Mplus VERSION 7.3
MUTHEN & MUTHEN
09/22/2014   5:18 PM

INPUT INSTRUCTIONS

  title:
  	this is an example of a GMM for a
  	continuous outcome using automatic
  	starting values and random starts

  montecarlo:
  	names are y1-y4 x;
  	genclasses = c(2);
  	classes = c(2);
  	nobs = 500;
  	seed = 3454367;
  	nrep = 1;
  	save = ex8.1.dat;

  analysis:
  	type = mixture;

  model population:

  	%overall%

  	[x@0]; x@1;

  	y1-y4*.5;
  	i s | y1@0 y2@1 y3@2 y4@3;
  	i*1; s*.2;

  	c#1 on x*1;
  	i on x*.5;
  	s on x*.3;

  	%c#1%
  	[i*1 s*.5];

  	%c#2%
  	[i*3 s*1];


  model:
  	
  	%overall%

  	y1-y4*.5;
  	i s | y1@0 y2@1 y3@2 y4@3;
  	i*1; s*.2;

  	c#1 on x*1;
  	i on x*.5;
  	s on x*.3;

  	%c#1%
  	[i*1 s*.5];

  	%c#2%
  	[i*3 s*1];



  output:
  	tech8 tech9;



INPUT READING TERMINATED NORMALLY




this is an example of a GMM for a
continuous outcome using automatic
starting values and random starts

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         500

Number of replications
    Requested                                                    1
    Completed                                                    1
Value of seed                                              3454367

Number of dependent variables                                    4
Number of independent variables                                  1
Number of continuous latent variables                            2
Number of categorical latent variables                           1

Observed dependent variables

  Continuous
   Y1          Y2          Y3          Y4

Observed independent variables
   X

Continuous latent variables
   I           S

Categorical latent variables
   C


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-06
    Relative loglikelihood change                        0.100D-06
    Derivative                                           0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-05
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA


SAMPLE STATISTICS FOR THE FIRST REPLICATION


     SAMPLE STATISTICS


           Means
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 1              1.907         2.697         3.336         4.087        -0.060


           Covariances
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 Y1             2.443
 Y2             2.099         3.205
 Y3             2.303         3.140         4.350
 Y4             2.463         3.534         4.576         6.031
 X              0.086         0.360         0.601         0.750         0.982


           Correlations
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 Y1             1.000
 Y2             0.750         1.000
 Y3             0.706         0.841         1.000
 Y4             0.642         0.804         0.894         1.000
 X              0.055         0.203         0.291         0.308         1.000




MODEL FIT INFORMATION

Number of Free Parameters                       15

Loglikelihood

    H0 Value

        Mean                             -3183.703
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000        -3183.703      -3183.703
           0.980       0.000        -3183.703      -3183.703
           0.950       0.000        -3183.703      -3183.703
           0.900       0.000        -3183.703      -3183.703
           0.800       0.000        -3183.703      -3183.703
           0.700       0.000        -3183.703      -3183.703
           0.500       0.000        -3183.703      -3183.703
           0.300       0.000        -3183.703      -3183.703
           0.200       0.000        -3183.703      -3183.703
           0.100       0.000        -3183.703      -3183.703
           0.050       0.000        -3183.703      -3183.703
           0.020       0.000        -3183.703      -3183.703
           0.010       0.000        -3183.703      -3183.703

Information Criteria

    Akaike (AIC)

        Mean                              6397.407
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         6397.407       6397.407
           0.980       0.000         6397.407       6397.407
           0.950       0.000         6397.407       6397.407
           0.900       0.000         6397.407       6397.407
           0.800       0.000         6397.407       6397.407
           0.700       0.000         6397.407       6397.407
           0.500       0.000         6397.407       6397.407
           0.300       0.000         6397.407       6397.407
           0.200       0.000         6397.407       6397.407
           0.100       0.000         6397.407       6397.407
           0.050       0.000         6397.407       6397.407
           0.020       0.000         6397.407       6397.407
           0.010       0.000         6397.407       6397.407

    Bayesian (BIC)

        Mean                              6460.626
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         6460.626       6460.626
           0.980       0.000         6460.626       6460.626
           0.950       0.000         6460.626       6460.626
           0.900       0.000         6460.626       6460.626
           0.800       0.000         6460.626       6460.626
           0.700       0.000         6460.626       6460.626
           0.500       0.000         6460.626       6460.626
           0.300       0.000         6460.626       6460.626
           0.200       0.000         6460.626       6460.626
           0.100       0.000         6460.626       6460.626
           0.050       0.000         6460.626       6460.626
           0.020       0.000         6460.626       6460.626
           0.010       0.000         6460.626       6460.626

    Sample-Size Adjusted BIC (n* = (n + 2) / 24)

        Mean                              6413.015
        Std Dev                              0.000
        Number of successful computations        1

             Proportions                   Percentiles
        Expected    Observed         Expected       Observed
           0.990       0.000         6413.015       6413.015
           0.980       0.000         6413.015       6413.015
           0.950       0.000         6413.015       6413.015
           0.900       0.000         6413.015       6413.015
           0.800       0.000         6413.015       6413.015
           0.700       0.000         6413.015       6413.015
           0.500       0.000         6413.015       6413.015
           0.300       0.000         6413.015       6413.015
           0.200       0.000         6413.015       6413.015
           0.100       0.000         6413.015       6413.015
           0.050       0.000         6413.015       6413.015
           0.020       0.000         6413.015       6413.015
           0.010       0.000         6413.015       6413.015



FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL

    Latent
   Classes

       1        239.53347          0.47907
       2        260.46653          0.52093


FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON ESTIMATED POSTERIOR PROBABILITIES

    Latent
   Classes

       1        239.53352          0.47907
       2        260.46648          0.52093


FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

    Latent
   Classes

       1              241          0.48200
       2              259          0.51800


CLASSIFICATION QUALITY

     Entropy                         0.608


Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)

           1        2

    1   0.878    0.122
    2   0.108    0.892


Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)

           1        2

    1   0.883    0.117
    2   0.113    0.887


Logits for the Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)

              1        2

    1      2.024    0.000
    2     -2.061    0.000


MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff
Latent Class 1

 I        |
  Y1                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y2                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y3                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y4                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000

 S        |
  Y1                  0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y2                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y3                  2.000     2.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y4                  3.000     3.0000     0.0000     0.0000     0.0000 1.000 0.000

 I          ON
  X                   0.500     0.4721     0.0000     0.1026     0.0008 1.000 1.000

 S          ON
  X                   0.300     0.3057     0.0000     0.0337     0.0000 1.000 1.000

 S        WITH
  I                   0.000    -0.0218     0.0000     0.0424     0.0005 1.000 0.000

 Intercepts
  Y1                  0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y2                  0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y3                  0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y4                  0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  I                   1.000     0.8860     0.0000     0.0950     0.0130 1.000 1.000
  S                   0.500     0.5016     0.0000     0.0609     0.0000 1.000 1.000

 Residual Variances
  Y1                  0.500     0.5744     0.0000     0.0655     0.0055 1.000 1.000
  Y2                  0.500     0.5751     0.0000     0.0452     0.0056 1.000 1.000
  Y3                  0.500     0.4435     0.0000     0.0471     0.0032 1.000 1.000
  Y4                  0.500     0.5651     0.0000     0.0811     0.0042 1.000 1.000
  I                   1.000     0.9606     0.0000     0.1497     0.0016 1.000 1.000
  S                   0.200     0.1747     0.0000     0.0226     0.0006 1.000 1.000

Latent Class 2

 I        |
  Y1                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y2                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y3                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y4                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000

 S        |
  Y1                  0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y2                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y3                  2.000     2.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y4                  3.000     3.0000     0.0000     0.0000     0.0000 1.000 0.000

 I          ON
  X                   0.500     0.4721     0.0000     0.1026     0.0008 1.000 1.000

 S          ON
  X                   0.300     0.3057     0.0000     0.0337     0.0000 1.000 1.000

 S        WITH
  I                   0.000    -0.0218     0.0000     0.0424     0.0005 1.000 0.000

 Intercepts
  Y1                  0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y2                  0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y3                  0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y4                  0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  I                   3.000     2.9431     0.0000     0.1473     0.0032 1.000 1.000
  S                   1.000     0.9497     0.0000     0.0407     0.0025 1.000 1.000

 Residual Variances
  Y1                  0.500     0.5744     0.0000     0.0655     0.0055 1.000 1.000
  Y2                  0.500     0.5751     0.0000     0.0452     0.0056 1.000 1.000
  Y3                  0.500     0.4435     0.0000     0.0471     0.0032 1.000 1.000
  Y4                  0.500     0.5651     0.0000     0.0811     0.0042 1.000 1.000
  I                   1.000     0.9606     0.0000     0.1497     0.0016 1.000 1.000
  S                   0.200     0.1747     0.0000     0.0226     0.0006 1.000 1.000

Categorical Latent Variables

 C#1        ON
  X                   1.000     0.7757     0.0000     0.2556     0.0503 1.000 1.000

 Intercepts
  C#1                 0.000    -0.0488     0.0000     0.2025     0.0024 1.000 0.000


QUALITY OF NUMERICAL RESULTS

     Average Condition Number for the Information Matrix      0.592E-02
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION FOR LATENT CLASS 1


           NU
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 1                  0             0             0             0             0


           LAMBDA
              I             S             X
              ________      ________      ________
 Y1                 0             0             0
 Y2                 0             0             0
 Y3                 0             0             0
 Y4                 0             0             0
 X                  0             0             0


           THETA
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 Y1                 1
 Y2                 0             2
 Y3                 0             0             3
 Y4                 0             0             0             4
 X                  0             0             0             0             0


           ALPHA
              I             S             X
              ________      ________      ________
 1                  5             6             0


           BETA
              I             S             X
              ________      ________      ________
 I                  0             0             7
 S                  0             0             8
 X                  0             0             0


           PSI
              I             S             X
              ________      ________      ________
 I                  9
 S                 10            11
 X                  0             0             0


     PARAMETER SPECIFICATION FOR LATENT CLASS 2


           NU
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 1                  0             0             0             0             0


           LAMBDA
              I             S             X
              ________      ________      ________
 Y1                 0             0             0
 Y2                 0             0             0
 Y3                 0             0             0
 Y4                 0             0             0
 X                  0             0             0


           THETA
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 Y1                 1
 Y2                 0             2
 Y3                 0             0             3
 Y4                 0             0             0             4
 X                  0             0             0             0             0


           ALPHA
              I             S             X
              ________      ________      ________
 1                 12            13             0


           BETA
              I             S             X
              ________      ________      ________
 I                  0             0             7
 S                  0             0             8
 X                  0             0             0


           PSI
              I             S             X
              ________      ________      ________
 I                  9
 S                 10            11
 X                  0             0             0


     PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1                 14             0


           GAMMA(C)
              X
              ________
 C#1               15
 C#2                0


     STARTING VALUES FOR LATENT CLASS 1


           NU
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           LAMBDA
              I             S             X
              ________      ________      ________
 Y1             1.000         0.000         0.000
 Y2             1.000         1.000         0.000
 Y3             1.000         2.000         0.000
 Y4             1.000         3.000         0.000
 X              0.000         0.000         1.000


           THETA
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 Y1             0.500
 Y2             0.000         0.500
 Y3             0.000         0.000         0.500
 Y4             0.000         0.000         0.000         0.500
 X              0.000         0.000         0.000         0.000         0.000


           ALPHA
              I             S             X
              ________      ________      ________
 1              1.000         0.500         0.000


           BETA
              I             S             X
              ________      ________      ________
 I              0.000         0.000         0.500
 S              0.000         0.000         0.300
 X              0.000         0.000         0.000


           PSI
              I             S             X
              ________      ________      ________
 I              1.000
 S              0.000         0.200
 X              0.000         0.000         0.500


     STARTING VALUES FOR LATENT CLASS 2


           NU
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           LAMBDA
              I             S             X
              ________      ________      ________
 Y1             1.000         0.000         0.000
 Y2             1.000         1.000         0.000
 Y3             1.000         2.000         0.000
 Y4             1.000         3.000         0.000
 X              0.000         0.000         1.000


           THETA
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 Y1             0.500
 Y2             0.000         0.500
 Y3             0.000         0.000         0.500
 Y4             0.000         0.000         0.000         0.500
 X              0.000         0.000         0.000         0.000         0.000


           ALPHA
              I             S             X
              ________      ________      ________
 1              3.000         1.000         0.000


           BETA
              I             S             X
              ________      ________      ________
 I              0.000         0.000         0.500
 S              0.000         0.000         0.300
 X              0.000         0.000         0.000


           PSI
              I             S             X
              ________      ________      ________
 I              1.000
 S              0.000         0.200
 X              0.000         0.000         0.500


     STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1              0.000         0.000


           GAMMA(C)
              X
              ________
 C#1            1.000
 C#2            0.000


     POPULATION VALUES FOR LATENT CLASS 1


           NU
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           LAMBDA
              I             S             X
              ________      ________      ________
 Y1             1.000         0.000         0.000
 Y2             1.000         1.000         0.000
 Y3             1.000         2.000         0.000
 Y4             1.000         3.000         0.000
 X              0.000         0.000         1.000


           THETA
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 Y1             0.500
 Y2             0.000         0.500
 Y3             0.000         0.000         0.500
 Y4             0.000         0.000         0.000         0.500
 X              0.000         0.000         0.000         0.000         0.000


           ALPHA
              I             S             X
              ________      ________      ________
 1              1.000         0.500         0.000


           BETA
              I             S             X
              ________      ________      ________
 I              0.000         0.000         0.500
 S              0.000         0.000         0.300
 X              0.000         0.000         0.000


           PSI
              I             S             X
              ________      ________      ________
 I              1.000
 S              0.000         0.200
 X              0.000         0.000         1.000


     POPULATION VALUES FOR LATENT CLASS 2


           NU
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           LAMBDA
              I             S             X
              ________      ________      ________
 Y1             1.000         0.000         0.000
 Y2             1.000         1.000         0.000
 Y3             1.000         2.000         0.000
 Y4             1.000         3.000         0.000
 X              0.000         0.000         1.000


           THETA
              Y1            Y2            Y3            Y4            X
              ________      ________      ________      ________      ________
 Y1             0.500
 Y2             0.000         0.500
 Y3             0.000         0.000         0.500
 Y4             0.000         0.000         0.000         0.500
 X              0.000         0.000         0.000         0.000         0.000


           ALPHA
              I             S             X
              ________      ________      ________
 1              3.000         1.000         0.000


           BETA
              I             S             X
              ________      ________      ________
 I              0.000         0.000         0.500
 S              0.000         0.000         0.300
 X              0.000         0.000         0.000


           PSI
              I             S             X
              ________      ________      ________
 I              1.000
 S              0.000         0.200
 X              0.000         0.000         1.000


     POPULATION VALUES FOR LATENT CLASS REGRESSION MODEL PART


           ALPHA(C)
              C#1           C#2
              ________      ________
 1              0.000         0.000


           GAMMA(C)
              X
              ________
 C#1            1.000
 C#2            0.000


TECHNICAL 8 OUTPUT


  TECHNICAL 8 OUTPUT FOR REPLICATION 1


  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
     1 -0.31907108D+04    0.0000000    0.0000000    250.666   249.334    EM
     2 -0.31841268D+04    6.5839861    0.0020635    249.128   250.872    EM
     3 -0.31840124D+04    0.1144477    0.0000359    247.750   252.250    EM
     4 -0.31839346D+04    0.0777789    0.0000244    246.594   253.406    EM
     5 -0.31838777D+04    0.0568433    0.0000179    245.622   254.378    EM
     6 -0.31838356D+04    0.0421072    0.0000132    244.798   255.202    EM
     7 -0.31838041D+04    0.0315174    0.0000099    244.098   255.902    EM
     8 -0.31837803D+04    0.0237755    0.0000075    243.499   256.501    EM
     9 -0.31837623D+04    0.0180374    0.0000057    242.985   257.015    EM
    10 -0.31837486D+04    0.0137413    0.0000043    242.543   257.457    EM
    11 -0.31837381D+04    0.0104992    0.0000033    242.161   257.839    EM
    12 -0.31837300D+04    0.0080389    0.0000025    241.829   258.171    EM
    13 -0.31837239D+04    0.0061654    0.0000019    241.542   258.458    EM
    14 -0.31837191D+04    0.0047341    0.0000015    241.292   258.708    EM
    15 -0.31837155D+04    0.0036383    0.0000011    241.073   258.927    EM
    16 -0.31837127D+04    0.0027984    0.0000009    240.883   259.117    EM
    17 -0.31837105D+04    0.0021537    0.0000007    240.717   259.283    EM
    18 -0.31837089D+04    0.0016583    0.0000005    240.572   259.428    EM
    19 -0.31837076D+04    0.0012774    0.0000004    240.444   259.556    EM
    20 -0.31837066D+04    0.0009844    0.0000003    240.333   259.667    EM
    21 -0.31837059D+04    0.0007588    0.0000002    240.235   259.765    EM
    22 -0.31837053D+04    0.0005850    0.0000002    240.150   259.850    EM
    23 -0.31837048D+04    0.0004512    0.0000001    240.075   259.925    EM
    24 -0.31837045D+04    0.0003480    0.0000001    240.009   259.991    EM
    25 -0.31837042D+04    0.0002685    0.0000001    239.951   260.049    EM
    26 -0.31837040D+04    0.0002072    0.0000001    239.900   260.100    EM
    27 -0.31837038D+04    0.0001599    0.0000001    239.856   260.144    EM
    28 -0.31837037D+04    0.0001234    0.0000000    239.817   260.183    EM
    29 -0.31837036D+04    0.0000953    0.0000000    239.782   260.218    EM
    30 -0.31837036D+04    0.0000736    0.0000000    239.752   260.248    EM
    31 -0.31837035D+04    0.0000569    0.0000000    239.725   260.275    EM
    32 -0.31837034D+04    0.0000439    0.0000000    239.702   260.298    EM
    33 -0.31837034D+04    0.0000339    0.0000000    239.682   260.318    EM
    34 -0.31837034D+04    0.0000261    0.0000000    239.664   260.336    EM
    35 -0.31837033D+04    0.0000796    0.0000000    239.570   260.430    FS
    36 -0.31837033D+04    0.0000077    0.0000000    239.552   260.448    FS
    37 -0.31837033D+04    0.0000010    0.0000000    239.536   260.464    FS
    38 -0.31837033D+04    0.0000002    0.0000000    239.538   260.462    FS
    39 -0.31837033D+04    0.0000001    0.0000000    239.532   260.468    FS
    40 -0.31837033D+04    0.0000000    0.0000000    239.536   260.464    FS
    41 -0.31837033D+04    0.0000000    0.0000000    239.532   260.468    FS
    42 -0.31837033D+04    0.0000000    0.0000000    239.535   260.465    FS
    43 -0.31837033D+04    0.0000000    0.0000000    239.533   260.467    FS
    44 -0.31837033D+04    0.0000000    0.0000000    239.534   260.466    FS
    45 -0.31837033D+04    0.0000000    0.0000000    239.533   260.467    FS
    46 -0.31837033D+04    0.0000000    0.0000000    239.534   260.466    FS
    47 -0.31837033D+04    0.0000000    0.0000000    239.533   260.467    FS
    48 -0.31837033D+04    0.0000000    0.0000000    239.534   260.466    FS
    49 -0.31837033D+04    0.0000000    0.0000000    239.533   260.467    FS
    50 -0.31837033D+04    0.0000000    0.0000000    239.534   260.466    FS
    51 -0.31837033D+04    0.0000000    0.0000000    239.534   260.466    FS


TECHNICAL 9 OUTPUT

  Error messages for each replication (if any)



SAVEDATA INFORMATION

  Order of variables

    Y1
    Y2
    Y3
    Y4
    X
    C

  Save file
    ex8.1.dat

  Save file format           Free
  Save file record length    10000


     Beginning Time:  17:18:45
        Ending Time:  17:18:45
       Elapsed Time:  00:00:00



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2014 Muthen & Muthen

Back to examples