Number of dependent variables                                    1
Number of independent variables                                  2
Number of continuous latent variables                            0
Number of categorical latent variables                           1

Observed dependent variables

  Count
   U1

Observed independent variables
   X1          X3

Categorical latent variables
   C


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-06
    Relative loglikelihood change                        0.100D-06
    Derivative                                           0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA


SAMPLE STATISTICS FOR THE FIRST REPLICATION


     SAMPLE STATISTICS


           Means
              X1            X3
              ________      ________
 1              0.020        -0.022


           Covariances
              X1            X3
              ________      ________
 X1             1.072
 X3             0.043         0.975


           Correlations
              X1            X3
              ________      ________
 X1             1.000
 X3             0.042         1.000




MODEL FIT INFORMATION

Number of Free Parameters                        6

Loglikelihood

    H0 Value

        Mean                              -724.663
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         -724.663       -724.663
           0.980       0.000         -724.663       -724.663
           0.950       0.000         -724.663       -724.663
           0.900       0.000         -724.663       -724.663
           0.800       0.000         -724.663       -724.663
           0.700       0.000         -724.663       -724.663
           0.500       0.000         -724.663       -724.663
           0.300       0.000         -724.663       -724.663
           0.200       0.000         -724.663       -724.663
           0.100       0.000         -724.663       -724.663
           0.050       0.000         -724.663       -724.663
           0.020       0.000         -724.663       -724.663
           0.010       0.000         -724.663       -724.663

Information Criteria

    Akaike (AIC)

        Mean                              1461.327
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         1461.327       1461.327
           0.980       0.000         1461.327       1461.327
           0.950       0.000         1461.327       1461.327
           0.900       0.000         1461.327       1461.327
           0.800       0.000         1461.327       1461.327
           0.700       0.000         1461.327       1461.327
           0.500       0.000         1461.327       1461.327
           0.300       0.000         1461.327       1461.327
           0.200       0.000         1461.327       1461.327
           0.100       0.000         1461.327       1461.327
           0.050       0.000         1461.327       1461.327
           0.020       0.000         1461.327       1461.327
           0.010       0.000         1461.327       1461.327

    Bayesian (BIC)

        Mean                              1486.614
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         1486.614       1486.614
           0.980       0.000         1486.614       1486.614
           0.950       0.000         1486.614       1486.614
           0.900       0.000         1486.614       1486.614
           0.800       0.000         1486.614       1486.614
           0.700       0.000         1486.614       1486.614
           0.500       0.000         1486.614       1486.614
           0.300       0.000         1486.614       1486.614
           0.200       0.000         1486.614       1486.614
           0.100       0.000         1486.614       1486.614
           0.050       0.000         1486.614       1486.614
           0.020       0.000         1486.614       1486.614
           0.010       0.000         1486.614       1486.614

    Sample-Size Adjusted BIC (n* = (n + 2) / 24)

        Mean                              1467.570
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         1467.570       1467.570
           0.980       0.000         1467.570       1467.570
           0.950       0.000         1467.570       1467.570
           0.900       0.000         1467.570       1467.570
           0.800       0.000         1467.570       1467.570
           0.700       0.000         1467.570       1467.570
           0.500       0.000         1467.570       1467.570
           0.300       0.000         1467.570       1467.570
           0.200       0.000         1467.570       1467.570
           0.100       0.000         1467.570       1467.570
           0.050       0.000         1467.570       1467.570
           0.020       0.000         1467.570       1467.570
           0.010       0.000         1467.570       1467.570



FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL

    Latent
   Classes

       1        173.59129          0.34718
       2        326.40871          0.65282


FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS
BASED ON ESTIMATED POSTERIOR PROBABILITIES

    Latent
   Classes

       1        173.59106          0.34718
       2        326.40894          0.65282


CLASSIFICATION QUALITY

     Entropy                         0.896


CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

    Latent
   Classes

       1              177          0.35400
       2              323          0.64600


Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)

           1        2

    1   0.947    0.053
    2   0.019    0.981


MODEL RESULTS

                           ESTIMATES              S. E.     M. S. E.  95%  % Sig
              Population   Average   Std. Dev.   Average             Cover Coeff
Latent Class 1

 U1       ON
  X1               0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  X3               0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000

 Intercepts
  U1             -15.000   -15.0000     0.0000     0.0000     0.0000 1.000 0.000

Latent Class 2

 U1       ON
  X1               0.500     0.6338     0.0000     0.0494     0.0179 0.000 1.000
  X3               0.300     0.2867     0.0000     0.0356     0.0002 1.000 1.000

 Intercepts
  U1               1.000     1.0420     0.0000     0.0400     0.0018 1.000 1.000

Categorical Latent Variables

 C#1        ON
  X1               2.000     2.1891     0.0000     0.2913     0.0358 1.000 1.000
  X3               1.000     0.9605     0.0000     0.1722     0.0016 1.000 1.000

 Intercepts
  C#1             -1.000    -1.2379     0.0000     0.2244     0.0566 1.000 1.000


QUALITY OF NUMERICAL RESULTS

     Average Condition Number for the Information Matrix      0.120E-01
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION FOR LATENT CLASS 1


           NU
              X1            X3
              ________      ________
 1                  0             0


           LAMBDA
              X1            X3
              ________      ________
 X1                 0             0
 X3                 0             0


           THETA
              X1            X3
              ________      ________
 X1                 0
 X3                 0             0


           ALPHA
              X1            X3
              ________      ________
 1                  0             0


           BETA
              X1            X3
              ________      ________
 X1                 0             0
 X3                 0             0


           PSI
              X1            X3
              ________      ________
 X1                 0
 X3                 0             0


     PARAMETER SPECIFICATION FOR LATENT CLASS 2


           NU
              X1            X3
              ________      ________
 1                  0             0


           LAMBDA
              X1            X3
              ________      ________
 X1                 0             0
 X3                 0             0


           THETA
              X1            X3
              ________      ________
 X1                 0
 X3                 0             0


           ALPHA
              X1            X3
              ________      ________
 1                  0             0


           BETA
              X1            X3
              ________      ________
 X1                 0             0
 X3                 0             0


           PSI
              X1            X3
              ________      ________
 X1                 0
 X3                 0             0


     PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1                  1             0


           GAMMA(C)
              X1            X3
              ________      ________
 C#1                2             3
 C#2                0             0


     PARAMETER SPECIFICATION FOR THE CENSORED/NOMINAL/COUNT MODEL PART


           NU(P) FOR LATENT CLASS 1
              U1#1          U1
              ________      ________
 1                  0             0


           KAPPA(P) FOR LATENT CLASS 1
              X1            X3
              ________      ________
 U1#1               0             0
 U1                 0             0


           NU(P) FOR LATENT CLASS 2
              U1#1          U1
              ________      ________
 1                  0             4


           KAPPA(P) FOR LATENT CLASS 2
              X1            X3
              ________      ________
 U1#1               0             0
 U1                 5             6


     STARTING VALUES FOR LATENT CLASS 1


           NU
              X1            X3
              ________      ________
 1              0.000         0.000


           LAMBDA
              X1            X3
              ________      ________
 X1             1.000         0.000
 X3             0.000         1.000


           THETA
              X1            X3
              ________      ________
 X1             0.000
 X3             0.000         0.000


           ALPHA
              X1            X3
              ________      ________
 1              0.000         0.000


           BETA
              X1            X3
              ________      ________
 X1             0.000         0.000
 X3             0.000         0.000


           PSI
              X1            X3
              ________      ________
 X1             0.500
 X3             0.000         0.500


     STARTING VALUES FOR LATENT CLASS 2


           NU
              X1            X3
              ________      ________
 1              0.000         0.000


           LAMBDA
              X1            X3
              ________      ________
 X1             1.000         0.000
 X3             0.000         1.000


           THETA
              X1            X3
              ________      ________
 X1             0.000
 X3             0.000         0.000


           ALPHA
              X1            X3
              ________      ________
 1              0.000         0.000


           BETA
              X1            X3
              ________      ________
 X1             0.000         0.000
 X3             0.000         0.000


           PSI
              X1            X3
              ________      ________
 X1             0.500
 X3             0.000         0.500


     STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1             -1.000         0.000


           GAMMA(C)
              X1            X3
              ________      ________
 C#1            2.000         1.000
 C#2            0.000         0.000


     STARTING VALUES FOR THE CENSORED/NOMINAL/COUNT MODEL PART


           NU(P) FOR LATENT CLASS 1
              U1#1          U1
              ________      ________
 1            -20.000       -15.000


           KAPPA(P) FOR LATENT CLASS 1
              X1            X3
              ________      ________
 U1#1           0.000         0.000
 U1             0.000         0.000


           NU(P) FOR LATENT CLASS 2
              U1#1          U1
              ________      ________
 1            -20.000         1.000


           KAPPA(P) FOR LATENT CLASS 2
              X1            X3
              ________      ________
 U1#1           0.000         0.000
 U1             0.500         0.300


     POPULATION VALUES FOR LATENT CLASS 1


           NU
              X1            X3
              ________      ________
 1              0.000         0.000


           LAMBDA
              X1            X3
              ________      ________
 X1             1.000         0.000
 X3             0.000         1.000


           THETA
              X1            X3
              ________      ________
 X1             0.000
 X3             0.000         0.000


           ALPHA
              X1            X3
              ________      ________
 1              0.000         0.000


           BETA
              X1            X3
              ________      ________
 X1             0.000         0.000
 X3             0.000         0.000


           PSI
              X1            X3
              ________      ________
 X1             1.000
 X3             0.000         1.000


     POPULATION VALUES FOR LATENT CLASS 2


           NU
              X1            X3
              ________      ________
 1              0.000         0.000


           LAMBDA
              X1            X3
              ________      ________
 X1             1.000         0.000
 X3             0.000         1.000


           THETA
              X1            X3
              ________      ________
 X1             0.000
 X3             0.000         0.000


           ALPHA
              X1            X3
              ________      ________
 1              0.000         0.000


           BETA
              X1            X3
              ________      ________
 X1             0.000         0.000
 X3             0.000         0.000


           PSI
              X1            X3
              ________      ________
 X1             1.000
 X3             0.000         1.000


     POPULATION VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1             -1.000         0.000


           GAMMA(C)
              X1            X3
              ________      ________
 C#1            2.000         1.000
 C#2            0.000         0.000


     POPULATION VALUES FOR THE CENSORED/NOMINAL/COUNT MODEL PART


           NU(P) FOR LATENT CLASS 1
              U1#1          U1
              ________      ________
 1            -20.000       -15.000


           KAPPA(P) FOR LATENT CLASS 1
              X1            X3
              ________      ________
 U1#1           0.000         0.000
 U1             0.000         0.000


           NU(P) FOR LATENT CLASS 2
              U1#1          U1
              ________      ________
 1            -20.000         1.000


           KAPPA(P) FOR LATENT CLASS 2
              X1            X3
              ________      ________
 U1#1           0.000         0.000
 U1             0.500         0.300


TECHNICAL 8 OUTPUT


  TECHNICAL 8 OUTPUT FOR REPLICATION 1


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.73014011D+03    0.0000000    0.0000000    176.674   323.326    EM
     2 -0.72494737D+03    5.1927433    0.0071120    175.852   324.148    EM
     3 -0.72474129D+03    0.2060785    0.0002843    174.937   325.063    EM
     4 -0.72468796D+03    0.0533283    0.0000736    174.375   325.625    EM
     5 -0.72467135D+03    0.0166102    0.0000229    174.043   325.957    EM
     6 -0.72466597D+03    0.0053806    0.0000074    173.850   326.150    EM
     7 -0.72466422D+03    0.0017549    0.0000024    173.739   326.261    EM
     8 -0.72466364D+03    0.0005723    0.0000008    173.676   326.324    EM
     9 -0.72466346D+03    0.0001865    0.0000003    173.639   326.361    EM
    10 -0.72466340D+03    0.0000607    0.0000001    173.618   326.382    EM
    11 -0.72466338D+03    0.0000198    0.0000000    173.607   326.393    EM
    12 -0.72466337D+03    0.0000064    0.0000000    173.600   326.400    EM
    13 -0.72466337D+03    0.0000021    0.0000000    173.596   326.404    EM
    14 -0.72466337D+03    0.0000007    0.0000000    173.594   326.406    EM
    15 -0.72466337D+03    0.0000002    0.0000000    173.592   326.408    EM
    16 -0.72466337D+03    0.0000001    0.0000000    173.592   326.408    EM
    17 -0.72466337D+03    0.0000000    0.0000000    173.591   326.409    EM
    18 -0.72466337D+03    0.0000000    0.0000000    173.591   326.409    EM


SAVEDATA INFORMATION

  Order of variables

    U1
    X1
    X3
    C

  Save file
    ex7.25.dat

  Save file format           Free
  Save file record length    10000


     Beginning Time:  22:03:07
        Ending Time:  22:03:07
       Elapsed Time:  00:00:00



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2012 Muthen & Muthen

Back to examples