Mplus VERSION 7
MUTHEN & MUTHEN
09/22/2012  11:12 PM

INPUT INSTRUCTIONS

  TITLE:	this is an example of a GMM with a
  	categorical distal outcome using automatic
  	starting values and random starts
  DATA:	FILE IS ex8.6.dat;
  VARIABLE:	NAMES ARE u y1-y4 x c;
  	USEV = y1-y4 u x;
  	CLASSES = c(2);
  	CATEGORICAL = u;
  ANALYSIS:	TYPE = MIXTURE;
  MODEL:	
  	%OVERALL%
  	i s | y1@0 y2@1 y3@2 y4@3;
  	i s ON x;
  	c ON x;
  OUTPUT:	TECH1 TECH8;



INPUT READING TERMINATED NORMALLY



this is an example of a GMM with a
categorical distal outcome using automatic
starting values and random starts

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         500

Number of dependent variables                                    5
Number of independent variables                                  1
Number of continuous latent variables                            2
Number of categorical latent variables                           1

Observed dependent variables

  Continuous
   Y1          Y2          Y3          Y4

  Binary and ordered categorical (ordinal)
   U

Observed independent variables
   X

Continuous latent variables
   I           S

Categorical latent variables
   C


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-06
    Relative loglikelihood change                        0.100D-06
    Derivative                                           0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA
Random Starts Specifications
  Number of initial stage random starts                         20
  Number of final stage optimizations                            4
  Number of initial stage iterations                            10
  Initial stage convergence criterion                    0.100D+01
  Random starts scale                                    0.500D+01
  Random seed for generating random starts                       0
Link                                                         LOGIT

Input data file(s)
  ex8.6.dat
Input data format  FREE


UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

    U
      Category 1    0.508      254.000
      Category 2    0.492      246.000


RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES

Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:

           -3693.340  462953           7
           -3693.340  637345           19
           -3693.340  127215           9
           -3693.340  573096           20



THE BEST LOGLIKELIHOOD VALUE HAS BEEN REPLICATED.  RERUN WITH AT LEAST TWICE THE
RANDOM STARTS TO CHECK THAT THE BEST LOGLIKELIHOOD IS STILL OBTAINED AND REPLICATED.


THE MODEL ESTIMATION TERMINATED NORMALLY



MODEL FIT INFORMATION

Number of Free Parameters                       17

Loglikelihood

          H0 Value                       -3693.340
          H0 Scaling Correction Factor      0.9835
            for MLR

Information Criteria

          Akaike (AIC)                    7420.680
          Bayesian (BIC)                  7492.328
          Sample-Size Adjusted BIC        7438.369
            (n* = (n + 2) / 24)

Chi-Square Test of Model Fit for the Binary and Ordered Categorical
(Ordinal) Outcomes

          Pearson Chi-Square

          Value                              0.000
          Degrees of freedom cannot be computed for this model part.

          Likelihood Ratio Chi-Square

          Value                              0.000
          Degrees of freedom cannot be computed for this model part.



FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL

    Latent
   Classes

       1        254.71361          0.50943
       2        245.28639          0.49057


FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS
BASED ON ESTIMATED POSTERIOR PROBABILITIES

    Latent
   Classes

       1        254.71361          0.50943
       2        245.28639          0.49057


CLASSIFICATION QUALITY

     Entropy                         0.691


CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

    Latent
   Classes

       1              251          0.50200
       2              249          0.49800


Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)

           1        2

    1   0.919    0.081
    2   0.096    0.904


MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

Latent Class 1

 I        |
    Y1                 1.000      0.000    999.000    999.000
    Y2                 1.000      0.000    999.000    999.000
    Y3                 1.000      0.000    999.000    999.000
    Y4                 1.000      0.000    999.000    999.000

 S        |
    Y1                 0.000      0.000    999.000    999.000
    Y2                 1.000      0.000    999.000    999.000
    Y3                 2.000      0.000    999.000    999.000
    Y4                 3.000      0.000    999.000    999.000

 I          ON
    X                  1.014      0.095     10.628      0.000

 S          ON
    X                  0.313      0.045      6.952      0.000

 S        WITH
    I                  0.007      0.051      0.132      0.895

 Intercepts
    Y1                 0.000      0.000    999.000    999.000
    Y2                 0.000      0.000    999.000    999.000
    Y3                 0.000      0.000    999.000    999.000
    Y4                 0.000      0.000    999.000    999.000
    I                  0.063      0.147      0.426      0.670
    S                 -0.060      0.063     -0.955      0.340

 Thresholds
    U$1                1.019      0.166      6.138      0.000

 Residual Variances
    Y1                 0.608      0.072      8.425      0.000
    Y2                 0.554      0.044     12.640      0.000
    Y3                 0.433      0.051      8.490      0.000
    Y4                 0.593      0.103      5.788      0.000
    I                  1.202      0.148      8.138      0.000
    S                  0.415      0.049      8.534      0.000

Latent Class 2

 I        |
    Y1                 1.000      0.000    999.000    999.000
    Y2                 1.000      0.000    999.000    999.000
    Y3                 1.000      0.000    999.000    999.000
    Y4                 1.000      0.000    999.000    999.000

 S        |
    Y1                 0.000      0.000    999.000    999.000
    Y2                 1.000      0.000    999.000    999.000
    Y3                 2.000      0.000    999.000    999.000
    Y4                 3.000      0.000    999.000    999.000

 I          ON
    X                  1.014      0.095     10.628      0.000

 S          ON
    X                  0.313      0.045      6.952      0.000

 S        WITH
    I                  0.007      0.051      0.132      0.895

 Intercepts
    Y1                 0.000      0.000    999.000    999.000
    Y2                 0.000      0.000    999.000    999.000
    Y3                 0.000      0.000    999.000    999.000
    Y4                 0.000      0.000    999.000    999.000
    I                  1.905      0.113     16.798      0.000
    S                  1.046      0.067     15.608      0.000

 Thresholds
    U$1               -0.982      0.195     -5.045      0.000

 Residual Variances
    Y1                 0.608      0.072      8.425      0.000
    Y2                 0.554      0.044     12.640      0.000
    Y3                 0.433      0.051      8.490      0.000
    Y4                 0.593      0.103      5.788      0.000
    I                  1.202      0.148      8.138      0.000
    S                  0.415      0.049      8.534      0.000

Categorical Latent Variables

 C#1        ON
    X                 -1.095      0.191     -5.728      0.000

 Intercepts
    C#1               -0.019      0.167     -0.111      0.911


RESULTS IN PROBABILITY SCALE

Latent Class 1

 U
    Category 1         0.735      0.032     22.713      0.000
    Category 2         0.265      0.032      8.200      0.000

Latent Class 2

 U
    Category 1         0.273      0.039      7.064      0.000
    Category 2         0.727      0.039     18.854      0.000


LATENT CLASS ODDS RATIO RESULTS

Latent Class 1 Compared to Latent Class 2

 U
    Category > 1       0.135      0.037      3.678      0.000


LOGISTIC REGRESSION ODDS RATIO RESULTS

Categorical Latent Variables

 C#1      ON
    X                  0.334


ALTERNATIVE PARAMETERIZATIONS FOR THE CATEGORICAL LATENT VARIABLE REGRESSION

Parameterization using Reference Class 1

 C#2      ON
    X                  1.095      0.191      5.728      0.000

 Intercepts
    C#2                0.019      0.167      0.111      0.911


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.784E-03
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION FOR LATENT CLASS 1


           NU
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 1                  0             0             0             0             0


           LAMBDA
              I             S             X
              ________      ________      ________
 Y1                 0             0             0
 Y2                 0             0             0
 Y3                 0             0             0
 Y4                 0             0             0
 X                  0             0             0


           THETA
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 Y1                 1
 Y2                 0             2
 Y3                 0             0             3
 Y4                 0             0             0             4
 X                  0             0             0             0             0


           ALPHA
              I             S             X
              ________      ________      ________
 1                  5             6             0


           BETA
              I             S             X
              ________      ________      ________
 I                  0             0             7
 S                  0             0             8
 X                  0             0             0


           PSI
              I             S             X
              ________      ________      ________
 I                  9
 S                 10            11
 X                  0             0             0


     PARAMETER SPECIFICATION FOR LATENT CLASS 2


           NU
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 1                  0             0             0             0             0


           LAMBDA
              I             S             X
              ________      ________      ________
 Y1                 0             0             0
 Y2                 0             0             0
 Y3                 0             0             0
 Y4                 0             0             0
 X                  0             0             0


           THETA
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 Y1                 1
 Y2                 0             2
 Y3                 0             0             3
 Y4                 0             0             0             4
 X                  0             0             0             0             0


           ALPHA
              I             S             X
              ________      ________      ________
 1                 12            13             0


           BETA
              I             S             X
              ________      ________      ________
 I                  0             0             7
 S                  0             0             8
 X                  0             0             0


           PSI
              I             S             X
              ________      ________      ________
 I                  9
 S                 10            11
 X                  0             0             0


     PARAMETER SPECIFICATION FOR LATENT CLASS INDICATOR MODEL PART


           LAMBDA(U)
              C#1           C#2
              ________      ________
 U                 14            15


           KAPPA(U) FOR LATENT CLASS 1
              X
              ________
 U                  0


           KAPPA(U) FOR LATENT CLASS 2
              X
              ________
 U                  0


     PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1                 16             0


           GAMMA(C)
              X
              ________
 C#1               17
 C#2                0


     STARTING VALUES FOR LATENT CLASS 1


           NU
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           LAMBDA
              I             S             X
              ________      ________      ________
 Y1             1.000         0.000         0.000
 Y2             1.000         1.000         0.000
 Y3             1.000         2.000         0.000
 Y4             1.000         3.000         0.000
 X              0.000         0.000         1.000


           THETA
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 Y1             2.194
 Y2             0.000         3.924
 Y3             0.000         0.000         6.688
 Y4             0.000         0.000         0.000        10.002
 X              0.000         0.000         0.000         0.000         0.000


           ALPHA
              I             S             X
              ________      ________      ________
 1              0.905         0.466         0.000


           BETA
              I             S             X
              ________      ________      ________
 I              0.000         0.000         0.000
 S              0.000         0.000         0.000
 X              0.000         0.000         0.000


           PSI
              I             S             X
              ________      ________      ________
 I              4.283
 S              0.000         1.085
 X              0.000         0.000         0.492


     STARTING VALUES FOR LATENT CLASS 2


           NU
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           LAMBDA
              I             S             X
              ________      ________      ________
 Y1             1.000         0.000         0.000
 Y2             1.000         1.000         0.000
 Y3             1.000         2.000         0.000
 Y4             1.000         3.000         0.000
 X              0.000         0.000         1.000


           THETA
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 Y1             2.194
 Y2             0.000         3.924
 Y3             0.000         0.000         6.688
 Y4             0.000         0.000         0.000        10.002
 X              0.000         0.000         0.000         0.000         0.000


           ALPHA
              I             S             X
              ________      ________      ________
 1              0.905         0.466         0.000


           BETA
              I             S             X
              ________      ________      ________
 I              0.000         0.000         0.000
 S              0.000         0.000         0.000
 X              0.000         0.000         0.000


           PSI
              I             S             X
              ________      ________      ________
 I              4.283
 S              0.000         1.085
 X              0.000         0.000         0.492


     STARTING VALUES FOR LATENT CLASS INDICATOR MODEL PART


           LAMBDA(U)
              C#1           C#2
              ________      ________
 U              0.968        -1.032


           KAPPA(U) FOR LATENT CLASS 1
              X
              ________
 U              0.000


           KAPPA(U) FOR LATENT CLASS 2
              X
              ________
 U              0.000


     STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1              0.000         0.000


           GAMMA(C)
              X
              ________
 C#1            0.000
 C#2            0.000


TECHNICAL 8 OUTPUT


  INITIAL STAGE ITERATIONS


  TECHNICAL 8 OUTPUT FOR UNPERTURBED STARTING VALUE SET


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.48039637D+04    0.0000000    0.0000000    249.605   250.395    EM
     2 -0.37335819D+04 1070.3817234    0.2228122    249.319   250.681    EM
     3 -0.37230392D+04   10.5427609    0.0028238    248.508   251.492    EM
     4 -0.37144392D+04    8.5999486    0.0023099    247.100   252.900    EM
     5 -0.37087055D+04    5.7337363    0.0015436    245.189   254.811    EM
     6 -0.37056528D+04    3.0526863    0.0008231    242.958   257.042    EM
     7 -0.37040757D+04    1.5770836    0.0004256    240.603   259.397    EM
     8 -0.37029981D+04    1.0776463    0.0002909    238.310   261.690    EM
     9 -0.37019920D+04    1.0061090    0.0002717    236.249   263.751    EM
    10 -0.37009339D+04    1.0580439    0.0002858    234.566   265.434    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 1


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.75930428D+04    0.0000000    0.0000000    273.902   226.098    EM
     2 -0.37440748D+04 3848.9679906    0.5069072    174.992   325.008    EM
     3 -0.37196499D+04   24.4249522    0.0065236    180.991   319.009    EM
     4 -0.37147556D+04    4.8942725    0.0013158    187.875   312.125    EM
     5 -0.37110935D+04    3.6621567    0.0009858    195.584   304.416    EM
     6 -0.37079426D+04    3.1508142    0.0008490    203.771   296.229    EM
     7 -0.37050205D+04    2.9221805    0.0007881    212.035   287.965    EM
     8 -0.37022700D+04    2.7504631    0.0007424    219.964   280.036    EM
     9 -0.36997619D+04    2.5081076    0.0006775    227.186   272.814    EM
    10 -0.36976281D+04    2.1338015    0.0005767    233.433   266.567    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 2


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.10249119D+05    0.0000000    0.0000000     60.110   439.890    EM
     2 -0.37444534D+04 6504.6655774    0.6346561     79.142   420.858    EM
     3 -0.37364209D+04    8.0325056    0.0021452     85.915   414.085    EM
     4 -0.37326905D+04    3.7304037    0.0009984     93.848   406.152    EM
     5 -0.37294710D+04    3.2194523    0.0008625    102.554   397.446    EM
     6 -0.37264975D+04    2.9735432    0.0007973    111.714   388.286    EM
     7 -0.37237357D+04    2.7617791    0.0007411    121.048   378.952    EM
     8 -0.37212337D+04    2.5019878    0.0006719    130.294   369.706    EM
     9 -0.37190467D+04    2.1869829    0.0005877    139.238   360.762    EM
    10 -0.37171968D+04    1.8499595    0.0004974    147.735   352.265    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 3


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.85013365D+04    0.0000000    0.0000000      4.678   495.322    EM
     2 -0.37515758D+04 4749.7606656    0.5587075     34.080   465.920    EM
     3 -0.37389998D+04   12.5760291    0.0033522     39.193   460.807    EM
     4 -0.37366122D+04    2.3875509    0.0006386     45.104   454.896    EM
     5 -0.37348450D+04    1.7672718    0.0004730     51.337   448.663    EM
     6 -0.37332987D+04    1.5462408    0.0004140     57.742   442.258    EM
     7 -0.37318507D+04    1.4480020    0.0003879     64.288   435.712    EM
     8 -0.37304443D+04    1.4064384    0.0003769     70.991   429.009    EM
     9 -0.37290431D+04    1.4011511    0.0003756     77.878   422.122    EM
    10 -0.37276217D+04    1.4213884    0.0003812     84.977   415.023    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 4


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.69067802D+04    0.0000000    0.0000000    484.387    15.613    EM
     2 -0.37449904D+04 3161.7898157    0.4577806    472.049    27.951    EM
     3 -0.37414233D+04    3.5670440    0.0009525    468.515    31.485    EM
     4 -0.37391436D+04    2.2797184    0.0006093    463.982    36.018    EM
     5 -0.37373487D+04    1.7949725    0.0004800    458.962    41.038    EM
     6 -0.37358228D+04    1.5258044    0.0004083    453.698    46.302    EM
     7 -0.37344682D+04    1.3546780    0.0003626    448.296    51.704    EM
     8 -0.37332224D+04    1.2457625    0.0003336    442.774    57.226    EM
     9 -0.37320304D+04    1.1919689    0.0003193    437.095    62.905    EM
    10 -0.37308391D+04    1.1913572    0.0003192    431.190    68.810    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 5


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.63638856D+04    0.0000000    0.0000000    265.257   234.743    EM
     2 -0.37529699D+04 2610.9157110    0.4102707    289.250   210.750    EM
     3 -0.37477313D+04    5.2385632    0.0013958    285.486   214.514    EM
     4 -0.37467932D+04    0.9380956    0.0002503    282.217   217.783    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 6


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.71325442D+04    0.0000000    0.0000000    143.353   356.647    EM
     2 -0.37597892D+04 3372.7549623    0.4728684    105.872   394.128    EM
     3 -0.37362354D+04   23.5538122    0.0062647    119.149   380.851    EM
     4 -0.37326149D+04    3.6204748    0.0009690    126.288   373.712    EM
     5 -0.37288232D+04    3.7917487    0.0010158    134.405   365.595    EM
     6 -0.37240762D+04    4.7470008    0.0012731    143.590   356.410    EM
     7 -0.37184304D+04    5.6457991    0.0015160    153.517   346.483    EM
     8 -0.37126572D+04    5.7732163    0.0015526    163.321   336.679    EM
     9 -0.37079013D+04    4.7559294    0.0012810    172.108   327.892    EM
    10 -0.37047318D+04    3.1694493    0.0008548    179.551   320.449    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 7


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.68388534D+04    0.0000000    0.0000000    164.385   335.615    EM
     2 -0.37297293D+04 3109.1240557    0.4546265    179.884   320.116    EM
     3 -0.37224755D+04    7.2537995    0.0019449    185.042   314.958    EM
     4 -0.37168793D+04    5.5961766    0.0015033    191.812   308.188    EM
     5 -0.37119934D+04    4.8859105    0.0013145    199.573   300.427    EM
     6 -0.37077758D+04    4.2176406    0.0011362    207.809   292.191    EM
     7 -0.37041487D+04    3.6270676    0.0009782    215.980   284.020    EM
     8 -0.37010460D+04    3.1027123    0.0008376    223.613   276.387    EM
     9 -0.36984844D+04    2.5616193    0.0006921    230.349   269.651    EM
    10 -0.36965240D+04    1.9604280    0.0005301    235.989   264.011    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 8


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.74713752D+04    0.0000000    0.0000000    422.874    77.126    EM
     2 -0.37907356D+04 3680.6395665    0.4926321    359.615   140.385    EM
     3 -0.37445921D+04   46.1435643    0.0121727    361.869   138.131    EM
     4 -0.37395617D+04    5.0303847    0.0013434    361.938   138.062    EM
     5 -0.37364294D+04    3.1322276    0.0008376    361.936   138.064    EM
     6 -0.37340867D+04    2.3427409    0.0006270    361.716   138.284    EM
     7 -0.37322512D+04    1.8355280    0.0004916    361.130   138.870    EM
     8 -0.37306539D+04    1.5973010    0.0004280    360.022   139.978    EM
     9 -0.37290403D+04    1.6135541    0.0004325    358.224   141.776    EM
    10 -0.37272469D+04    1.7934243    0.0004809    355.551   144.449    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 9


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.81775580D+04    0.0000000    0.0000000    207.069   292.931    EM
     2 -0.37354241D+04 4442.1338815    0.5432103    196.945   303.055    EM
     3 -0.37209986D+04   14.4255302    0.0038618    202.291   297.709    EM
     4 -0.37147057D+04    6.2929117    0.0016912    208.307   291.693    EM
     5 -0.37095551D+04    5.1505591    0.0013865    214.695   285.305    EM
     6 -0.37052151D+04    4.3400421    0.0011700    221.134   278.866    EM
     7 -0.37016027D+04    3.6123689    0.0009749    227.256   272.744    EM
     8 -0.36987487D+04    2.8540229    0.0007710    232.745   267.255    EM
     9 -0.36966694D+04    2.0792719    0.0005622    237.414   262.586    EM
    10 -0.36952878D+04    1.3815464    0.0003737    241.218   258.782    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 10


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.65595037D+04    0.0000000    0.0000000    210.104   289.896    EM
     2 -0.37517590D+04 2807.7447035    0.4280422    236.053   263.947    EM
     3 -0.37464800D+04    5.2790546    0.0014071    234.198   265.802    EM
     4 -0.37460008D+04    0.4792069    0.0001279    232.373   267.627    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 11


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.63924387D+04    0.0000000    0.0000000    496.446     3.554    EM
     2 -0.37472369D+04 2645.2018205    0.4138017    496.282     3.718    EM
     3 -0.37466300D+04    0.6068655    0.0001620    495.605     4.395    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 12


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.65584486D+04    0.0000000    0.0000000    224.589   275.411    EM
     2 -0.37540529D+04 2804.3957344    0.4276005    224.140   275.860    EM
     3 -0.37479879D+04    6.0650090    0.0016156    223.296   276.704    EM
     4 -0.37463353D+04    1.6526036    0.0004409    222.415   277.585    EM
     5 -0.37454810D+04    0.8543086    0.0002280    221.538   278.462    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 13


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.66389013D+04    0.0000000    0.0000000     13.679   486.321    EM
     2 -0.39391182D+04 2699.7830944    0.4066611     43.055   456.945    EM
     3 -0.37590171D+04  180.1011106    0.0457212     36.577   463.423    EM
     4 -0.37477867D+04   11.2303302    0.0029876     36.494   463.506    EM
     5 -0.37433688D+04    4.4179239    0.0011788     38.683   461.317    EM
     6 -0.37400733D+04    3.2955390    0.0008804     42.339   457.661    EM
     7 -0.37373886D+04    2.6846606    0.0007178     46.825   453.175    EM
     8 -0.37354071D+04    1.9814650    0.0005302     51.616   448.384    EM
     9 -0.37339976D+04    1.4095713    0.0003774     56.450   443.550    EM
    10 -0.37329047D+04    1.0928301    0.0002927     61.289   438.711    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 14


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.11125028D+05    0.0000000    0.0000000    322.974   177.026    EM
     2 -0.37543729D+04 7370.6553421    0.6625291    323.700   176.300    EM
     3 -0.37458431D+04    8.5298124    0.0022720    323.508   176.492    EM
     4 -0.37427297D+04    3.1133993    0.0008312    323.443   176.557    EM
     5 -0.37400866D+04    2.6430752    0.0007062    323.569   176.431    EM
     6 -0.37371493D+04    2.9373493    0.0007854    323.721   176.279    EM
     7 -0.37338198D+04    3.3294312    0.0008909    323.633   176.367    EM
     8 -0.37301703D+04    3.6494840    0.0009774    322.995   177.005    EM
     9 -0.37263164D+04    3.8539827    0.0010332    321.496   178.504    EM
    10 -0.37223875D+04    3.9288738    0.0010544    318.829   181.171    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 15


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.69253323D+04    0.0000000    0.0000000    387.115   112.885    EM
     2 -0.37653242D+04 3160.0081326    0.4562970    302.298   197.702    EM
     3 -0.37395903D+04   25.7338812    0.0068344    303.622   196.378    EM
     4 -0.37388946D+04    0.6957265    0.0001860    304.519   195.481    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 16


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.71671564D+04    0.0000000    0.0000000    118.138   381.862    EM
     2 -0.37196752D+04 3447.4812786    0.4810110    123.965   376.035    EM
     3 -0.37129937D+04    6.6814212    0.0017962    131.686   368.314    EM
     4 -0.37094404D+04    3.5533893    0.0009570    138.891   361.109    EM
     5 -0.37075874D+04    1.8529167    0.0004995    145.037   354.963    EM
     6 -0.37065958D+04    0.9916130    0.0002675    150.134   349.866    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 17


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.10723967D+05    0.0000000    0.0000000    167.427   332.573    EM
     2 -0.37468757D+04 6977.0913550    0.6506073    169.018   330.982    EM
     3 -0.37395408D+04    7.3349035    0.0019576    170.895   329.105    EM
     4 -0.37374224D+04    2.1183530    0.0005665    172.662   327.338    EM
     5 -0.37359166D+04    1.5057834    0.0004029    174.761   325.239    EM
     6 -0.37342216D+04    1.6949993    0.0004537    177.438   322.562    EM
     7 -0.37319129D+04    2.3087872    0.0006183    180.943   319.057    EM
     8 -0.37286110D+04    3.3018930    0.0008848    185.518   314.482    EM
     9 -0.37240228D+04    4.5881647    0.0012305    191.293   308.707    EM
    10 -0.37181546D+04    5.8682190    0.0015758    198.131   301.869    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 18


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.10006991D+05    0.0000000    0.0000000    141.666   358.334    EM
     2 -0.37456346D+04 6261.3564577    0.6256982    143.443   356.557    EM
     3 -0.37406458D+04    4.9888529    0.0013319    145.059   354.941    EM
     4 -0.37397167D+04    0.9290773    0.0002484    146.214   353.786    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 19


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.11077893D+05    0.0000000    0.0000000    319.236   180.764    EM
     2 -0.37326213D+04 7345.2719389    0.6630568    309.231   190.769    EM
     3 -0.37159532D+04   16.6680978    0.0044655    297.668   202.332    EM
     4 -0.37073308D+04    8.6224250    0.0023204    288.149   211.851    EM
     5 -0.37015885D+04    5.7422606    0.0015489    280.319   219.681    EM
     6 -0.36980586D+04    3.5299197    0.0009536    274.126   225.874    EM
     7 -0.36959759D+04    2.0827477    0.0005632    269.304   230.696    EM
     8 -0.36947723D+04    1.2035720    0.0003256    265.605   234.395    EM
     9 -0.36940970D+04    0.6753227    0.0001828    262.805   237.195    EM


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 20


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.87939742D+04    0.0000000    0.0000000    281.356   218.644    EM
     2 -0.37415230D+04 5052.4511912    0.5745356    214.541   285.459    EM
     3 -0.37195553D+04   21.9677452    0.0058713    220.059   279.941    EM
     4 -0.37129006D+04    6.6546814    0.0017891    223.320   276.680    EM
     5 -0.37069325D+04    5.9680839    0.0016074    227.475   272.525    EM
     6 -0.37020930D+04    4.8395382    0.0013055    232.043   267.957    EM
     7 -0.36985860D+04    3.5069473    0.0009473    236.484   263.516    EM
     8 -0.36962904D+04    2.2956391    0.0006207    240.411   259.589    EM
     9 -0.36949143D+04    1.3760816    0.0003723    243.662   256.338    EM
    10 -0.36941494D+04    0.7649003    0.0002070    246.240   253.760    EM


  FINAL STAGE ITERATIONS


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 19


     9 -0.36940970D+04    0.6753227    0.0001828    262.805   237.195    EM
    10 -0.36937310D+04    0.3659534    0.0000991    260.708   239.292    EM
    11 -0.36935388D+04    0.1921886    0.0000520    259.151   240.849    EM
    12 -0.36934402D+04    0.0985907    0.0000267    258.001   241.999    EM
    13 -0.36933904D+04    0.0498317    0.0000135    257.152   242.848    EM
    14 -0.36933654D+04    0.0250078    0.0000068    256.528   243.472    EM
    15 -0.36933529D+04    0.0125399    0.0000034    256.068   243.932    EM
    16 -0.36933465D+04    0.0063149    0.0000017    255.728   244.272    EM
    17 -0.36933433D+04    0.0032071    0.0000009    255.477   244.523    EM
    18 -0.36933417D+04    0.0016485    0.0000004    255.291   244.709    EM
    19 -0.36933408D+04    0.0008603    0.0000002    255.152   244.848    EM
    20 -0.36933404D+04    0.0004572    0.0000001    255.048   244.952    EM
    21 -0.36933401D+04    0.0002480    0.0000001    254.970   245.030    EM
    22 -0.36933400D+04    0.0001375    0.0000000    254.911   245.089    EM
    23 -0.36933399D+04    0.0000781    0.0000000    254.867   245.133    EM
    24 -0.36933399D+04    0.0000454    0.0000000    254.833   245.167    EM
    25 -0.36933398D+04    0.0000270    0.0000000    254.807   245.193    EM
    26 -0.36933398D+04    0.0000164    0.0000000    254.787   245.213    EM
    27 -0.36933398D+04    0.0000101    0.0000000    254.771   245.229    EM
    28 -0.36933398D+04    0.0000063    0.0000000    254.759   245.241    EM
    29 -0.36933398D+04    0.0000040    0.0000000    254.750   245.250    EM
    30 -0.36933398D+04    0.0000026    0.0000000    254.742   245.258    EM
    31 -0.36933398D+04    0.0000017    0.0000000    254.737   245.263    EM
    32 -0.36933398D+04    0.0000011    0.0000000    254.732   245.268    EM
    33 -0.36933398D+04    0.0000007    0.0000000    254.728   245.272    EM
    34 -0.36933398D+04    0.0000005    0.0000000    254.726   245.274    EM
    35 -0.36933398D+04    0.0000008    0.0000000    254.716   245.284    FS
    36 -0.36933398D+04    0.0000001    0.0000000    254.715   245.285    FS
    37 -0.36933398D+04    0.0000000    0.0000000    254.714   245.286    FS
    38 -0.36933398D+04    0.0000000    0.0000000    254.714   245.286    FS


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 20


    10 -0.36941494D+04    0.7649003    0.0002070    246.240   253.760    EM
    11 -0.36937492D+04    0.4002219    0.0001083    248.231   251.769    EM
    12 -0.36935479D+04    0.2012739    0.0000545    249.746   250.254    EM
    13 -0.36934482D+04    0.0997072    0.0000270    250.894   249.106    EM
    14 -0.36933984D+04    0.0498186    0.0000135    251.762   248.238    EM
    15 -0.36933728D+04    0.0255859    0.0000069    252.422   247.578    EM
    16 -0.36933592D+04    0.0136677    0.0000037    252.924   247.076    EM
    17 -0.36933515D+04    0.0076249    0.0000021    253.310   246.690    EM
    18 -0.36933471D+04    0.0044328    0.0000012    253.607   246.393    EM
    19 -0.36933444D+04    0.0026691    0.0000007    253.838   246.162    EM
    20 -0.36933428D+04    0.0016523    0.0000004    254.018   245.982    EM
    21 -0.36933417D+04    0.0010444    0.0000003    254.159   245.841    EM
    22 -0.36933411D+04    0.0006702    0.0000002    254.270   245.730    EM
    23 -0.36933406D+04    0.0004348    0.0000001    254.358   245.642    EM
    24 -0.36933403D+04    0.0002842    0.0000001    254.427   245.573    EM
    25 -0.36933402D+04    0.0001867    0.0000001    254.483   245.517    EM
    26 -0.36933400D+04    0.0001231    0.0000000    254.528   245.472    EM
    27 -0.36933399D+04    0.0000814    0.0000000    254.563   245.437    EM
    28 -0.36933399D+04    0.0000540    0.0000000    254.592   245.408    EM
    29 -0.36933399D+04    0.0000358    0.0000000    254.615   245.385    EM
    30 -0.36933398D+04    0.0000238    0.0000000    254.634   245.366    EM
    31 -0.36933398D+04    0.0000158    0.0000000    254.649   245.351    EM
    32 -0.36933398D+04    0.0000105    0.0000000    254.661   245.339    EM
    33 -0.36933398D+04    0.0000070    0.0000000    254.671   245.329    EM
    34 -0.36933398D+04    0.0000047    0.0000000    254.679   245.321    EM
    35 -0.36933398D+04    0.0000031    0.0000000    254.685   245.315    EM
    36 -0.36933398D+04    0.0000021    0.0000000    254.691   245.309    EM
    37 -0.36933398D+04    0.0000014    0.0000000    254.695   245.305    EM
    38 -0.36933398D+04    0.0000024    0.0000000    254.709   245.291    FS
    39 -0.36933398D+04    0.0000003    0.0000000    254.711   245.289    FS
    40 -0.36933398D+04    0.0000001    0.0000000    254.713   245.287    FS
    41 -0.36933398D+04    0.0000000    0.0000000    254.713   245.287    FS


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 9


    10 -0.36952878D+04    1.3815464    0.0003737    241.218   258.782    EM
    11 -0.36944448D+04    0.8430329    0.0002281    244.222   255.778    EM
    12 -0.36939621D+04    0.4827032    0.0001307    246.548   253.452    EM
    13 -0.36936950D+04    0.2671536    0.0000723    248.333   251.667    EM
    14 -0.36935477D+04    0.1472337    0.0000399    249.700   250.300    EM
    15 -0.36934651D+04    0.0826478    0.0000224    250.752   249.248    EM
    16 -0.36934173D+04    0.0478174    0.0000129    251.566   248.434    EM
    17 -0.36933887D+04    0.0285714    0.0000077    252.201   247.799    EM
    18 -0.36933711D+04    0.0175622    0.0000048    252.699   247.301    EM
    19 -0.36933601D+04    0.0110363    0.0000030    253.093   246.907    EM
    20 -0.36933530D+04    0.0070490    0.0000019    253.406   246.594    EM
    21 -0.36933485D+04    0.0045546    0.0000012    253.656   246.344    EM
    22 -0.36933455D+04    0.0029669    0.0000008    253.857   246.143    EM
    23 -0.36933436D+04    0.0019438    0.0000005    254.018   245.982    EM
    24 -0.36933423D+04    0.0012788    0.0000003    254.149   245.851    EM
    25 -0.36933414D+04    0.0008438    0.0000002    254.254   245.746    EM
    26 -0.36933409D+04    0.0005580    0.0000002    254.340   245.660    EM
    27 -0.36933405D+04    0.0003697    0.0000001    254.409   245.591    EM
    28 -0.36933403D+04    0.0002452    0.0000001    254.466   245.534    EM
    29 -0.36933401D+04    0.0001629    0.0000000    254.511   245.489    EM
    30 -0.36933400D+04    0.0001082    0.0000000    254.549   245.451    EM
    31 -0.36933399D+04    0.0000719    0.0000000    254.579   245.421    EM
    32 -0.36933399D+04    0.0000479    0.0000000    254.604   245.396    EM
    33 -0.36933399D+04    0.0000318    0.0000000    254.624   245.376    EM
    34 -0.36933398D+04    0.0000212    0.0000000    254.641   245.359    EM
    35 -0.36933398D+04    0.0000141    0.0000000    254.654   245.346    EM
    36 -0.36933398D+04    0.0000241    0.0000000    254.698   245.302    FS
    37 -0.36933398D+04    0.0000034    0.0000000    254.706   245.294    FS
    38 -0.36933398D+04    0.0000005    0.0000000    254.711   245.289    FS
    39 -0.36933398D+04    0.0000001    0.0000000    254.712   245.288    FS
    40 -0.36933398D+04    0.0000000    0.0000000    254.713   245.287    FS
    41 -0.36933398D+04    0.0000000    0.0000000    254.713   245.287    FS


  TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 7


    10 -0.36965240D+04    1.9604280    0.0005301    235.989   264.011    EM
    11 -0.36951703D+04    1.3536725    0.0003662    240.505   259.495    EM
    12 -0.36943312D+04    0.8390983    0.0002271    244.002   255.998    EM
    13 -0.36938575D+04    0.4737056    0.0001282    246.648   253.352    EM
    14 -0.36936073D+04    0.2501691    0.0000677    248.626   251.374    EM
    15 -0.36934798D+04    0.1275188    0.0000345    250.097   249.903    EM
    16 -0.36934152D+04    0.0645915    0.0000175    251.192   248.808    EM
    17 -0.36933819D+04    0.0332739    0.0000090    252.009   247.991    EM
    18 -0.36933642D+04    0.0176972    0.0000048    252.624   247.376    EM
    19 -0.36933545D+04    0.0097863    0.0000026    253.089   246.911    EM
    20 -0.36933488D+04    0.0056267    0.0000015    253.443   246.557    EM
    21 -0.36933455D+04    0.0033497    0.0000009    253.715   246.285    EM
    22 -0.36933434D+04    0.0020520    0.0000006    253.925   246.075    EM
    23 -0.36933421D+04    0.0012852    0.0000003    254.088   245.912    EM
    24 -0.36933413D+04    0.0008185    0.0000002    254.215   245.785    EM
    25 -0.36933408D+04    0.0005278    0.0000001    254.316   245.684    EM
    26 -0.36933405D+04    0.0003433    0.0000001    254.395   245.605    EM
    27 -0.36933402D+04    0.0002247    0.0000001    254.457   245.543    EM
    28 -0.36933401D+04    0.0001478    0.0000000    254.507   245.493    EM
    29 -0.36933400D+04    0.0000975    0.0000000    254.547   245.453    EM
    30 -0.36933399D+04    0.0000645    0.0000000    254.579   245.421    EM
    31 -0.36933399D+04    0.0000428    0.0000000    254.605   245.395    EM
    32 -0.36933398D+04    0.0000284    0.0000000    254.626   245.374    EM
    33 -0.36933398D+04    0.0000189    0.0000000    254.642   245.358    EM
    34 -0.36933398D+04    0.0000125    0.0000000    254.656   245.344    EM
    35 -0.36933398D+04    0.0000214    0.0000000    254.699   245.301    FS
    36 -0.36933398D+04    0.0000030    0.0000000    254.706   245.294    FS
    37 -0.36933398D+04    0.0000005    0.0000000    254.711   245.289    FS
    38 -0.36933398D+04    0.0000001    0.0000000    254.712   245.288    FS
    39 -0.36933398D+04    0.0000000    0.0000000    254.713   245.287    FS
    40 -0.36933398D+04    0.0000000    0.0000000    254.713   245.287    FS


     Beginning Time:  23:12:36
        Ending Time:  23:12:37
       Elapsed Time:  00:00:01



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2012 Muthen & Muthen

Back to examples